
This is a repository copy of Rooted Graph Programs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/195067/

Version: Published Version

Proceedings Paper:
Plump, Detlef orcid.org/0000-0002-1148-822X and Bak, Christopher (2012) Rooted Graph
Programs. In: Krause, Christian and Westfechtel, Bernhard, (eds.) Proceedings 7th
International Workshop on Graph Based Tools (GraBaTs 2012). 7th International
Workshop on Graph Based Tools (GraBaTs 2012), 24 Sep 2012 Electronic
Communications of the EASST . , DEU

https://doi.org/10.14279/tuj.eceasst.54.780.778

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Electronic Communications of the EASST

Volume 54 (2012)

Proceedings of the

7th International Workshop on Graph Based Tools

(GraBaTs 2012)

Rooted Graph Programs

Christopher Bak and Detlef Plump

12 pages

Guest Editors: Christian Krause, Bernhard Westfechtel

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

Rooted Graph Programs

Christopher Bak and Detlef Plump

The University of York, UK

Abstract: We present an approach for programming with graph transformation rules

in which programs can be as efficient as programs in imperative languages. The ba-

sic idea is to equip rules and host graphs with distinguished nodes, so-called roots,

and to match roots in rules with roots in host graphs. This enables graph transforma-

tion rules to be matched in constant time, provided that host graphs have a bounded

node degree (which in practice is often the case). Hence, for example, programs

with a linear bound on the number of rule applications run in truly linear time. We

demonstrate the feasibility of this approach with a case study in graph colouring.

Keywords: Graph programs, rooted graphs, time complexity, constant-time graph

matching, graph colouring

1 Introduction

The bottleneck for using graph transformation rules in programming is the inefficiency of graph

matching. In general, to match the left-hand graph L of a rule within a host graph G requires

time size(G)size(L). As a consequence, linear graph algorithms are slowed down to polynomial

complexity when they are recast as programmed graph transformation systems.

One way to speed up graph matching, going back to Dörr [5], is to equip rules and host graphs

with distinguished nodes, so-called roots, and to match roots in rules with roots in host graphs.

The same idea underlies Fujaba’s requirement that each method must have a “this” node at which

graph matching starts [8, 12]. A related concept in GrGen are rules that return graph elements to

restrict the location of subsequent rule applications [6].

Dodds and Plump [4, 2] have considered rooted graph transformation by using uniquely la-

belled nodes as roots. They show that graph matching can be achieved in constant time if rules

have a connected left-hand graph and host graphs have bounded node degrees. In addition, they

use rooted rules in a rule-based extension of C that allows to check the shape safety of pointer

manipulations [3]. In this paper, we generalise the approach of [4, 2] from plain rules to pro-

grams in the graph programming language GP 2 [10]. We extend GP with rooted rule schemata

and present a matching algorithm which deals with the label expressions in these schemata.

Our main contribution is to identify fast rule schemata, a large class of rooted conditional

rule schemata, and to prove that they can be applied in constant time if host graphs have a

bounded node degree. In practice, the latter assumption is often satisfied. For example, traffic

networks, digital circuits and social networks usually have an upper bound on the number of

edges attached to nodes. In Section 6, we apply fast rule schemata in a case study on graph

colouring. We give a GP program which checks whether the input graph is 2-colourable and,

if this is the case, colours the graph. We prove that this program runs in time linear in the size

1 / 12 Volume 54 (2012)

Rooted Graph Programs

of input graphs, demonstrating that rooted GP programs can achieve the time complexity of

programs in imperative languages.

2 Graph Transformation

We first recall the graph transformation approach underlying GP, namely the double-pushout

approach with relabelling [7], and then accommodate this framework to rooted graphs.

2.1 Non-rooted graph transformation

A (partially labelled) graph G is a system G = 〈VG,EG,sG, tG, lG,mG〉 where VG is a finite set

of nodes, EG is a finite set of edges, sG and tG are functions that assign to each edge a source

and a target node respectively, lG is the partial node-labelling function and mG is the total edge-

labelling function. We write lG = ⊥ if lG(v) is undefined. Both node and edge labels are taken

from a fixed label set L . Unlabelled nodes are used in rules to relabel nodes (see below). There

is no need to relabel edges because they can be deleted and reinserted with a new label.

A node w is reachable from a node v if v = w or there are an edge e and a node v′ such

that v and v′ are incident to e and w is reachable from v′. (Note that this defines undirected

reachability.) An edge e is reachable from v if the source and target of e are reachable from v. A

graph is connected if every node is reachable from every other node.

Given graphs G and H, a premorphism g : G→ H is a pair of functions gV : VG → VH and

gE : EG → EH that preserve sources and targets. That is, for all edges e in G, sH(gE(e)) =
gV (sG(e)) and tH(gE(e)) = gV (tG(e)). If g also preserves labels, that is mH(gE(e)) = mG(e)
for all edges e and lH(gV (v)) = lG(v) for all nodes v with lG(v) 6= ⊥, then g is a morphism. A

morphism whose node and edge functions are both injective and surjective is an isomorphism. If

g satisfies g(x) = x for all nodes and edges x, then g is an inclusion.

A rule r = 〈L← K→ R〉 is a pair of inclusions K→ L and K→ R where L and R are totally

labelled graphs. We refer to L, R and K as the left-hand side, the right-hand side and the interface,

respectively.

Given a graph G and a rule r = 〈L← K→ R〉, an injective morphism g : L→ G satisfies the

dangling condition if no node in g(L)− g(K) is incident to an edge in G− g(L). In this case G

directly derives graph H, denoted by G⇒r,g H or just G⇒r H, if H can be constructed from G

as follows:

1. Obtain a subgraph D by removing all nodes and edges in g(L)−g(K).
2. Add (disjointly) the nodes and edges of R−K to D, keeping all labels. For e ∈ ER−

EK , sH(e) = sR(e) if sR(e) ∈ VR−VK , otherwise sH(e) = gV (sR(e)). Targets are defined

analogously.

3. For all v ∈VK with lK(v) =⊥, define lH(gV (v)) = lR(v). The resulting graph is H.

Note that H is specified only up to isomorphism, that is, every graph isomorphic to H qualifies

as a result of the rule application. Abstractly, a direct derivation can be defined by a pair of natural

pushouts in the category of partially labelled graphs; we refer to [7] for this characterisation.

Proc. GraBaTs 2012 2 / 12

ECEASST

2.2 Rooted graph transformation

We extend the above definitions to include distinguished root nodes in both rules and host graphs.

Our approach is to treat rooted graphs and root-preserving morphisms as “first-class citizens”

instead of encoding roots with labels. Unlike [4, 2], we allow multiple roots in rule schemata

and host graphs; this may be useful in applications with disconnected host graphs.

A rooted graph is a pair 〈G,PG〉 where G is a graph and PG ⊆VG is a set of roots. A morphism

g : G→ H is root-preserving if g(PG) ⊆ PH . Note that rooted graphs (over some label set) and

root-preserving morphisms form a category.

A rooted rule r = 〈〈L,PL〉← 〈K,PK〉→ 〈R,PR〉〉 is a pair of root-preserving inclusions 〈K,PK〉→
〈L,PL〉 and 〈K,PK〉 → 〈R,PR〉 where L and R are totally labelled. Given a rooted graph G and a

root-preserving injective morphism g : L→ G satisfying the dangling condition, a direct deriva-

tion G⇒r,g H is constructed as above and by defining PH = (PG−gV (PL−PK))∪(PR−PK). This

construction can be characterised by a pair of natural pushouts in the category of rooted graphs

and root-preserving morphisms (omitted for lack of space).

3 Rooted Graph Programs in GP

We extend the graph programming language GP with rooted programs. A complete definition

of GP and its revised version GP 2 is given in [9, 10]. In this section, we describe GP’s most

important features informally.

3.1 Conditional Rule Schemata

GP’s principal programming constructs are conditional rule schemata. These extend the rules

of Subsection 2.1 with expressions in labels and with application conditions. For example, Fig-

ure 1 shows the declaration of a conditional rule schema bridge, where roots are depicted as

nodes with bold borders. Only the left- and right-hand side of the rule schema are declared. By

convention, the interface is the unlabelled and rootless graph consisting of the numbered nodes.

bridge(s,t:string; a:atom; n:int; x,y:list)

a:x

1

n

2

s
y

3

t
⇒ a

1

x:n

2

s
n*n

3

t

s.t

where (a=0 or a="?") and not edge(1,3,s.t)

and outdeg(1)=indeg(3)

Figure 1: Declaration of a conditional rule schema

The top line of the declaration states the name of the rule schema and declares the variables

that are used in the labels and in the condition. All variables occurring in the right-hand side and

3 / 12 Volume 54 (2012)

Rooted Graph Programs

in the condition must also occur in the left-hand side because their values at execution time are

determined by matching the left-hand side with a subgraph of the host graph.

Each variable is declared with a type which is either int, string, atom or list. Types

form a subtype hierarchy in which integers and character strings are basic types, both of which

are atoms, which in turn are considered as lists of length one. In general, a label in GP is a list

of atoms each of which is either an integer or a character string. Labels in host graphs do not

contain expressions; they are fixed values in (Z∪Char∗)∗, where Char is the set of available

characters.

Lists are constructed by the colon operator which represents list concatenation. For example,

the label of node 1 on the left of Figure 1 stands for a list whose first element a is an integer or

a character string, followed by a (possibly empty) rest list x. String concatenation is signified

by the dot operator, as in the edge label s.t on the right of Figure 1. Labels in the right-hand

side of a rule schema may contain arithmetic expressions such as n∗n in node 3 on the right of

Figure 1.

Besides having labels, both nodes and edges can be marked. Graphically, a marked node is

shaded, and a marked edge is dashed. Marked items in rule schemata can only match marked

items in host graphs. Vice versa, marked items in host graphs can only be matched by marked

items in rule schemata. Marks are used as boolean flags and should not be confused with roots.

Rule schemata have an optional condition, declared with the keyword where. The condition

is a boolean expression containing built-in predicates and functions, label expressions, and node

identifiers. For example, the subexpression not edge(1,3,s.t) in Figure 1 demands that

there must not be an edge in the host graph from node 1 to node 3 that is labelled with the string

s.t (where s and t stand for the host graph labels of the edges in the left-hand side). To apply

the rule schema according to a match of the left-hand side, the condition must evaluate to true

for that match and its induced assignment of values to variables.

3.2 Programs

GP programs consist of a finite number of rule schemata and a command sequence which controls

their application to a host graph (see Figure 3 for an example program). The main control

constructs are: application of a set of conditional rule schemata {r1, . . . ,rn}, where one of the

applicable schemata in the set is nondeterministically chosen or otherwise the command fails;

sequential composition P;Q of programs P and Q; as-long-as-possible iteration P! of a program

P; and conditional branching statements ifC then P else Q and tryC then P else Q, where

C, P and Q are arbitrary command sequences.

To execute if C then P else Q on a state G (the current graph), first the condition C is

executed on G. If this produces a graph, then this result is disposed and P is executed on state

G. Alternatively, if C fails on G, then Q is executed on G. This behaviour makes it possible to

encode complex tests in the condition C which do not alter the current state.

The command try C then P else Q also first executes C on G and, if this fails, executes Q

on G. However, if C produces a graph H, then P is executed on H rather than on G.

GP also allows to define (non-recursive) macros, which are command sequences represented

by identifiers. For example, the program in Figure 3 contains the macro colouring. Macros

are used for better readability but have no semantic significance.

Proc. GraBaTs 2012 4 / 12

ECEASST

4 A Matching Algorithm for Rooted Rule Schemata

We present a matching algorithm for rooted rule schemata which extends the corresponding algo-

rithms in [4, 2]. The main difference is that instead of matching plain graph transformation rules,

we have to deal with the syntax of GP 2-rule schemata. In particular, the algorithm must com-

pare label expressions of the left-hand side with values in host graph labels and, besides finding

matches of the graph structure, compute assignments of values to variables. These assignments

are used both in evaluating the application condition of the rule schema and in calculating the

labels of new and relabelled items when the rule schema is applied. Another extension to the

previous algorithms is that we allow multiple roots in rule schemata and host graphs, while the

cited papers assume a single root. Moreover, it is now possible to designate arbitrary nodes as

roots whereas before a root had to be identified by a uniquely occurring label.

First we introduce some notation used in the algorithm. A partial premorphism g : G→ H

is a pair of partial functions gV : VG→ VH and gE : EG→ EH such that for each edge e in G, if

gE(e) is defined then gV (sG(e)) and gV (tG(e)) are also defined and satisfy sH(gE(e)) = gV (sG(e))
and tH(gE(e)) = gV (tG(e)). We write Dom(gV) and Dom(gE) for the sets of nodes and edges

on which g is defined. Given partial premorphisms f ,g : G → H, f extends g by a node v

if Dom(fV) = Dom(gV)∪ {v} and Dom(fE) = Dom(gE). Also, f extends g by an edge e if

Dom(fE) = Dom(gE)∪{e} and Dom(fV) = Dom(gV)∪{sG(e), tG(e)}. Given a rooted graph

〈L,PL〉 and p ∈ PL, an edge enumeration for p is a list of edges e1, . . . ,en such that {e1, . . . ,en} is

the set of all edges reachable from p, e1 is incident to p, and for i = 2, . . . ,n, ei is incident to the

source or target of some edge in {e1, . . . ,ei−1}.

Algorithm Rooted Graph Matching

A←{〈h : L
par
−−→ G, /0〉 | Dom(h) = /0}

while there exists an untagged root p ∈ PL do

A0←{〈h : L
par
−−→ G, αh′〉 | h is injective and root-preserving, and

there exists 〈h′, αh′〉 in A such that h extends h′ by p}
tag p

AssignmentUpdate(A0)

for i = 1 to n do

Ai←{〈h : L
par
−−→ G, αh′〉 | h is injective and root-preserving, and

there exists 〈h′, αh′〉 in Ai−1 such that h extends h′ by ei}
if s(ei) ∈ PL then tag s(ei)
if t(ei) ∈ PL then tag t(ei)
AssignmentUpdate(Ai)

end for

A← Apn

end while

return A

Figure 2: Algorithm Rooted Graph Matching

Given a rooted host graph 〈G,PG〉, the left-hand side 〈L,PL〉 of a fixed rooted rule schema,

and an edge enumeration ep1
, . . . ,epn

for each p ∈ PL, the algorithm in Figure 2 computes all

5 / 12 Volume 54 (2012)

Rooted Graph Programs

matches of 〈L,PL〉 in 〈G,PG〉. The algorithm assumes that each node in L is reachable from some

root. It incrementally constructs a set A of pairs of partial premorphisms h : L
par
−−→ G and partial

assignments αh. By a partial assignment we mean a partial function Var(L)→ (Z∪Char∗)∗,
where Var(L) is the set of variables occurring in L. The roots in L are tagged whenever they are

matched; initially they are all untagged.

The algorithm calls the procedure AssignmentUpdate, which exploits that expressions in the

left-hand side of a GP rule schema are constrained to prevent ambiguous variable assignments.

Expressions must not contain arithmetic operators, more than one occurrence of a list variable,

or more than one occurrence of a string variable in a single string expression.

Lists and strings are stored internally as doubly-linked lists with pointers first and last pointing

to the first and last element. Hence the first and last element of a list or string, as well as the

predecessor and successor of the current element, can be accessed in unit time. With this data

structure, only the pointers first and last are needed when assigning a value to a list, atom or string

variable, as the rest of the list or string can be accessed through the next and prev operators.

AssignmentUpdate is omitted for lack of space; we give a brief outline of its operation. The

procedure iterates over its input, a set of pairs of partial premorphisms and partial assignments.

For each pair 〈h, α〉, it iterates over all untested labels l in the domain of h. Each l and cor-

responding host graph value h(l) are evaluated by a local procedure which will also update the

partial assignment if l contains a variable and the two expressions can be matched. In particular,

expressions containing a list variable or a string variable are tested by comparing the individual

components (atoms or characters) that occur before and after the single variable. If all compo-

nents match, then the variable has a unique mapping. This mapping is specified by assigning

locations to the first and last pointers of the string or list variable. This is sufficient; the rest

of the string or list can be accessed through the list operators as the value is stored as a doubly

linked list in the graph data structure.

Proposition 1 (Correctness of Rooted Graph Matching) The algorithm Rooted Graph Match-

ing returns the set of all pairs 〈g, α〉where g : L→G is an injective root-preserving premorphism

and α : Var(L)→ (Z∪Char∗)∗ is a total assignment such that g : Lα → G is label-preserving.

Here Lα is the graph obtained from L by replacing each variable x with the value α(x). Ac-

cording to the semantics of GP 2 [10], g must be label-preserving after this replacement, that is,

it must be a graph morphism Lα → G. We omit the proof of Proposition 1 for lack of space.

5 Complexity of Rooted Rule Schemata

In this section, we analyse the complexity of the rooted graph matching algorithm and of apply-

ing a conditional rule schema with a given match. We make the following general assumption.

Assumption 1 (Complexity model)

When analysing the complexity of rule schemata and programs, we assume that

1. rule schemata and programs are fixed, and

2. integer operations and character comparisons are computed in unit time.

Proc. GraBaTs 2012 6 / 12

ECEASST

The first assumption is customary in algorithm analysis where programs are fixed and running

time is measured in terms of input size. In our setting, programs consist of fixed rule schemata

and the input size is the size of a host graph and its labels.1 The second assumption is consistent

with the uniform cost criterion for random access machines, the standard complexity model in

algorithm analysis [1, 11].

Our matching algorithm assumes that each node in a left-hand graph is reachable from some

root. This alone does not guarantee that rule schemata can be applied in time independent of the

host graph. To achieve this, we need to impose some more restrictions on the form of rooted

rule schemata. We will show that, under mild assumptions on host graphs, rule schemata of the

following form can be applied in constant time.

Definition 1 (Fast rule schema)

A rule schema L⇒ R with application condition c is fast if

1. each node in L is reachable from some root,

2. L and R do not contain repeated list, string or atom variables, and

3. c does neither contain the edge predicate nor a test e1=e2 or e1!=e2 where both e1 and e2

contain a list, string or atom variable.

The first condition ensures that matches can only occur in the neighbourhood of roots. The

second condition makes it unnecessary to check the equality of lists or strings, or to copy lists or

strings. The third condition rules out tests that require more than constant time.

Applying a conditional rule schema L⇒ R to a host graph G requires several phases: finding

a root-preserving match of L in G and constructing the induced variable assignment; checking

the dangling condition and the application condition; removing items from L−K; adding items

from R−K; and relabelling nodes. In the following we focus on the complexity of the matching

phase because, in the worst case, it is far slower than the other phases.

We give the following lemma without proof due to lack of space.

Lemma 1 Given a fast rule schema L⇒ R and a host graph G, the procedure AssignmentUp-

date compares each label in L in constant time with the corresponding label in G.

We can now show that fast rule schemata can be matched in constant time, provided that both

node degrees and the number of roots in host graphs are bounded. The degree of a node v is the

sum of the number of edges with source v and the number of edges with target v.

Theorem 1 The algorithm Rooted Graph Matching runs in constant time for fast rule schemata

if there are upper bounds on the maximal node degree and the number of roots in host graphs.

Proof. Consider a fast rule schema L⇒ R and a host graph G. Let l be the number of roots in L.

Let b and r be upper bounds on the maximal node degree and the number of roots in host graphs

respectively.

First we count the number of times the set of partial premorphisms L
par
−−→ G is updated. We

assume a data structure where adding either a node, an edge, or a node and an edge to an existing

1 We need to consider the size of labels because they can contain arbitrarily large lists and strings.

7 / 12 Volume 54 (2012)

Rooted Graph Programs

morphism takes unit time. There are at most l iterations of the while loop and, within each

iteration, at most m = |EL| iterations of the for loop. Note that, by Assumption 1, both l and m

are constants.

Consider the execution of the first iteration of the while loop. First, a single root from L

is matched with all unmatched roots in G. Since no roots have been matched yet, r partial

morphisms are created. Then, in each iteration, either a single edge or an edge and a node is

added to the domain of one of more morphisms in the current set. As node degrees in G are

bounded by b, no more than b additions can take place. This gives a worst-case running time of

r+b|A0|+b|A1|+ ...+b|Am−1|. The set A0 contains at most r morphisms, A1 contains at most

br morphisms, etc. It follows that the running time is r+br+b2r+ . . .+bmr = r ∑
m
i=0 bi.

Next, the second root of L is matched. Since one root in G has already been matched, the

maximum size of the new morphism set is bmr(r−1). Hence, by the same argument as before,

the maximal running time after the second iteration of the while loop is

r
m

∑
i=0

bi + r(r−1)
2m

∑
i=m

bi
.

After the l-th and final iteration of the while loop, the total running time is bounded by

r
m

∑
i=0

bi + r(r−1)
2m

∑
i=m

bi + . . .+ r(r−1) . . .(r− l +1)
lm

∑
i=(l−1)m

bi
.

The procedure AssignmentUpdate is called after each update of the set of premorphisms. Each

execution checks at most two labels for every premorphism in the set since on each update, at

most two new items are added to the domain of the premorphism. Thus, by Lemma 1, it follows

that the total execution time of Rooted Graph Matching is bounded by a constant factor of the

above expression.

Given a match of the left-hand side of a fast rule schema, checking the application condition

and the dangling condition, and deleting, adding and relabelling items can be done in constant

time. Hence we obtain the following corollary of Theorem 1.

Corollary 1 Fast rule schemata can be applied in constant time if there are upper bounds on

the maximal node degree and the number of roots in host graphs.

Proof sketch. Consider again a fast rule schema L⇒ R with condition c and a host graph G. By

Theorem 1, constructing a premorphism g : L→G and induced variable assignment α (or deter-

mining there is no such pair) requires only constant time. We need to prove that the remaining

phases of rule schema application can be executed in constant time, too.

By Definition 1, the condition c is a boolean combination of subexpressions each of which is

either (1) a relational operator applied to integer expressions, (2) a test e1=e2 or e1!=e2 where

e1 and e2 do not both contain list, string or atom variables, or (3) a type check int(e), string(e)
or atom(e). Subexpressions of the first kind can be evaluated in constant time by (note that all

expressions in c are of constant size). By the same assumption, tests according to (2) take only

constant time because no comparisons are made between atom, string or list variables. Type

Proc. GraBaTs 2012 8 / 12

ECEASST

checks according to (3) can be done in unit time if the data structure for labels records type

information suitably.

The dangling condition for an injective premorphism g : L→G can be checked by comparing

the degree of each node v in L−K with the degree of its image g(v). We assume a graph

representation where nodes are stored together with their indegree and outdegree. This operation

then takes time of order |VL|, a constant.

Given a match satisfying the dangling condition, removing the items in g(L−K) can be ex-

ecuted in time proportional to |L| − |K|. Similarly, the addition of nodes and edges takes time

proportional to |R|− |K|.
Finally, relabelling a string or list only requires redirecting the pointers first and last to a

particular label in G. For string concatenation, two more pointer redirections are required to

combine the two strings. There are at most |VK | relabellings, so the time needed is proportional

to |VK |.

The overall time complexity of a fast rule schema is largely determined by the number of

roots in both the rule schema and the host graph. This is to be expected since the number of roots

available for matching will increase the number of matches. Indeed, if all nodes were roots, then

rooted matching would be identical to conventional graph matching. In practice, we aim to limit

the number of roots. For example, in our case study in the next section, we use only one root in

both rule schemata and host graphs.

6 Case Study: 2-Colouring

Vertex colouring has many applications [11] and is among the most frequently considered graph

problems. We focus on 2-colourability: a graph is 2-colourable, or bipartite, if we can assign one

of two colours to each node such that the source and target of each edge have different colours.

The GP program 2colouring in Figure 3 expects a connected and unmarked input graph

G with atomic node labels and a single root. The program will either produce a 2-colouring for

G by appending the integer 0 or 1 to each node label, or return G unmodified if no 2-colouring

exists. For the rest of this section, by a rooted graph we mean a connected graph with a single

root.

In Figure 3, the roots in rule schemata are depicted with a thick border. For notational con-

venience, the rule schemata colour, illegal and back contain bidirectional edges. Each

of these rule schemata actually represents a set of two distinct rule schemata with normal edges

such that the edge direction is the same in the left- and right-hand side. For example, colour

stands for the set {colour1, colour2} where colour1 and colour2 differ only by the edge

direction. When colour is called by the main program, colour1 or colour2 is selected non-

deterministically and applied. If it is not applicable, then the other rule schema is attempted.

The program traverses a host graph in depth-first order, starting at the unique root which is

coloured with 0. Whenever an edge is encountered whose source or target has a colour i and

whose other node is uncoloured, then the other node is coloured with 1− i. If colour is no

longer applicable, then the rule schema back moves the root one position back on the path of

coloured nodes and the colouring process starts anew.

9 / 12 Volume 54 (2012)

Rooted Graph Programs

main = try (init; colouring; unmarked)

colouring = ((colour; if illegal then stop)!; back)!

x

1

⇒

init(x:atom)

x:0

1

x

1

⇒

stop(x:list)

x

1

x

1

⇒

unmarked(x:list)

x

1

x:i

1

y

2

a ⇒

colour(a:list; i:int; x,y:atom)

x:i

1

y:1-i

2

a

x:i

1

y:i

2

a ⇒

illegal(a:list; i:int; x,y:atom)

x:i

1

y:i

2

a

x:i

1

y:j

2

a ⇒

back(a:list; i:int; x,y:atom)

x:i

1

y:j

2

a

Figure 3: GP program 2colouring

Upon termination of the macro colouring, the rule schema unmarked checks whether the

root is unmarked or not. If not, then the rule schema illegal has detected an edge whose ends

have the same colour and stop has marked the root. In this case the input graph is not bipartite

and by the semantics of the try command, the input graph is returned as the application of

unmarked failed. On the other hand, if the root is unmarked, then the whole graph has been

correctly coloured.

Proposition 2 (Correctness of 2colouring) Given a rooted input graph G with atomic node

labels, the program 2colouring returns a 2-coloured version of G if G is bipartite, otherwise

it returns G unchanged.

We omit the proof for lack of space. Note that each of the nine rule schemata can only be

applied at the unique root of the current graph. Therefore the root needs to be moved around,

which happens with both colour and back. However, care must be taken to prevent the root

being moved back and forth between the same nodes forever. The program avoids this kind of

looping by marking an edge only when an incident node gets a colour and unmarking this edge

when back is applied to it (without altering the colours).

We now analyse the time complexity of 2colouring. First note that all rule schemata are

fast in the sense of Definition 1. Hence, by Corollary 1, we know that each rule schema takes

only constant time on rooted graphs of bounded degree. Moreover, none of the rule schemata

increases any node degree or the number of roots. Hence repeated rule schema applications in

program runs preserve the assumptions of Corollary 1.

Then, to show that the running time of 2colouring is linear in the size of the input graph,

it suffices to show that the maximal number of rule schema applications is linear. This argument

takes into account the linear overhead of the try command, which can be implemented by

Proc. GraBaTs 2012 10 / 12

ECEASST

copying the input graph and returning the copy in case the command sequence fails.

As to the number of rule schema applications, observe first that the rule schemata init,

unmarked, illegal and stop can be ignored because each of them is applied at most once

in a program run. Next, we notice that colour reduces the number of uncoloured nodes and

back does not increase this number. Hence colour is applied at most n times, where n is the

number of nodes in the input graph. Moreover, back cannot be applied more often than colour

because the input graph is unmarked, only colour creates an edge mark, and back removes

one edge mark. Thus, there are at most 2n applications of colour and back. Altogether, we

have shown the following.

Proposition 3 (Time complexity of 2colouring) On rooted input graphs with atomic node

labels and bounded node degree, the running time of 2colouring is linear in the size of

graphs.

This is significantly better than what can be achieved with unrooted programs. For, in the worst

case of rule schema matching, even a clever algorithm requires at least linear time as it needs

to search the complete host graph. Since each node of a bipartite input graph gets coloured, it

follows that such a program has at least quadratic running time.

7 Conclusion

We have presented an approach for programming with graph transformation rules in which the

bottleneck of graph transformation—the inefficiency of graph matching—is circumvented by

using rooted rules which only match in the neighbourhood of host graph roots. Rooted graph

transformation has been cleanly embedded in the framework of the double-pushout approach

and has been extended to rule schemata in the graph programming language GP.

We have shown an algorithm which matches a large class of rooted conditional rule schemata

in constant time, provided that host graphs have bounded node degrees. Our case study demon-

strates that algorithms of practical importance, such as graph colouring, can be implemented

with rooted GP programs whose time complexity is as good as that of programs in imperative

languages. Moreover, we have demonstrated that due to the simplicity of GP and its semantics,

the correctness and complexity of rooted graph programs is amenable to formal analysis. Essen-

tially, because fast rule schemata can be applied in constant-time, to show that a program with

fast rule schemata has a certain time complexity T , it suffices to prove that the maximal number

of rule schema applications is of order T .

In future work, we will consider alternative sufficient conditions that make rooted programs

fast. For example, in [4] it is shown that graph transformation rules can be applied in constant

time if the outdegree of nodes in host graphs is bounded and the left-hand sides of rules contain

a directed path from the root to each node. A corresponding result should hold for fast rule

schemata if each node in a left-hand side is reachable from some root by a directed path.

Another topic for future work is the complexity of rooted graph matching and rooted graph

programs on host graphs with unbounded node degrees. The 2-colouring problem, for example,

may be simple enough to construct a graph program that runs in linear time on arbitrary (single-

rooted) host graphs.

11 / 12 Volume 54 (2012)

Rooted Graph Programs

Finally, we will aim at confirming our theoretical results by implementing a rooted version

of GP and comparing the performance of graph programs with that of programs in traditional

programming languages.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, 1974.

[2] M. Dodds. Graph Transformation and Pointer Structures. PhD thesis, The University of

York, 2008.

[3] M. Dodds and D. Plump. Extending C for checking shape safety. In Proc. Graph Trans-

formation for Verification and Concurrency (GT-VC 2005), volume 154(2) of Electronic

Notes in Theoretical Computer Science. Elsevier, 2006.

[4] M. Dodds and D. Plump. Graph transformation in constant time. In Proc. International

Conference on Graph Transformation (ICGT 2006), volume 4178 of Lecture Notes in Com-

puter Science, pages 367–382. Springer-Verlag, 2006.

[5] H. Dörr. Efficient Graph Rewriting and its Implementation, volume 922 of Lecture Notes

in Computer Science. Springer-Verlag, 1995.

[6] R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. M. Szalkowski. GrGen: A fast SPO-based

graph rewriting tool. In Proc. International Conference on Graph Transformation (ICGT

2006), volume 4178 of Lecture Notes in Computer Science, pages 383–397. Springer-

Verlag, 2006.

[7] A. Habel and D. Plump. Relabelling in graph transformation. In Proc. International Con-

ference on Graph Transformation (ICGT 2002), volume 2505 of Lecture Notes in Computer

Science, pages 135–147. Springer-Verlag, 2002.

[8] U. Nickel, J. Niere, and A. Zündorf. The FUJABA environment. In Proc. International

Conference on Software Engineering (ICSE 2000), pages 742–745. ACM Press, 2000.

[9] D. Plump. The graph programming language GP. In Proc. International Conference on

Algebraic Informatics (CAI 2009), volume 5725 of Lecture Notes in Computer Science,

pages 99–122. Springer-Verlag, 2009.

[10] D. Plump. The design of GP 2. In Proc. International Workshop on Reduction Strate-

gies in Rewriting and Programming (WRS 2011), volume 82 of Electronic Proceedings in

Theoretical Computer Science, pages 1–16, 2012.

[11] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, second edition, 2008.

[12] M. von Detten, C. Heinzemann, M. Platenius, J. Rieke, D. Travkin, and S. Hildebrandt.

Story diagrams — syntax and semantics. Technical Report tr-ri-12-324, Software Engi-

neering Group, Heinz Nixdorf Institute, University of Paderborn, 2012.

Proc. GraBaTs 2012 12 / 12

	Introduction
	Graph Transformation
	Non-rooted graph transformation
	Rooted graph transformation

	Rooted Graph Programs in GP
	Conditional Rule Schemata
	Programs

	A Matching Algorithm for Rooted Rule Schemata
	Complexity of Rooted Rule Schemata
	Case Study: 2-Colouring
	Conclusion

