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Abstract: Musculoskeletal models (MSKMs) are used to estimate the muscle and joint forces involved

in human locomotion, often associated with the onset of degenerative musculoskeletal pathologies

(e.g., osteoarthritis). Subject-specific MSKMs offer more accurate predictions than their scaled-generic

counterparts. This accuracy is achieved through time-consuming personalisation of models and

manual tuning procedures that suffer from potential repeatability errors, hence limiting the wider

application of this modelling approach. In this work we have developed a methodology relying on

Sobol’s sensitivity analysis (SSA) for ranking muscles based on their importance to the determination

of the joint contact forces (JCFs) in a cohort of older women. The thousands of data points required for

SSA are generated using Gaussian Process emulators, a Bayesian technique to infer the input–output

relationship between nonlinear models from a limited number of observations. Results show that

there is a pool of muscles whose personalisation has little effects on the predictions of JCFs, allowing

for a reduced but still accurate representation of the musculoskeletal system within shorter timeframes.

Furthermore, joint forces in subject-specific and generic models are influenced by different sets of

muscles, suggesting the existence of a model-specific component to the sensitivity analysis.

Keywords: statistical modelling; statistical emulators; sensitivity analysis; Gaussian Process; Sobol;

musculoskeletal model

1. Introduction

Musculoskeletal models (MSKMs) are a commonly adopted solution to estimate
biomechanical parameters otherwise not directly measurable, to predict the outcome of
interventions, to inform rehabilitation planning, or to test complex scientific hypotheses
within clinical context [1–3]. MSKMs can be divided into two main categories: generic, and
subject-specific. Generic models are constructed by scaling a reference model using anthro-
pometric measures [1,4], while subject-specific models rely on medical images and their
segmentation for the personalisation of anatomical features and input parameters [5–8].
They are known to provide accurate estimates of specific biomechanical quantities for an
individual [8,9]. Amongst these quantities, individual muscle forces and joint contact forces
(JCFs) are of particular interest in the assessment of joint loading and have been linked
to the onset and progression of degenerative diseases of the musculoskeletal system (i.e.,
juvenile idiopathic arthritis [3] and osteoarthritis [10,11]).

The creation of a subject-specific model is a time-consuming and operator-dependent
process, which limits the applicability of imaging-based MSK modelling protocols. Over-
coming these limitations would widen their usability across the biomechanical community,
and ultimately in the clinical practice. Sensitivity studies can identify the parameters that
influence models’ output, and inform strategies that guide model personalisation and
limit pre-processing time to the minimum while still guaranteeing the accuracy of the
predictions [12].
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Several studies reported differences in model outputs when using MRI-based or
generic anatomy [10,13,14], different joint types and degrees of freedom [15–17], or dif-
ferent muscle geometry and musculotendon parameters [6,7,12]. Since musculotendon
parameters are used to describe the Hill-type behaviour of each muscle when generating
force [18], they play a crucial role in the solution of the optimisation problem (which de-
pends on the chosen minimisation criterion) and the determination of individual muscle
forces and associated JCFs. With regard to muscle parameters in particular, existing sensi-
tivity studies conducted on MSKMs reported that tendon slack length and optimal fibre
length are amongst the most important parameters for characterising muscle behaviour and
influencing JCFs, followed by maximal isometric force (Fmax) and others [12,19,20]. While
tendon slack length and optimal fibre length can only be characterised through cadaveric
measurements and ad hoc imaging protocols [8], respectively, Fmax of a muscle can be easily
estimated from MRI [21]. In fact, the maximal force that a muscle can express is known to
be proportional to its cross-sectional area and specific tension [22]. High resolution MRI can
be segmented to extract a measure of individual muscle cross-sectional area and data from
young adults [21] have been previously used to inform MSKMs’ sensitivity analyses [4,7].
A further dataset of measurements was made available by our group collecting data from
older women [23] representing a novel resource compared to existing data.

In addition, sensitivity analyses on models with different characteristics may lead
to contrasting findings or results that are not directly comparable and hence raise the
question whether a more comprehensive study should include different types of models and
participants to test model- and subject-dependency of model sensitivity. Navacchia and co-
workers [20] conducted a sensitivity study combining several layers of input uncertainties
and compared results across three participants to test subject-dependency. However, they
based the analysis on a generic model and used a Monte Carlo approach relying on a
limited number of simulations. In fact, to test the sensitivity of a model with N input
parameters O(1000 × N) model evaluations are typically required [24], a task that can
prove prohibitive even for relatively small models. Statistical emulators such as Gaussian
Process (GPs) can emulate the input-output relationship of complex nonlinear systems
using only a limited number of simulator runs as training points, in the order of O(N) [25].
The lower computational effort required thus makes them ideal for generating the points
needed to assess the influence of complex MSKM parameters on the output of interest,
and to represent virtual populations with a much reduced computational effort, and while
preserving output accuracy [26]. GPs have been adopted in several fields of research,
spanning from prediction of scalar values in cardiac electrophysiology [27], to time series
in finance [28] and weather forecast [29]. Applications in the musculoskeletal domain are
still rare and focus on the estimation of muscle activation from surface electromyography
signals [30] or on learning tasks in robotics [31].

In this work, we hypothesise that, given a distribution of muscle Fmax, it is possible to
use GPs for emulating the waveforms of JCFs resulting from generic and subject-specific
MSKMs, and that they can be used to efficiently conduct comprehensive sensitivity analysis
(SA) and investigate potential model-dependency of SA. Furthermore, we make the hypoth-
esis that SA can inform model reduction strategies leading to minimisation of modelling
time and costs. We aim to rank the muscles of the lower limb according to their importance
in contribution to the determination of hip, knee, and ankle JCFs during a walking task.
Results show that GPs can predict JCFs with high accuracy, and that through SA it is
possible to identify the muscles that contribute more to the determination of the JCFs.
Reduced models developed according to the proposed model reduction strategy present
low errors when compared to their fully personalised counterparts.
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2. Materials and Methods

This study, whose workflow is depicted in Figure 1, has three main parts: the mech-
anistic model development part (data collection, generation of MSKMs and dynamic
simulations), the statistical emulation part (emulation and sensitivity analysis of MSKMs),
and the model reduction part.

 

Figure 1. Workflow of the study. From top left clockwise, (A1) literature Gait2392 model is scaled

in OpenSim using a static standing trial to obtain a scaled-generic model (SGM) while (A2) MRI

segmentation is used to generate a subject-specific model; (B) literature Fmax values from 29 lower-

limb muscles are used to estimate distributions of Fmax across a virtual population (n = 200); (C) joint

contact forces (JCF) are estimated for hip, knee and ankle and input to the Gaussian Process emulator

(GP) together with associated Fmax values for training and validation; (D) JCF waveforms are

emulated (n = 30 K) to conduct (E) a Sobol’s sensitivity analysis, whose results are then used to inform

model reduction strategy; (F) Pearson’s correlation between JCF and Fmax of most influential muscles

is assessed; (G) the reduced model is compared, through RMSD and absolute maximum difference,

to the nominal, fully personalised model.

2.1. Mechanistic Modelling

2.1.1. Input Data and Baseline Musculoskeletal Models

This study used legacy data collected from post-menopausal women (UK EPSRC
Multisim Study approved by the Health Research Authority of East of England and Cam-
bridgeshire and Hertfordshire Research Ethics Committee, reference 16/EE/0049) [23,32].
We selected a representative participant (74.6 y, 56.8 kg, 163.5 cm, BMI = 21.2) for whom 3D
gait analysis data (marker trajectories and ground reaction forces) and MRI were available
(full details of experimental data are described in [23]. Two different baseline monolateral
MSKMs were built, one scaled-generic and one subject-specific. Each model included four
body segments (pelvis, femur, tibia, foot) articulated by an ideal ball-and-socket joint for
the hip, and two ideal hinges: one for the knee and one for the ankle and 43 lower-limb
muscles. However, they differed for how the joint axes were defined and for the values of
Fmax assigned to the individual muscles. The details of the two models are as follows:

• Scaled-generic model (SGM). Marker-based scaling of a literature model (Gait2392, [1])
allowed to obtain a scaled generic model of the participant’s limb. Scaling was
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performed according to best practice recommendation [33] using a static standing
trial and the OpenSim Scaling Tool [34]. Muscle Fmax was linearly scaled [34] from
Gait2392 default values based on participant’s body mass.

• Subject-specific model (SSM). MRI segmentation enabled the generation of a subject-
specific model with personalised bone geometries and segment inertia [7] and joint
axes determined via morphological fitting to the articular surface of the segmented
bone geometries. The same set of muscles included in SGM was included in SSM
but their origin, insertion and via points were personalised based on the MRI. In
SSM, muscle length parameters were linearly scaled from Gait2392 values in order
to maintain their ratio to musculotendon length. Fmax of 29 lower-limb muscles was
personalised using MRI-segmented muscle volume available from the online free
repository associated with a study by Montefiori and colleagues [23], comprising of
eleven older women (including the participant used in this study) enrolled as part
of the above-mentioned Multisim project [35]. Fmax of the remaining 14 muscles (not
available in the above-mentioned repository as deemed as not-repeatably measurable)
were linearly scaled from Gait2392 values based on body mass of the participant.

2.1.2. Virtual Population

Four hundred models (200 variations of SGM and 200 variations of SSM) were gen-
erated to build a virtual population of individuals. Mean and standard deviation values
of the Fmax of the considered muscles were calculated from the cohort values reported by
Montefiori et al., 2020 [23] and used to generate normal distributions of Fmax that were
considered representative of a virtual population of older women. Independent random
sampling of each muscle Fmax distribution allowed to determine 200 sets of 29 muscle
Fmax that were then used to characterise muscle properties of each model. The number of
sampling points was based on a convergence study and was chosen to ensure less than 10%
error in the normalised overlap of the resulting JCF curve bands.

2.1.3. Dynamic Simulations and Data Analysis

Hip, knee, and ankle joint angles and moments were computed from the baseline
models (SGM and SSM) using the OpenSim 3.3 [34] Inverse Kinematics and Inverse Dy-
namics Tools relying on the MATLAB API (v9.1, R2021b, Mathworks, USA). OpenSim
recommended good practices [33] were followed. Two-hundred runs of Static Optimisation
(where the sum of squared muscle activations was minimised) and Joint Reaction Anal-
ysis [36] enabled the estimate of individual muscle forces and associated JCFs norms for
each virtual case. Ideal moment generators (reserve actuators), providing joint torque when
muscle forces could not balance the external moments, were included for each degree of
freedom, but made unfavourable to recruit by assigning them a unitary maximum force.
Range of JCFs obtained with the 200 simulations were quantified and maximum percentage
variation with respect to peak baseline values were calculated.

2.2. Statistical Modelling: Gaussian Process Emulator

The 200 sets of 29 Fmax served as input for a GP (built using the GPy Python3 li-
brary [37]), which was trained to output the corresponding hip, knee, and ankle JCFs. To
avoid ill conditioning of the emulator, both inputs and outputs were normalised prior
to training. One emulator (zero mean, kernel: squared exponential plus Matern52) was
trained for each joint of both SGM and SSM. Following standard practice in the field of GP,
the performance of the emulator was assessed on the validation dataset through the mean
average percentage error (MAPE), defined as:

MAPE =
100%

Nv

1

ys

Nv

∑
n=1

|yn
s − yn

e |
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where yn
s and yn

e are the n-th run of the simulator and emulator, respectively, ys is the aver-
age of the simulator output, and Nv is the number of points in the validation dataset [38,39].
Following a convergence study, the size of the training dataset which provided a low
emulation error (MAPE < 3%) was chosen to be 50 points.

2.3. Model Reduction

2.3.1. Sobol’s Sensitivity Analysis

In order to assess the model-dependency of SA, a global Sobol’s sensitivity analy-
sis [40] was performed independently on SGM and SSM. This allowed the evaluation of
the contribution of individual muscle Fmax variations to overall variations in the output
JCFs. SA decomposes the output variance and ranks the contribution of individual inputs
by mean of the Sobol’s indices, real numbers ranging from 0 to 1, with 1 signifying that the
entire variability of the output can be ascribed to the variation of a single input. The Saltelli
algorithm [24] was used to sample the input parameter space and generate 30,720 virtual
subjects. For each virtual subject, the values of each Fmax were sampled from a normal
distribution with mean and standard deviation derived from the measured distributions.
The number of virtual subjects was chosen to guarantee convergence of the Sobol’s algo-
rithm, which was implemented through the SALib Python library [41]. The trained GPs
were used to predict the hip, knee, and ankle JCF waveforms for each virtual subject.

Sobol’s indices ascribe fractions of the output variance to variations of individual
outputs, but do not account for the size of the output variance. To account for this a new
metric, VRSI (variance renormalised Sobol’s indices), was defined in order to normalise the
Sobol’s indices based on the size of the output variance:

VRSIit =
Sit ∗ Vt

∑i Sit ∗ Vt

where Sit is the Sobol index of input i with the JCF at time t, and Vt is the variance of
the JCF at time t. By means of this normalisation process, we deemed as less important
those inputs that showed high Sobol’s index in a region of the gait cycle where the output
variance was small.

A further analysis was conducted on the SSM data using the emulated dataset and
the VRSI values. Pearson’s Product-Moment correlation (alpha = 0.05) was calculated
between the input Fmax and the peak values of JCF only for those muscles presenting a
VRSI above 0.1 at the peaks. Significant correlations, with either moderate (|R| > 0.5) or
strong (|R| > 0.7) correlation coefficient, were presented and discussed.

2.3.2. Muscle Ranking

A reduced MSKM was defined as a model having a reduced number of personalised
muscle Fmax, selected according to a ranking strategy based on the muscles’ contribution
to the determination of total JCF. Similar to previous SA studies [38,39], a threshold of
VRSI = 0.1 was set to identify the muscles that required personalisation. For each of the
100 frames of the gait cycle, the muscles that showed VRSI ≥ 0.1 for at least one of the
JCFs were identified and ranked based on the number of time frames where they were
deemed as influential. This allowed to reduce the number m of personalised muscles to
those with the highest ranking. Reduced SSM, referred to as SSMm, were generated by
decreasing m according to the above strategy: SSM29 was equivalent to nominal SSM (all
29 Fmax were personalised) while SSM0 had Fmax linearly scaled from literature values
(model Gait2392) [1].

JCFs for SSM and SSMm of the virtual subjects were then predicted with the emulator.
To assess the extent to which reduced models could be used as a surrogate for SSM, we
computed the maximum absolute difference (∆max) as well as the root mean square
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deviation (RMSD) between the JCF of joint J estimated with SSMm and SSM over time T
according to the following equations, respectively:

∆maxJ
m = max(

∣

∣

∣
JCF J

SSM − JCF J
SSMm

∣

∣

∣
)

RMSD J
m =

√

∑
T
t=1 (JCF J

SSM − JCF J
SSMm

)
2

T

3. Results

3.1. Mechanistic Simulations

The simulation of 200 variations of the baseline SGM and SSM led to the JCF curves
plotted in Figure 2. JCFs from the baseline models were always within the range obtained
from the 200 variations of each model. The sampling of Fmax led to variations of JCFs up
to 0.8 BW, 1.1 BW, and 1.7 BW with SGM and up to 1.4 BW, 1.2 BW, and 2.1 BW with SSM
for hip, knee, and ankle, respectively. These always occurred during late stance peak and
corresponded to 21%, 33%, and 20% (SGM) and to 38%, 104%, and 59% (SSM) of baseline
value for the hip, knees, and ankles, respectively.

Δ

∆max = maxሺห𝐽𝐶𝐹ௌௌெ − 𝐽𝐶𝐹ௌௌெ หሻ
𝑅𝑀𝑆𝐷 = ඨ∑ ሺ𝐽𝐶𝐹ௌௌெ − 𝐽𝐶𝐹ௌௌெ ሻଶ௧்ୀଵ 𝑇

≥ 
≥

≥

Figure 2. Two hundred JCF curves obtained by sampling Fmax distribution (black lines) and base-

line curve (red line) obtained with SGM (top row) and SSM (bottom row); dashed vertical line

indicates toe-off.

3.2. Sobol’s Sensitivity Analysis

Overall, the sets of muscles whose Fmax had a large contribution to the determination
of JCFs were different between SSM and SGM, as shown by the VRSIs of the hip, knees, and
ankles (heatmap in Figure 3). SGM had more muscles with VRSI ≥ 0.1 compared to SSM.
Gracilis appeared to be influential for most of the stance on SGM’s hip JCF (VRSI ≥ 0.1 for
36% of the entire gait cycle, with peak value 0.6), with non-negligible contributions also to
the knee JCF (VRSI ≥ 0.1 for 16% of the gait cycle, with peak value 0.4). On the contrary, it
was not influential in the determination of SSM’s JCFs. Similar behaviour was observed also
for Tensor Fasciae Latae, Adductor Magnus 1, Sartorius, and Semimembranosus. SSM’s
hip JCF was mainly influenced by Gluteus Medius 1 and Gastrocnemius Medialis, while
the determination of knee JCF was mostly influenced by Gluteus Medius 1, Gastrocnemius
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Medialis and Rectus Femoris. VRSIs tended to be low in the ankle joint because of the small
variance of the input JCF across the virtual population. In the peak region of ankle JCF, the
muscles showing the largest influence were Tibialis Posterior and Vastus Lateralis in SGM,
and Soleus and Rectus Femoris in SSM.

− −
−

−

Figure 3. (A) VRSI heatmaps for JCFs of hip (left column), knee (central column) and ankle (right

column). Results from generic model SGM are shown in top row, those from personalised SSM are in

the bottom one. The x-axis represents the percentage of gait cycle, while the muscles are listed on the

y-axis. Darker colours signify higher influence of the muscle on a specific time point. (B) Significant

moderate (|R| > 0.5) or strong (|R| > 0.7) correlations between muscle Fmax and joint peak forces.

For the hip and knees, Peak 1 refers to loading acceptance phase of gait and Peak 2 refers to push off

phase, while ankle Peak corresponds to push off phase.

Correlation analysis confirmed the results of the sensitivity analysis (scatter plots in
Figure 3). The Fmax of Gluteus Medius 1 had a moderate positive correlation (R = 0.577)
with Peak 1 of hip force, and a negative correlation with Peak 1 and Peak 2 of knee force
(R = −0.714; R = −0.508, strong and moderate, respectively). The Fmax of Gastrocnemius
medialis had a strong negative correlation (R = −0.755) with Peak 1 of hip force and had
a moderate positive correlation (R = 0.681) with Peak 2 of knee force. The Fmax of Soleus
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had a moderate negative correlation (R = −0.691) with ankle peak force. All reported
correlations had a p value below 0.001.

3.3. Model Reduction

Of the 29 muscles in SSM, Gluteus Medius 1 was the most influential (Figure 4): with
VRSI ≥ 0.1 for more than 40% of the gait cycle this muscle was the first to be personalised.
Gastrocnemius Medialis, Rectus Femoris, and Tensor Fasciae Latae followed, being influen-
tial for 19%, 16%, and 10% of the gait cycle, respectively. Semimembranosus and Iliacus
were influential for 9% of the gait cycle, Soleus for 8%, Iliacus for 6%, while Tibialis Anterior,
Biceps Femoris Longus, and Tibialis Posterior were influential for less than 5% of the cycle.
The remaining nineteen muscles never reached the threshold of VRSI = 0.1 and thus were
not deemed as influential, and therefore their Fmax was never personalised.

≥

≥
Figure 4. Percentage of gait cycle where VRSI ≥ 0.1 for the muscles included in the analysis. The

chosen model reduction strategy prioritises the personalisation of muscles at the top of the plot,

where VRSI is above 0.1 for a larger percentage of gait cycle.

RMSDs between JCFs estimated with SSM and SSMm (reported as a function of m in
Figure 5) were overall very small (below 0.1 BW). The highest RMSD values were found
at the knee joint when low degrees of personalisation were employed (RMSD = 0.08 BW,
against 0.05 BW for both hip and ankle), and decreased when more muscles were person-
alised. The same trend was observed for hip and ankle. Eventually, the deviation between
the reduced models and SSM reached zero when all the muscles in SSMm were personalised.

Similarly to RMSD, ∆max between SSM and SSMm’s JCFs were always small (up to
0.2 BW). A value of 0.2 BW of difference was found at the knee when no muscles were
personalised. This dropped to 0.07 BW with the personalisation of 9 muscles. Similarly,
hip ∆max dropped from 0.14 BW to 0.06. At the ankle joint, the behaviour was more
complex, with an initial reduction in ∆max followed by a steep increase first, and then a
final decrease.
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≥

≥

Figure 5. RMSD (left) and ∆max (right) between fully personalised model SSM and reduced models

SSMm, as a function of the number of personalised muscles.

4. Discussion

This study proposes a methodology for comprehensive sensitivity analyses of MSKMs’
outputs to changing model parameters such as bone geometry, joint type and degrees of
freedom, and muscle parameters and geometry at the same time. This can offer a clearer
insight into the model response and which input parameters must be personalised. To test
the methodology, the feasibility of using GPs to emulate the JCF prediction of lower-limb
MSK models was investigated, under the hypothesis that a trained GP could be used to
identify the muscles whose Fmax is most influential to the estimate of JCFs. Notably, the
methodology presented in this study has the potential to be applied to any input parameters
given their statistical distributions.

In the first part of the study, we obtained JCF curves from 200 sets of OpenSim simula-
tions (both for scaled-generic and subject-specific models) while varying Fmax of 29 limb
muscles by 21 ± 6%, based on literature measurements [23]. Resulting simulated curves
were overall similar in shape to literature reference curves obtained from MSKMs [7,17,20].
When comparing scaled-generic and subject-specific models, some qualitative differences
were found between the scaled-generic and the subject-specific models. SGM had higher
late stance peaks (for all joints) and higher knee early stance peak, while SSM had higher hip
early stance peak. These were likely associated with differences in the definition of the joint
axes and muscle paths, leading to different joint kinematics as well as moment arms and
associated actuation strategies, as already hypothesised in previous literature [13,16,42]. As
a consequence of changing Fmax, we found variations up to 104% of baseline values (knee
joint of SSM). The peak JCF of hip and knee corresponding to the push off phase of gait
was particularly affected by the variations of Fmax, in line with previous findings [7,20,43].

The sensitivity analysis was performed on data points that were artificially generated
by the emulator, whose validation is of paramount importance to the credibility of the SA
and the consequent model reduction strategy. In our case, the emulator proved able to
capture the entire variability in JCFs of the validation dataset using only 50 training points.
The excellent behaviour on a validation dataset three times larger than the training dataset
clearly shows that the emulator training has been effective, and the risk of overfitting has
been averted [44]. When applied to SSM and SGM this sensitivity analysis identified two
distinct sets of muscles whose Fmax contribute to the determination of total JCFs. This was
likely due to the above-mentioned differences in joints and muscle path definition and in
the values assigned to Fmax, leading to different actuation strategies. This also confirmed
the existence of a component of model-dependency in SA outcomes, as hypothesised in
previous literature [13,20], and showed that different sets of muscle Fmax are influential in
determining total JCFs when using generic-scaled or subject-specific models as a template
for the generation of virtual populations. Therefore, ad hoc sensitivity analyses should be
conducted whenever developing a new model. The results from this study support the idea
that, because of their computationally expensive nature, such sensitivity studies will benefit
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from the adoption of statistical emulators to produce Sobol points. Conducting this analysis
using deterministic OpenSim would have required 30,000 model evaluations each for SGM
and SSM. With the typical processing times of 30 s per simulations this would amount
to more than 20 days of continuous computing on single core machines. Conversely, the
50 simulations each for SGM and SSM needed to train the emulator could be run in only
25 min, a speedup of 1200%.

Overall, the SA found a correspondence between the muscles deemed as influential for
a certain joint and the real anatomical and functional role of those muscles. For what concern
SSM, we found a strong dependence of hip JCF on Gluteus Medius Fmax, particularly in
the determination of push off peak (also referred to as Peak 2), with a moderate correlation
between these parameters. A recently published study showed that the hip loading is
significantly affected by modifications in the strength of Gluteus Medius [6,32]. However,
in our study Gluteus Medius’ Fmax had an even larger effect on the resulting knee JCF,
particularly on load acceptance peak force (Peak 1), where we also observed a strong
negative correlation between the parameters. This can be ascribed to the strict relationship
between hip and knee movement and hypothetical crosstalk due to the limited knee motion
(1 degree of freedom) that is compensated at the hip level through non-sagittal motion [15].
Knee JCF was also dependent on Tensor Fasciae Latae, Rectus Femoris, and Gastrocnemius
Medialis Fmax, with the latter having a significant positive correlation with push off peak
force. A previous study found that hip-crossing muscles’ Fmax has a significant effect on the
knee JCF [43] and Navacchia et al. [20] particularly highlighted the role of Gluteus Medius
and Gastrocnemius Medialis as major players in the determination of the peak knee contact
force. Interestingly, the correlation coefficients between pennation angle and peak knee JCF
reported by them match the R values obtained here for the correlation between peak knee
JCF and Fmax but have opposite sign. The pennation angle appears, through its cosine, in
the theoretical definition of Fmax [22]. While this parameter is not explicitly present in our
model, it is possible that the generation of the virtual population for SA drew samples from
the parameter space whose effect was equivalent to the sampling of the pennation angle,
thus partially explaining the similar correlations observed. However, further refinement
of the input space are needed to clarify this aspect. Lastly, Tibialis Posterior and Anterior
and Soleus Fmax had an impact on the determination of ankle JCF, with a strong negative
correlation between the Fmax of soleus and ankle peak force. Interestingly, some unexpected
relationships were found too, such as the effect of Gastrocnemius Medialis on the hip or the
Rectus Femoris on the ankle. They are likely due to higher order interactions, which cause
the effect of one muscle to depend on the value of other muscles’ Fmax. This hypothesis
should be further investigated in future studies by reducing the number of variables in the
sensitivity analysis.

In the case of SGM, hip and knee JCFs were particularly sensitive to the Fmax of Tensor
Fasciae Latae, Sartorius, Rectus Femoris, and Gracilis. These muscles do indeed play a
role in the actuation of hip and knee joints, particularly in the sagittal and frontal plane.
Interestingly, previous sensitivity studies either ignored the role of Gracilis [12,20] or found
its effect negligible towards the estimate of knee JCF [19]. Our results showed a dominant
effect of this muscle, particularly on the knee and can be explained by the input Fmax values
associated with Gracilis, which varied by over 35% (second largest variation amongst the
analysed muscles) according to literature measurements [23]. This figure was measured
over a small cohort of eleven older women and therefore may not be representative of a
larger young mixed-gender population. Nonetheless, it offers a meaningful insight on the
dynamic behaviour of subject-specific MSKMs.

Overall, full personalisation of muscle Fmax led to minimal improvement of JCF
estimates compared to a reduced model (where we only personalised a reduced set of
Fmax). In fact, initial peak difference was small, in the order of 0.2 BW, and dropped below
0.1 BW at the hip and knee by just personalising nine muscles. We observed a localised
increase in ankle ∆max and, to a minor extent, in ankle RMSD. They were both caused
by a decrease in the performance of the emulated models in late swing. This occurred
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with the personalisation of Biceps Femoris long head and Tibialis Anterior, which are
indeed influential in late swing. Higher order interaction with other muscles are likely to
be responsible for this localised small degradation in emulator performance.

This study had some limitations associated with the input dataset. First, the patterns
observed in this analysis were specific to the dataset used in this study. In fact, MRI-based
Fmax values for the participant were similar to the values obtained by scaling generic
Fmax. A different dataset, with MRI-based Fmax that deviate more from scaled values,
would have probably led to larger discrepancies between a fully personalised model and a
reduced model (as suggested by the width of the JCF bands obtained when simulating a
virtual population, Figure 2). This hypothesis suggests a component of subject-specificity
in the sensitivity of JCFs to Fmax values. This was also previously observed by Navacchia
et al. in [20] when comparing sensitivity outcomes obtained from MSKMs built from
three different participants. Despite some inter-subject differences, they also observed
significant similarities across participants. A GP-based study including a larger number of
participants could allow the identification of a common set of influential muscles and lead
to the generalisation of a model reduction strategy.

Second, we investigated the effect of a single input parameter, and the variation of
muscle Fmax was not complemented with a corresponding anatomical variation in muscle
path (i.e., leading to an increased moment arm when increasing cross-sectional area) or
other muscle parameters. It is known from the literature that, amongst others, tendon
slack length and optimal fibre length can significantly influence the output of a MSKM, but
these parameters are not measurable in vivo, and often left to default values even when
subject-specific models are developed. This can lead to unphysiological muscle activations
and saturations resulting in non-acceptable values of JCF. We did not discard these results
but instead included them in the training and validation dataset. Training the emulator
to identify unphysiological muscle activations and associated JCF waveforms could be
used as an optimisation strategy for model tuning and identification of acceptable values
for Fmax, in line with what previously proposed for musculotendon length parameters [7].
Additionally, variations of contribution to joint moment from reserve actuators could have
affected the variations in individual muscle forces and hence minimised the associated vari-
ations observed for the total JCFs. Furthermore, MSK simulations of virtual subjects, and
consequently the generation of training points for the emulator, relied on a single kinematic
trial, whereas different configuration of Fmax are likely to result in different kinematics
and ground reaction force. When additional gait data are not available, adversarial neural
network [45] could help in generating artificial walking trials. When kinematics trials are
available, either measured or synthetic, they can be incorporated within the model by
adding further dimensions to the input parameter space of the emulator. To minimise the
known problems that GPs show when scaled to large datasets [26], the Fourier components
of the joint kinematics can be used rather than the entire waveforms.

The strategy for muscle personalisation adopted in this study was based on the evalu-
ation of muscle VRSI on the three joints separately, prioritising muscles with high influence
over prolonged periods of time. This led to joints having muscles personalised that are not
directly relevant to them and caused occasional higher order interactions between muscle
Fmax with the effect of locally increasing the RMSD. Nevertheless, the results stemming
from this approach proved in agreement with the literature on MSKMs [6,7,20,32] and the
physiology and anatomy of the musculoskeletal system. Alternative personalisation strate-
gies could be explored, for example deriving the order of personalisation as the solution of
an optimisation problem which aims at minimising an objective function which accounts
for the differences in the outputs between the reduced model and the fully personalised one.
In this respect, algorithms such as MAP-Elites (Multi-dimensional Archive of Phenotypic
Elites) [46] could be adopted. They can find multiple solutions to optimisation problems
while avoiding the issues related to local minima and can take into account several different
conflicting requirements. These properties make them suitable for the identification of
personalisation strategies that consider not only the performance of the reduced models,
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but also include information on muscle segmentation time, the specifics of muscle geome-
try, and other features related to the modelling process. In the model presented here, the
discrepancies between reduced and fully personalised models were extremely low both in
terms of RMSD and ∆max, thus corroborating the choice of the personalisation order.

In conclusion, the emulator-based approach for sensitivity analysis and model reduc-
tion presented in this study gives results consistent with the existing literature and suggests
that Fmax may be not as relevant as other parameters in determining the dynamic behaviour
of personalised MSKM when investigating gait in elderly women. While pursuing a high
degree of personalisation of the models leads to more accurate and reliable outputs, cost-
and time-related concerns suggest that an appropriate level of personalisation should be
decided according to the question of interest, resolution of data, and other constraints. This
study offers, for one subject, a method for estimating which muscles’ Fmax to personalise
and according to which order, proving a way of improving model accuracy with relatively
low effort.
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