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Checking Graph-Transformation Systems for Confluence

Detlef Plump

The University of York, UK

Abstract: In general, it is undecidable whether a terminating graph-transformation

system is confluent or not. We introduce the class of coverable hypergraph-transfor-

mation systems and show that confluence is decidable for coverable systems that are

terminating. Intuitively, a system is coverable if its typing allows to extend each crit-

ical pair with a non-deletable context that uniquely identifies the persistent nodes of

the pair. The class of coverable systems includes all hypergraph-transformation sys-

tems in which hyperedges can connect arbitrary sequences of nodes, and all graph-

transformation systems with a sufficient number of unused edge labels.

Keywords: Confluence, graph transformation, coverable systems

1 Introduction

Confluent sets of graph-transformation rules can be executed without backtracking since all ter-

minating derivations produce the same result for a given input graph. Applications of confluence

include the efficient recognition of graph classes by graph reduction [ACPS93, BF01, BPR04],

the parsing of languages defined by graph grammars [FKZ76, RS97], and the deterministic in-

put/output behaviour of programs in graph-transformation languages such as AGG [Tae04], FU-

JABA [NNZ00], GrGen [GBG+06] or GP [Plu09].

In the settings of string and term rewriting, confluence is decidable for terminating systems

[BO93, BN98, BKV03]: one computes all critical pairs t ← s→ u of rewrite steps and checks

whether t and u are joinable in that they reduce to a common string resp. term. In contrast,

confluence is undecidable in general for terminating graph-transformation systems [Plu05]. The

problem is, in brief, that the joinability of all critical pairs need not imply confluence of a system.

To guarantee confluence, one has to impose extra conditions on the joining derivations, leading to

the notion of a strongly joinable critical pair. However, strong joinability of all critical pairs is not

a necessary condition for confluence and hence, in general, cannot be used to decide confluence.

In this paper, we introduce coverable hypergraph-transformation systems and show that con-

fluence is decidable for coverable systems that are terminating. Intuitively, a system is cover-

able if its typing allows to extend each critical pair with a non-deletable context—a cover—that

uniquely identifies the persistent nodes of the pair. We give a decision procedure for confluence

that processes each extended critical pair Γ̂ : Û1 ⇐ Ŝ⇒ Û2 by reducing Û1 and Û2 to normal

forms X1 and X2, and checking whether X1 and X2 are isomorphic. If this is the case, then the

critical pair underlying Γ̂ is strongly joinable; otherwise, a counterexample to confluence has

been found.

Roughly speaking, a cover for a critical pair can be constructed if the signature of the hyper-

graph-transformation system under consideration contains (hyper-)edge labels that do not occur

in rules and that can be used to connect the persistent nodes of the critical pair by edges. Such a

1 / 15 Volume 26 (2010)



Checking Graph-Transformation Systems for Confluence

cover cannot be deleted by rules. Moreover, there must be a unique surjective morphism from the

cover to each of its images under a graph morphism. We give different conditions under which

covers can be constructed and show, in particular, that the class of coverable systems includes

all hypergraph-transformation systems in which hyperedges can connect arbitrary sequences of

nodes.

The rest of this paper is organised as follows. The next section recalls some terminology for

binary relations and defines hypergraphs and their morphisms. Section 3 reviews the double-

pushout approach to (hyper-)graph transformation in a setting where rules are matched injec-

tively and can have non-injective right-hand morphisms. We define confluence of hypergraph-

transformation systems and recall the fact that confluence is undecidable for terminating systems.

In Section 4 we review the role of critical pairs in establishing confluence. Section 5 introduces

covers for critical pairs and coverable systems, discusses our main result and the associated de-

cision procedure for confluence, and presents special cases where confluence is decidable. In

Section 6, we conclude and discuss a topic for future work.

2 Preliminaries

We recall some terminology for binary relations (consistent with [BN98, BKV03]) and define

hypergraphs and their morphisms.

2.1 Relations

Let→ be a binary relation on a set A. The inverse relation of→ is denoted by←. We write→+

for the transitive closure of → and →∗ for the transitive-reflexive closure of →. Two elements

a,b ∈ A have a common reduct if a→∗ c←∗ b for some c. If a→∗ c and there is no d such that

c→ d, then d is a normal form of a.

The relation → is (1) terminating if there is no infinite sequence a1 → a2 → a3 → . . . , (2)

confluent if for all a, b and c with b←∗ a→∗ c, elements b and c have a common reduct (see

Figure 1(a)), (3) locally confluent if for all a, b and c with b← a→ c, elements b and c have a

common reduct (see Figure 1(b)).

•

• •

∗ ∗

•

∗ ∗

•

• •

•

∗ ∗

(a) confluence (b) local confluence

Figure 1: Confluence properties
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By the following well-known result, local confluence and confluence are equivalent in the

presence of termination.

Lemma 1 (Newman’s Lemma [New42]) A terminating relation is confluent if and only if it is

locally confluent.

2.2 Hypergraphs

We deal with directed, labelled hypergraphs and use a simple type system where the label of a

hyperedge restricts the number of incident nodes and their labels. A signature Σ= 〈ΣV,ΣE,Type〉
consists of a set ΣV of node labels, a set ΣE of hyperedge labels and a mapping Type assigning

to each l ∈ ΣE a set Type(l)⊆ Σ∗V. Unless stated otherwise, we denote by Σ an arbitrary but fixed

signature over which all hypergraphs are labelled.

A hypergraph over Σ is a system G = 〈VG,EG,markG, labG,attG〉 consisting of two finite sets

VG and EG of nodes (or vertices) and hyperedges, two labelling functions markG : VG → ΣV

and labG : EG → ΣE, and an attachment function attG : EG → V∗G such that mark∗G(attG(e)) ∈
Type(labG(e)) for each hyperedge e. (The extension f ∗ : A∗→ B∗ of a function f : A→ B maps

the empty string to itself and a1 . . .an to f (a1) . . . f (an).) We write H (Σ) for the set of all

hypergraphs over Σ.

In pictures, nodes and hyperedges are drawn as circles and boxes, respectively, with labels

inside. Lines represent the attachment of hyperedges to nodes, where numbers specify the left-

to-right order in the attachment string. For example, Figure 2 shows a hypergraph with four

nodes (all labelled with •) and three hyperedges (labelled with B and S).

S

1

2

1

B
2 3

S

1

2

Figure 2: A hypergraph

A hypergraph G is a graph if each hyperedge e is an ordinary edge, that is, if attG(e) has length

two. Ordinary edges may be drawn as arrows with labels written next to them.

Given hypergraphs G and H , a hypergraph morphism (or morphism for short) f : G → H

consists of two functions fV : VG→ VH and fE : EG→ EH that preserve labels and attachment

to nodes, that is, markH ◦ fV = markG, labH ◦ fE = labG and attH ◦ fE = f ∗V ◦ attG. A morphism

incl : G→H is an inclusion if inclV(v) = v and inclE(e) = e for all v∈VG and e∈EG. In this case

G is a subhypergraph of H which is denoted by G ⊆ H . Every morphism f : G→ H induces

a subhypergraph of H , denoted by f (G), which has nodes fV(VG) and hyperedges fE(EG).
Morphism f is injective (surjective) if fV and fE are injective (surjective). If f is surjective, then

H is an image of G. If f is both injective and surjective, then it is an isomorphism. In this case

G and H are isomorphic, which is denoted by G∼= H .
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The composition of two morphisms f : G→ H and g : H→M is the morphism g◦ f : G→M

consisting of the composed functions gV ◦ fV and gE ◦ fE. The composition is also written as

G→ H→M if f and g are clear from the context.

A partial hypergraph morphism f : G→H is a hypergraph morphism S→H such that S⊆G.

Here S is the domain of definition of f , denoted by Dom( f ).

3 Graph Transformation

We briefly review the double-pushout approach to graph transformation. In our setting, rules

are matched injectively and can have non-injective right-hand morphisms. (See [HMP01] for a

comparison with other variants of the double-pushout approach.)

3.1 Rules and derivations

A rule r : 〈L← K→ R〉 consists of two hypergraph morphisms with a common domain, where

K→ L is an inclusion. The hypergraphs L and R are the left- and right-hand side of r, and K is

the interface. The rule is injective if the morphism K→ R is injective.

Let G and H be hypergraphs, r : 〈L← K → R〉 a rule and f : L→ G an injective morphism.

Then G directly derives H by r and f , denoted by G⇒r, f H , if there exist two pushouts as in

Figure 3. Given a set of rules R, we write G⇒R H to express that there exist r ∈ R and a

L K R

G D H

f

Figure 3: A double-pushout

morphism f such that G⇒r, f H .

We refer to [Plu05] for the definition and construction of hypergraph pushouts. Intuitively, the

left pushout corresponds to the construction of D from G by removing the items in L−K, and the

right pushout to the construction of H from D by merging items according to K→ R and adding

the items in R that are not in the image of K.

A double-pushout as in Figure 3 is called a direct derivation from G to H and may be denoted

by G⇒r, f H or just by G⇒r H or G⇒ H . A derivation from G to H is a sequence of direct

derivations G = G0⇒ . . .⇒ Gn = H , n≥ 0, and may be denoted by G⇒∗ H .

Given a rule r : 〈L←K→R〉, an injective morphism f : L→G satisfies the dangling condition

if no hyperedge in EG− fE(EL) is incident to a node in fV(VL−VK). It can be shown that, given

r and f , a direct derivation as in Figure 3 exists if and only if f satisfies the dangling condition

[HMP01].

With every derivation ∆ : G0 ⇒
∗ Gn a partial hypergraph morphism can be associated that

tracks the items of G0 through the derivation: this morphism is undefined for all items in G0 that

are removed by ∆ at some stage, and maps all other items to the corresponding items in Gn.

Festschrift H.-J. Kreowski 4 / 15
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Definition 1 (Track morphism) Given a direct derivation G ⇒ H as in Figure 3, the track

morphism trG⇒H : G→ H is the partial hypergraph morphism defined by

trG⇒H(x) =

{
c′(c−1(x)) if x ∈ c(D),
undefined otherwise.

Here c : D→G and c′ : D→H are the morphisms in the lower row of Figure 3 and c−1 : c(D)→
D maps each item c(x) to x.

The track morphism of a derivation ∆ : G0⇒
∗ Gn is defined by tr∆ = idG0

if n = 0 and tr∆ =
trG1⇒∗Gn

◦ trG0⇒G1
otherwise, where idG0

is the identity morphism on G0.

Definition 2 (Hypergraph-transformation system) A hypergraph-transformation system 〈Σ,R〉
consists of a signature Σ and a set R of rules over Σ. The system is injective if all rules in R are

injective. It is a graph-transformation system if for each label l in ΣE, all strings in Type(l) are

of length two.

As graph-transformation systems are special hypergraph-transformation systems, results for

the latter also apply to the former. In particular, Theorem 2, Theorem 3 and Corollary 1 below

hold for graph-transformation systems, too.

Example 1 Figure 4 shows hypergraph-transformation rules for reducing control-flow graphs

(see also [Plu05]). The associated signature contains a single node label • and two hyperedge

seq:

x

y

⇒

y

x

while: y

x

⇒

y

x

dec1:

y

x

⇒

y

x

dec2:
y

z

x

⇒
y z

x

Figure 4: Hypergraph-transformation system for flow-graph reduction

labels which are graphically represented by hyperedges formed as squares and rhombs. Instead

of using numbers to represent the attachment function, we use an arrow to point to the second

attachment node of a square and define the order among the links of a rhomb to be “top-left-

right”. The rules are shown in a shorthand notation where only the left- and right-hand sides are

depicted, the interface and the morphisms are implicitly given by the node names x,y,z. This

example will be continued as Example 2, where it is shown that the system is confluent.
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3.2 Independence and confluence

Two direct derivations H1⇐r1
G⇒r2

H2 do not interfere with each other if, roughly speaking,

the intersection of the left-hand sides of r1 and r2 in G consists of common interface items. If one

of the rules is not injective, however, an additional injectivity condition is needed. For i = 1,2,

let ri denote a rule 〈Li← Ki→ Ri〉.

Definition 3 (Independence) Direct derivations H1⇐r1
G⇒r2

H2 as in Figure 5 are indepen-

dent if there are morphisms L1→ D2 and L2→ D1 such that the following holds:

Commutativity: L1→ D2→ G = L1→ G and L2→ D1→ G = L2→ G.

Injectivity: L1→ D2→ H2 and L2→ D1→ H1 are injective.

R1 K1 L1 L2 K2 R2

H1 D1 GG D2 H2

Figure 5: Independent direct derivations

If r1 and r2 are injective, the direct derivations of Figure 5 are independent if and only if the

intersection of the two left-hand sides coincides with the intersection of the two interfaces.

Lemma 2 (Independence for injective rules) Let r1 and r2 be injective rules. Then direct

derivations H1 ⇐r1,g1
G⇒r2,g2

H2 are independent if and only if g1(L1)∩ g2(L2) ⊆ g1(K1)∩
g2(K2).

To define confluence and local confluence of hypergraph-transformation systems, we slightly

relax the properties of Figure 1. Rather than require that converging ⇒R-derivations must end

in the same graph, we allow them to end in isomorphic graphs.

Definition 4 (Confluence of 〈Σ,R〉) A hypergraph-transformation system 〈Σ,R〉 is confluent

(locally confluent) if for all G,G1,G2 ∈H (Σ), G1⇐
∗
R

G⇒∗
R

G2 (G1⇐R G⇒R G2) implies

that there are H1,H2 ∈H (Σ) such that G1⇒
∗
R

H1
∼= H2⇐

∗
R

G2.

This definition is equivalent to that in Subsection 2.1 as long as the converging derivations

G1⇒
∗
R

H1 and G2⇒
∗
R

H2 do not both have length 0. This is because, by pushout properties,

A⇒R B∼= B′ always implies A⇒R B′. If the converging derivations have length 0, however, we

may have G1
∼= G2 without G1 and G2 being transformable into a common graph. It is natural to

consider this still as confluence, because in (double-pushout) graph transformation the results of

rule applications are unique only up to isomorphism.

This view on confluence can be substantiated by considering hypergraph transformation “up to

isomorphism”, that is, the transformation of isomorphism classes of hypergraphs. Given a hyper-

graph G, denote by [G] the isomorphism class {G′ | G′ ∼= G}. For a hypergraph-transformation

Festschrift H.-J. Kreowski 6 / 15
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system 〈Σ,R〉, define the relation ⇒R,
∼= on isomorphism classes of hypergraphs over Σ by:

[G]⇒R,
∼= [H] if G⇒R H . (This is well-defined since G′ ∼= G⇒R H ∼= H ′ implies G′⇒R H ′.)

Then (local) confluence in the sense of Definition 4 is equivalent to (local) confluence of⇒R,
∼=

in the sense of Subsection 2.1, as shown by the next lemma.

Lemma 3 ([Plu05]) A hypergraph-transformation system 〈Σ,R〉 is confluent (locally conflu-

ent) if and only if the relation⇒R,
∼= is confluent (locally confluent).

A system 〈Σ,R〉 is terminating if the relation⇒R is terminating. The following result follows

with Newman’s Lemma.

Lemma 4 A terminating hypergraph-transformation system is confluent if and only if it is lo-

cally confluent.

Proof. The “only if” direction holds trivially, so assume that 〈Σ,R〉 is terminating and locally

confluent. Then⇒R,
∼= is locally confluent by Lemma 3. Moreover,⇒R,

∼= is terminating because

[G]⇒R,
∼= [H] if and only if G⇒R H . Thus, by Lemma 1,⇒R,

∼= is confluent. Using Lemma 3

again shows that 〈Σ,R〉 is confluent.

In general, confluence is undecidable even for terminating graph-transformation systems. The

precise result is as follows.

Theorem 1 ([Plu05]) The following problem is undecidable in general:

Instance: An injective and terminating graph-transformation system 〈Σ,R〉 such that ΣV is a

singleton and ΣE and R are finite.

Question: Is 〈Σ,R〉 confluent?

Note that since graph-transformation systems are special hypergraph-transformation systems,

the result also applies to the latter.

4 Critical Pairs

Critical pairs consist of direct derivations of minimal size that are not independent. We recall

their definition from [Plu93, Plu05].

Definition 5 (Critical pair) Let ri : 〈Li ← Ki → Ri〉 be rules, for i = 1,2. A pair of direct

derivations U1⇐r1,g1
S⇒r2,g2

U2 is a critical pair if

(1) S = g1(L1)∪g2(L2) and

(2) the steps are not independent.

Moreover, we require g1 6= g2 in case r1 = r2.

Two critical pairs U1⇐r1,g1
S⇒r2,g2

U2 and U ′1⇐r1,g
′
1

S′⇒r2,g
′
2

U ′2 are isomorphic if there is

an isomorphism f : S→ S′ such that for i = 1,2, g′i = f ◦gi. In the sequel, we equate isomorphic
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critical pairs so that condition (1) guarantees that a finite set of rules has only a finite number of

critical pairs.

Example 2 Figure 6 shows the critical pairs of the hypergraph-transformation system of Figure

4 and demonstrates that all pairs are strongly joinable in the sense of the next definition. (Track

morphisms are indicated by node names.)

w

y

z

⇐
seq

w

x

y

z

⇒
seq

w

x

z

x

z ⇐
seq

x

y

z

⇒
seq

x

y

w

y

z

⇐
while

⇒
seq

x y

w

z

z

w

⇒
dec2

⇐
w

hile

x z

w

w y

v

z

⇐
dec2

w x

v

y

z

⇒
seq

w x

v

z

w y

v

⇐
dec2

w x

v

y

⇒
seq

w x

v

w y

v

⇐
dec2

w x

v

y

⇒
seq

w x

v

Figure 6: The critical pairs of the system of Figure 4
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Given a critical pair Γ : U1⇐ S⇒U2, let PersistΓ be the subhypergraph of S consisting of all

nodes v such that both trS⇒U1
(v) and trS⇒U2

(v) are defined.

Definition 6 (Joinability) Let 〈Σ,R〉 be a hypergraph-transformation system. A critical pair

Γ : U1⇐ S⇒U2 is joinable if there are derivations Ui⇒
∗
R

Xi, for i = 1,2, and an isomorphism

f : X1→ X2. Moreover, Γ is strongly joinable if, in addition, for each node v in PersistΓ ,

(1) trS⇒U1⇒∗X1
(v) and trS⇒U2⇒∗X2

(v) are defined and

(2) fV(trS⇒U1⇒∗X1
(v)) = trS⇒U2⇒∗X2

(v).

In [Plu05] it is shown that a hypergraph-transformation system is locally confluent if all its

critical pairs are strongly joinable. Combining this result with Newman’s Lemma yields a suffi-

cient condition for the confluence of terminating systems.

Theorem 2 ([Plu05]) A terminating hypergraph-transformation system is confluent if all its

critical pairs are strongly joinable.

For example, the system of Figure 4 is terminating since each of the rules reduces the size of

a hypergraph it is applied to. Thus, by Theorem 2, the system is confluent.

5 Coverable Systems

In general, by Theorem 1, confluence of a terminating hypergraph-transformation system 〈Σ,R〉
cannot be decided by checking whether all critical pairs are strongly joinable. For, suppose we

encounter a critical pair U1 ⇐ S⇒ U2 that is joinable but not strongly joinable, that is, there

are hypergraphs X1 and X2 such that U1 ⇒
∗
R

X1
∼= X2⇐

∗
R

U2 but no isomorphism X1→ X2 is

compatible with the track morphisms trS⇒Ui⇒∗Xi
. Then, assuming that all other critical pairs are

joinable, 〈Σ,R〉 may or may not be confluent. This is demonstrated by the following example.

Example 3 Consider the graph-transformation system 〈Σ,R〉 consisting of singletons ΣV and

ΣE, and the following rules:

r1 :
x y

⇒
x y

r2 :
x

⇒
x

r3 :
x y

⇒
x y

This system is terminating as every rule application reduces the number of edges. It is also

confluent since whenever H1 ⇐
∗
R

G ⇒∗
R

H2, there are derivations H1 ⇒
∗
R

H ′1
∼= H ′2 ⇐

∗
R

H2

where H ′1 and H ′2 consist of |VG| nodes and either no edges (if G is loop-free) or one loop and no

other edges. However, despite confluence, the critical pair

9 / 15 Volume 26 (2010)
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x y
⇐
r1 x y

⇒
r1 x y

is not strongly joinable because the outer graphs are normal forms1 and the isomorphism between

them is not compatible with the track morphisms as required by condition (2) of Definition 6.

Thus, we cannot report non-confluence if we encounter a joinable critical pair that is not

strongly joinable. On the other hand, joinability of all critical pairs does not guarantee conflu-

ence. Suppose, for instance, that we add an edge label a to ΣE. Then all critical pairs are still

joinable but confluence breaks down, as witnessed by the following counterexample:

a

⇐
r1 a

⇒
r1 a

This example also shows that signature extensions need not preserve confluence. In particular,

hyperedge labels that do not occur in rules turn out to be crucial for ensuring that local confluence

implies strong joinability of all critical pairs.

Given a hyperedge e in a hypergraph G, the pair 〈labG(e), mark∗G(attG(e))〉 is the profile of e.

If R is a set of hypergraph-transformation rules, we write Prof(R) for the set of all hyperedge

profiles occurring in R and Mark(R) for the set of all node labels occurring in R.

Definition 7 (GR and G⊖) Let 〈Σ,R〉 be a hypergraph-transformation system and G ∈H (Σ).
We define subhypergraphs GR and G⊖ as follows:

(1) GR consists of all hyperedges with profile in Prof(R) and all nodes with label in Mark(R).

(2) G⊖ consists of all hyperedges in EG−EGR , all attachment nodes of these hyperedges, and

all nodes in VG−VGR .

It follows that G = GR ∪G⊖, where GR and G⊖ may share some attachment nodes of edges

in G⊖. These shared nodes cannot be removed by any rule in R, by the dangling condition for

direct derivations.

Definition 8 (Cover) Given a critical pair Γ of a hypergraph-transformation system 〈Σ,R〉, a

cover for Γ is a hypergraph C ∈H (Σ) such that

(1) PersistΓ ⊆C,

(2) C⊖ = C, and

(3) for every image C̃ of C, there is a unique surjective morphism C→ C̃.

Remarks

1. By condition (2), the profiles of the hyperedges in C are distinct from those in Prof(R).
Also, since all node labels in PersistΓ belong to Mark(R), (1) and (2) imply that each node

in PersistΓ is incident to some hyperedge in C.

1 A graph G is a normal form with respect to a system 〈Σ,R〉 if there is no graph H such that G⇒R H.

Festschrift H.-J. Kreowski 10 / 15
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2. Intuitively, C uniquely identifies the nodes in PersistΓ in that for every image C̃ of C, each

node in PersistΓ corresponds to a unique node in C̃. Moreover, the rules in R can affect C

at most by merging some nodes in PersistΓ .

3. By condition (3), C does not possess nontrivial automorphisms. That is, the identity

idC : C→C is the only isomorphism on C.

Example 4 Consider a critical pair Γ : U1⇐ S⇒U2.

1. If PersistΓ = /0, then the empty hypergraph is a cover for Γ.

2. Let PersistΓ consist of a single node v with label m. If there is some l ∈ ΣE such that

m∈Type(l) and 〈l, m〉 6∈ Prof(R), then the hypergraph C consisting of v and an hyperedge

e with labC(e) = l and attC(e) = v is a cover for Γ. Alternatively, if mm ∈ Type(l) and

〈l, mm〉 6∈ Prof(R), then the graph C consisting of v and an edge e with labC(e) = l and

attC(e) = vv is a cover for Γ.

3. Let PersistΓ consist of nodes v1, . . . ,vn with n ≥ 2 and markS(vi) = mi, for i = 1, . . . ,n. If

there is l ∈ΣE such that m1 . . .mn ∈Type(l) and 〈l, m1 . . .mn〉 6∈ Prof(R), then C consisting

of v1, . . . ,vn and an hyperedge e with labC(e) = l and attC(e) = v1 . . .vn is a cover for

Γ. Alternatively, suppose that there are distinct labels l1, . . . , ln−1 ∈ ΣE such that for i =
1, . . . ,n− 1, mimi+1 ∈ Type(li) and 〈li, mimi+1〉 6∈ Prof(R). Then a graph cover C for Γ
is given by v1, . . . ,vn and edges e1, . . . ,en−1 where for i = 1, . . . ,n− 1, labC(ei) = li and

attC(ei) = vivi+1. (For instance, the critical pair discussed in Example 3 can be covered in

this way after the edge label a with Type(a) = {••} has been added to ΣE.)

Figure 7 shows the alternative covers of Example 4.3 for a critical pair with n persistent nodes.

Note that l1, . . . , ln−1 need to be distinct as otherwise condition (3) of Definition 8 may be vio-

lated.

l
1

m1

. . .

. . .

n

mn m1 m2
l1 l2 . . .

ln−1 mn

Figure 7: Alternative covers for a critical pair with n persistent nodes

Definition 9 (Coverable system) A hypergraph-transformation system is coverable if for each

of its critical pairs there exists a cover.

Our main result is that for coverable systems, local confluence is equivalent to the strong

joinability of all critical pairs.
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Theorem 3 A coverable hypergraph-transformation system is locally confluent if and only if

all its critical pairs are strongly joinable.

Sketch of proof. Theorem 2 establishes the “if” direction. We outline the proof for the con-

verse, which is based on extending critical pairs with their covers. Consider a critical pair

Γ : U1⇐ S⇒U2 and a cover C for Γ such that S∩C = PersistΓ . Then there are extended direct

derivations Û1⇐ Ŝ⇒ Û2, where Ŝ = S∪C. By local confluence, there are hypergraphs X1 and

X2 such that Û1⇒
∗ X1
∼= X2⇐

∗ Û2. The derivations Ŝ⇒ Ûi⇒
∗ Xi, i = 1,2, preserve the nodes

in PersistΓ because the latter are incident to edges in C . Hence, after taking the cover C off,

one obtains restricted derivations S⇒Ui⇒
∗ X i, i = 1,2, that satisfy condition (1) of Definition

6. Moreover, one can show that X1 = XR
1
∼= XR

2 = X2. Restricting the morphisms tr
Ŝ⇒Ûi⇒∗Xi

,

i = 1,2, to Ŝ⊖ and X⊖i yields surjective morphisms ti : Ŝ⊖ → X⊖i . Also, given an isomorphism

f : X1 → X2, its restriction f⊖ : X⊖1 → X⊖2 is an isomorphism. Hence both f⊖ ◦ t1 : Ŝ⊖ → X⊖2
and t2 : Ŝ⊖ → X⊖2 are surjective morphisms. Since Ŝ⊖ = C, condition (3) of Definition 8 im-

plies f ◦ t1 = t2. It then follows that condition (2) of Definition 6 is satisfied. Thus Γ is strongly

joinable. �

Assumption For the rest of this section, we consider hypergraph-transformation systems 〈Σ,R〉
in which ΣV, ΣE and R are finite.

As a consequence of Theorem 3, confluence of terminating coverable systems is equivalent

to the strong joinability of all critical pairs. This allows to decide confluence by testing for the

latter property.

Corollary 1 Confluence is decidable for coverable hypergraph-transformation systems that

are terminating.

Given a terminating and coverable system, Algorithm 1 checks whether all critical pairs are

strongly joinable by extending critical pairs with covers and then testing for simple joinability

of all “covered pairs”. By the (full) proof of Theorem 3, joinability of a covered pair implies

strong joinability of the underlying critical pair. Given a covered pair Γ̂ : Û1 ⇐ Ŝ⇒ Û2, one

nondeterministically computes a normal form Xi of Ûi, for i = 1,2, and checks whether X1 and

X2 are isomorphic. If they are, then the critical pair Γ underlying Γ̂ is strongly joinable, otherwise

a counterexample to confluence has been found.

Example 5 Consider again the hypergraph-transformation system of Example 1. Suppose that

its typing allows a rhomb hyperedge to have two attachment nodes and a square hyperedge to

have three attachment nodes, besides the versions of rhombs and squares occurring in the rules.

Then each critical pair of this system can be covered and Algorithm 1 determines that the system

is confluent. For instance, Figure 8 shows the extended version of a critical pair of Figure 6 and

its joining derivations.

The graph-transformation system of Example 3, on the other hand, is not coverable. It be-

comes coverable after the edge label a has been added to the signature, when Algorithm 1 deter-

mines that the resulting system is non-confluent.
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Algorithm 1 Decision procedure for confluence

Input: a terminating and coverable hypergraph-transformation system 〈Σ,R〉 and its set of crit-

ical pairs CP

for all Γ : U1⇐r1,g1
S⇒r2,g2

U2 in CP do

{let C be a cover for Γ such that S∩C = PersistΓ}
Ŝ := S∪C

{for i = 1,2, let ĝi be the extension of gi to Ŝ}
for i = 1 to 2 do

construct a derivation Ŝ⇒ri,ĝi
Ûi⇒

∗
R

Xi such that Xi is a normal form

end for

if X1 6∼= X2 then

return “non-confluent”

end if

end for

return “confluent”

w

y

z

1

2

⇐
while

⇒
seq

x y

1

2

w

z

⇒
dec2

⇐
w

hile

x z

1

2

w

z

w
1

2

Figure 8: An extended critical pair of the system of Figure 4

Particular classes of hypergraph- and graph-transformation systems for which confluence is

decidable can be obtained by specialising Corollary 1 with the conditions given in Example 4.3

or with similar conditions. For instance, in the case of graph transformation, another sufficient

condition for terminating systems is that for each critical pair Γ with persistent nodes v1, . . . ,vn,

there are distinct labels l1, . . . , ln ∈ ΣE such that for i = 1, . . . ,n, markS(vi)markS(vi) ∈ Type(li)
and 〈li, markS(vi)markS(vi)〉 6∈ Prof(R). In this case a cover can be constructed by attaching to

v1, . . . ,vn loops labelled with l1, . . . , ln.

In the case of hypergraph transformation, a sufficient condition for the decidability of conflu-

ence (of terminating systems) can be given purely in terms of the signature Σ. We call a signature

Σ universal if for each l ∈ ΣE, Type(l) = Σ∗V.

Corollary 2 Confluence is decidable for terminating hypergraph-transformation systems with

universal signatures.
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For, if hyperedges can have arbitrary sequences of attachment nodes, we can cover critical

pairs with hyperedges that have longer attachment sequences than any hyperedges in rules by

using repeated nodes in the attachment.

6 Conclusion

Confluence is an undecidable property of terminating graph- and hypergraph-transformation sys-

tems. We have identified coverable systems as a subclass that comes with a decision procedure

for confluence. The class is nontrivial and properly includes all hypergraph-transformation sys-

tems with universal signatures.

A topic for future work is to extend Algorithm 1 such that it decides confluence for certain

non-coverable systems. The idea is to add to the signature of an input system a hyperedge

label whose typing allows to cover all critical pairs. One then runs the algorithm as before: if

all extended pairs are joinable, one can conclude that the underlying critical pairs are strongly

joinable and hence that the system is confluent. However, if a non-joinable extended pair is

encountered whose underlying critical pair is joinable, then the procedure has to give up because

the input system may or may not be confluent.
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[RS97] J. Rekers, A. Schürr. Defining and Parsing Visual Languages with Layered Graph

Grammars. Journal of Visual Languages and Computing 8(1):27–55, 1997.

[Tae04] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Vali-

dation of Software. In Applications of Graph Transformations With Industrial Rele-

vance (AGTIVE 2003), Revised Selected and Invited Papers. Lecture Notes in Com-

puter Science 3062, pp. 446–453. Springer-Verlag, 2004.

15 / 15 Volume 26 (2010)


	Introduction
	Preliminaries
	Relations
	Hypergraphs

	Graph Transformation
	Rules and derivations
	Independence and confluence

	Critical Pairs
	Coverable Systems
	Conclusion

