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Reasoning about Graph Programs

Detlef Plump

The University of York, United Kingdom

GP 2 is a non-deterministic programming language for computing by graph transformation. One of

the design goals for GP 2 is syntactic and semantic simplicity, to facilitate formal reasoning about

programs. In this paper, we demonstrate with four case studies how programmers can prove termi-

nation and partial correctness of their solutions. We argue that GP 2’s graph transformation rules,

together with induction over the length of program executions, provide a convenient framework for

program verification.

1 Introduction

The use of graphs to model dynamic structures is ubiquitous in computer science: application areas

include compiler construction, pointer programming, model-driven software development, and natural

language processing. The behaviour of systems in such domains can be captured by graph transformation

rules specifying small state changes. Current languages based on graph transformation rules include

AGG [15], GReAT [1], GROOVE [9], GrGen.Net [10] and PORGY [8]. This paper focusses on the

graph programming language GP 2 [12] which aims to support formal reasoning about programs.1

A rigorous Hoare-logic approach to verifying programs in GP 1 (the predecessor of GP 2) is described

in [13]. However, this calculus is restricted to programs in which loop bodies and guards of branching

statements are sets of rules rather than arbitrary subprograms. Moreover, the assertions of [13] are first-

order formulas and hence cannot express non-local properties such as connectedness or the absence of

cycles. (Such properties can be expressed with the monadic second-order assertions of [14]. That paper’s

framework is currently extended to GP 2.)

In this paper, we take a more relaxed view on program verification and express specifications and

proofs in ordinary mathematical language. Besides lifting the mentioned restrictions, this approach

allows programmers to formulate invariants and induction proofs succinctly, without getting stuck in

formal details. The possible reduction in rigor need not be a drawback if the liberal approach precedes

and complements rigorous verification in a formal calculus such as Hoare-logic.

In Section 3 to Section 6, we verify four simple GP 2 programs, for generating the transitive closure

of a graph, computing a vertex colouring, and checking graph-theoretic properties. In all case studies,

we prove termination and partial correctness of the program in question. It turns out that graph transfor-

mation rules together with induction on derivations provide a convenient formalism for reasoning.

2 The Language GP 2

We briefly introduce GP 2, by describing some selected features and showing an example of a graph

transformation rule. The original definition of GP 2, including a formal operational semantics, is given

in [12]; an updated version can be found in [2]. There are currently two implementations of GP 2, a

compiler generating C code [4] and an interpreter for exploring the language’s non-determinism [3].

1GP stands for graph programs.
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The principal programming constructs in GP 2 are conditional graph-transformation rules labelled

with expressions. Rules operate on host graphs whose nodes and edges are labelled with lists of integers

and character strings. Variables in rules are of type int, char, string, atom or list, where atom is

the union of int and string. Atoms are considered as lists of length one, hence integers and strings are

also lists. Given lists x and y, their concatenation is written x:y.

Besides a list, labels may contain a mark which is one of the values red, green, blue, grey and

dashed (where grey and dashed are reserved for nodes and edges, respectively). Marks may be used

to highlight items in input or output graphs, or to record which items have already been visited during a

graph traversal. In this paper, we assume that programs are applied to input graphs without any marks.

This allows to formulate succinct correctness claims in the case studies below.

Figure 1 shows an example of a rule which replaces the grey node and its incident edges with a

dashed edge labelled with the integer 7. In addition, nodes 1 and 2 are relabelled with the values of x:y

and n∗n, respectively, where the actual parameters for x, y and n are found by matching (injectively)

the left-hand graph in a host graph. The rule is applicable only if the grey node is not incident with

other edges (the dangling condition) and if the where-clause is satisfied. The latter requires that n is

instantiated with a negative integer and that there is no edge from node 1 to node 2 in the host graph.

replace(n : int; s,t : string; a : atom; x,y : list)

n

1

a:x y

2

s t
⇒ x:y

1 2

n∗n
7

where n< 0 and notedge(1, 2)

Figure 1: Declaration of a conditional rule

The grammar in Figure 2 gives the abstract syntax of GP 2 programs (omitting rule declarations and

graph labels). A program consists of declarations of conditional rules and procedures, and exactly one

declaration of a main command sequence. The category RuleId refers to declarations of conditional rules

in RuleDecl. Procedures must be non-recursive, they can be seen as macros with local declarations.

Prog ::= Decl {Decl}
Decl ::= RuleDecl | ProcDecl | MainDecl

ProcDecl ::= ProcId ‘=’ [ ‘[’ LocalDecl ‘]’ ] ComSeq

LocalDecl ::= (RuleDecl | ProcDecl) {LocalDecl}
MainDecl ::= Main ‘=’ ComSeq

ComSeq ::= Com {‘;’ Com}
Com ::= RuleSetCall | ProcCall

| if ComSeq then ComSeq [else ComSeq]

| try ComSeq [then ComSeq] [else ComSeq]

| ComSeq ‘!’ | ComSeq or ComSeq

| ‘(’ ComSeq ‘)’ | break | skip | fail
RuleSetCall ::= RuleId | ‘{’ [RuleId {‘,’ RuleId}] ‘}’

ProcCall ::= ProcId

Figure 2: Abstract syntax of GP 2 programs
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The call of a rule set {r1, . . . ,rn} non-deterministically applies one of the rules whose left-hand graph

matches a subgraph of the host graph such that the dangling condition and the rule’s application condition

are satisfied. The call fails if none of the rules is applicable to the host graph.

The command if C then P else Q is executed on a host graph G by first executing C on a copy of

G. If this results in a graph, P is executed on the original graph G; otherwise, if C fails, Q is executed on

G. The try command has a similar effect, except that P is executed on the result of C’s execution.

The loop command P! executes the body P repeatedly until it fails. When this is the case, P! termi-

nates with the graph on which the body was entered for the last time. The break command inside a loop

terminates that loop and transfers control to the command following the loop.

A program P or Q non-deterministically chooses to execute either P or Q, which can be simulated

by a rule-set call and the other commands [12]. The commands skip and fail can also be expressed by

the other commands.

3 Case Study: Transitive Closure

A graph is transitive if for each directed path from a node v to another node v′, there is an edge from

v to v′. The program TransClosure in Figure 3 computes the transitive closure of a host graph G by

applying the single rule link as long as possible. Each application amounts to non-deterministically

selecting a subgraph of G that matches link’s left graph, and adding to it an edge from node 1 to node 3

provided there is no such edge (with any label). Figure 4 shows an execution of TransClosure in which

link is applied eight times (arcs with two arrowheads represent pairs of edges of opposite direction).

The resulting graph is the complete graph of four nodes because the start graph is a cycle.

Main= link!

link(a,b,x,y,z : list)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a b

where notedge(1,3)

Figure 3: The program TransClosure

The next two propositions show that TransClosure is correct: for every input graph G, the program

produces the smallest transitive graph that results from adding unlabelled edges to G.2

Proposition 1 (Termination). On every host graph G, program TransClosure terminates after at most

|VG|× |VG| rule applications.

Proof. Given any host graph X , let

#X = |{〈v,w〉 ∈VX ×VX | there is no edge from v to w}|.

Note that #X ≤ |VX |× |VX |. By the application condition of link, every step G ⇒link H satisfies #H =
#G−1. Hence link! terminates after at most |VG|× |VG| rule applications.

2By a graphical convention of GP 2, “unlabelled” nodes and edges are actually labelled with the empty list.
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⇒ ⇒

⇓

4
⇐ ⇐

Figure 4: An execution of TransClosure

Proposition 2 (Correctness). Program TransClosure returns the transitive closure of the input graph.

Proof. The previous proposition guarantees that for every input graph G, the loop link! returns some

host graph T . Because link does not delete or relabel any items, each step X ⇒link Y comes with an

injective graph morphism X →Y . It follows that T is an extension of G (up to isomorphism).

We show that T is transitive by induction on the length of paths in T . Consider a directed path

v0,v1, . . . ,vn with v0 6= vn. Without loss of generality, we can assume that v0, . . . ,vn are distinct. If n = 1,

there is nothing to show because there is an edge from v0 to v1. Assume now n > 1. By induction

hypothesis, there is an edge from v0 to vn−1. Thus there exist edges v0 → vn−1 → vn in T . Since link

has been applied as long as possible, there must exist an edge from v0 to vn. (If there was no such edge,

link would be applicable to T .)

Finally, T is the smallest transitive extension of G by the following invariant: given any derivation

G ⇒∗
link

H and any edge v → v′ in H created by the derivation, there is no such edge in G but a path

from v to v′. This invariant is shown by a simple induction on the length of derivations G ⇒∗
link

H .

4 Case Study: Vertex Colouring

A vertex colouring for a graph G is an assignment of colours to G’s nodes such that adjacent nodes have

different colours. As common in the literature [6], we use positive integers as colours. The program

Colouring in Figure 5 colours an input graph by adding an integer to each node’s label. Initially, each

node gets colour 1 by the loop init!. To prevent repeated applications of init to the same node, nodes

are first shaded and then unmarked by init. Once all nodes have got colour 1, the loop inc! repeatedly

increments the target colour of edges that have the same colour at source and target. This continues as

long as there are pairs of adjacent nodes with the same colour. Note that this process is highly non-

deterministic and may result in different colourings; for example, Figure 6 shows two different outcomes

for the same input graph. (Finding a colouring with a minimal number of colours is an NP-complete

problem [6] and requires a more complicated program.)
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Main = mark!; init!; inc!

mark(x : list) init(x : list)

1

x ⇒

1

x

1

x ⇒

1

x:1

inc(a,x,y : list; i : int)

x:i y:i

1 2

a
⇒ x:i y:i+1

1 2

a

Figure 5: The program Colouring

1

2

1

2

10
⇐

14
⇒ 1

2

3

4

Figure 6: Different results from executing Colouring

The partial correctness of Colouring is easy to establish, we get it essentially for free from the

meaning of the loop construct ‘!’. We will address termination afterwards.

Proposition 3 (Partial correctness). Given any input graph G, if Colouring terminates then it returns

G correctly coloured.

Proof. Let G ⇒∗
mark

G′ ⇒∗
init

H ⇒∗
inc

M be an execution of Colouring on G. Then H is obtained from

G by replacing each node label x with x:1. If M is not correctly coloured, then it must contain adjacent

nodes with the same colour. Hence inc would be applicable to M, but the meaning of ‘!’ implies that M

results from applying inc as long as possible.

Proving that Colouring terminates is more challenging, we first establish an invariant of inc. Given

a node v with a label of the form x :i, i ∈ N, we denote i by colour(v); for a host graph G with coloured

nodes, we define Colours(G) = {colour(v) | v ∈VG}.

Lemma 1 (Invariant). Consider any derivation G ⇒∗
inc

H with Colours(G) = {1}. Then Colours(H) =
{i | 1 ≤ i ≤ n} for some 1 ≤ n ≤ |VH |.

Proof. For every step X ⇒inc Y , we have Colours(Y ) = Colours(X)∪∆ where ∆ is either empty or

{max(Colours(X))+1}. The invariant follows then by induction on the length of G ⇒∗
inc

H .

Given any coloured host graph X , define #X = ∑v∈VX
colour(v). Then the invariant of Lemma 1

provides an upper bound for #H , viz. #H ≤ 1+2+ · · ·+ |VH |. We exploit this in the following proof.

Proposition 4 (Termination). On every input graph G, Colouring terminates after O(|VG|
2) rule appli-

cations.
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Proof. It is clear that the loops mark! and init! terminate: the first decreases in each step the number

of unmarked nodes, the second decreases in each step the number of marked nodes.

To show that inc! is terminating, consider a coloured graph G with Colours(G) = {1} and suppose

that there is an infinite derivation G = G0 ⇒inc G1 ⇒inc G2 ⇒inc . . . Then, by the labelling of inc, we

have #Gi < #Gi+1 for every i ≥ 0. However, Lemma 1 implies that for all i ≥ 0,

#Gi ≤

|VGi
|

∑
j=1

j =
|VG|

∑
j=1

j

where |VGi
|= |VG| holds because inc preserves the number of nodes. Thus the infinite derivation cannot

exist. Moreover, because the upper bound for the values #Gi is quadratic in |VG|, any sequence of inc

applications starting from G cannot contain more than O(|VG|
2) rule applications.

5 Case Study: Cycle Checking

Our third example program shows how to test the input graph for a property and then continue computing

with the same graph. The program in Figure 7 checks whether a host graph G contains a directed cycle

and then, depending on the result, executes either program P or program Q on G.

Main = if Cyclic then P else Q

Cyclic = delete!; {edge, loop}

delete(a,x,y : list)

x y

1 2

a
⇒ x y

1 2

where indeg(1) = 0

edge(a,x,y : list)

x y

1 2

a
⇒ x y

1 2

a

loop(a,x : list)

x

1

a ⇒ x

1

a

Figure 7: The program CycleCheck

The presence of cycles is checked by deleting, as long as possible, edges whose source nodes have

no incoming edges. To ensure the latter, rule delete uses GP 2’s built-in function indegree which

returns the number of edges going into a node. When delete is no longer applicable, the resulting

graph contains edges if and only if the input graph is cyclic. For example, Figure 8 shows two executions

of CycleCheck, the left on a cyclic input graph and the right on an acyclic graph. (We also show an

intermediate graph for each execution.)

The correctness of this method for cycle checking relies on the following invariant.
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∗⇒ ∗⇒

∗⇒ ∗⇒

Figure 8: Two executions of CycleCheck

Lemma 2 (Invariant). Given any step G ⇒delete H, graph G is cyclic if and only if graph H is cyclic.

Proof. Suppose that G contains a directed cycle. By the application condition of delete, none of the

edges on the cycle are deleted. Conversely, if G is acyclic, deleting an edge cannot create a cycle.

We also need the following property of acyclic graphs, which is easy to prove [5].

Lemma 3 (Acyclic graphs). Every non-empty acyclic graph contains a node without incoming edges.

For stating the correctness of CycleCheck, we use GP 2’s semantic function J K which maps each

input graph to the set of possible execution outcomes (see [12]).

Proposition 5 (Correctness). For every host graph G,

JCycleCheckKG =

{

JPKG if G is cyclic,

JQKG otherwise.

Proof. We show that running procedure Cyclic on G returns some graph if G is cyclic, and fails other-

wise. By the meaning of the if-then-else statement, this implies the proposition.

Since each application of delete reduces graph size, executing the loop delete! on G results in

some graph H .

Case 1: G is cyclic. Then, by Lemma 2 and a simple induction on the derivation G ⇒∗
delete

H , graph

H is also cyclic. Hence H contains at least one edge, implying that {edge,loop} is applicable to H .

Case 2: G is acyclic. With Lemma 2 follows that H is acyclic, too. We show that H does not contain

edges. Suppose that H contains some edges (which cannot be loops). Consider the subgraph S of H

obtained by removing all isolated nodes. Then, by Lemma 3, there is a node v in S without incoming

edges. Since v is not isolated, it must have an outgoing edge e. But then delete is applicable to e,

contradicting the fact that delete is not applicable to H .

Thus H is edge-less and hence {edge,loop} fails on H .
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6 Case Study: Series-Parallel Graphs

Our final case study is the recognition of series-parallel graphs. This graph class was introduced in [7]

as a model of electrical networks and comes with an inductive definition:

• Every graph G consisting of two distinct nodes v1, v2 and an edge from v1 to v2 is series-parallel.

Define source(G) = v1 and sink(G) = v2.

• Given series-parallel graphs G and H , each of the following operations yields a series-parallel

graph when applied to the disjoint union G+H:

– Series composition: Merge sink(G) with source(H). Define source(G) to be the new source

and sink(H) to be the new sink.

– Parallel composition: Merge source(G) with source(H) and sink(G) with sink(H). Define

the merged source nodes to be the new source and the merged sink nodes to be the new sink.

Series-parallel graphs can be characterised by two reduction operations on graphs. On GP 2 graphs, these

operations are equivalent to applying one of the rules series and parallel from Figure 9. Hence we

can state the characterisation in terms of derivations with the rule set Reduce= {series, parallel}.

Proposition 6 ([7]). A host graph G is series-parallel if and only if there is a derivation G ⇒∗
Reduce E,

where E is a series-parallel graph consisting of two nodes and one edge.

Given a host graph G, the procedure Series-parallel in Figure 9 applies the reduction rules as

long as possible to obtain some reduced graph H . (Termination is guaranteed because both rules decrease

graph size.) To check whether H has the shape of graph E from Proposition 6, the procedure attempts

to delete a subgraph of E’s shape and then tests if there is any remaining node. If the deletion fails or a

remaining node is detected, H does not have the shape of E and the procedure fails. Otherwise, if rule

delete succeeds and rule nonempty fails, the procedure succeeds by returning the empty graph.

Series-parallel = Reduce!; delete; if nonempty then fail

Reduce = {series, parallel}

series(a,b,x,y,z : list)

x y z

1 2

a b
⇒

1 2

parallel(a,b,x,y : list)

x y

1 2

a

b

⇒

1 2

delete(a,x,y : list) nonempty(x : list)

x y
a

⇒ /0 x

1

⇒ x

1

Figure 9: The program SeriesParallel

Proposition 6 alone does not guarantee the correctness of SeriesParallel. This is because if the non-

deterministic application of Reduce does not end in E , there might be some other reduction sequence
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ending in E . We exclude this possibility by showing that any complete reduction of a host graph ends in

a graph that is unique up to isomorphism.

Proposition 7 (Uniqueness of reduced graphs). Consider reductions H1 ⇐
∗
Reduce G ⇒∗

Reduce H2 of some

host graph G. If H1 and H2 are irreducible, then they are isomorphic.

Proof. We show that Reduce is confluent which implies the claim. To employ the technique of [11], we

analyse the critical pairs of all rules obtained from series and parallel by replacing variables with

constant lists. There are no critical overlaps between series and parallel, hence all critical pairs are

self-overlaps of either series or parallel. There are two types of critical pairs of parallel, which

are easily shown to be strongly joinable in the terminology of [11]. There are also two types of critical

pairs of series. We consider one of them:

z

1 3 4

c
⇐ w x y z

1 2 3 4

a b c
⇒ w

1 2 4

a

where a to c and w to z are arbitrary host graph lists. This pair is strongly joinable by the following

applications of series:

z

1 3 4

c
⇒

1 4

⇐ w

1 2 4

a

The other critical pair of series is obtained from the above pair by merging nodes 1 and 4 in all three

graphs. Then the outer graphs are isomorphic in the way required by strong joinability. With [11] follows

that Reduce is confluent.

Proposition 8 (Correctness). For every host graph G, running Series-parallel on G returns the

empty graph if G is series-parallel and fails otherwise.

Proof. Let H be the graph resulting from running Reduce on G. By Proposition 7, H is determined

uniquely up to isomorphism. Thus, if G is series-parallel, Proposition 6 implies that H consists of two

nodes and an edge between them. It follows that Series-parallel returns the empty graph.

If G is not series-parallel, Proposition 6 implies that H has some other shape. Then either rule

delete is not applicable or delete is applicable but afterwards nonempty is applicable. In both cases

Series-parallel fails, as required.

7 Conclusion

In this paper, we show by some case studies that GP 2’s graph transformation rules allow high-level

reasoning on partial and total correctness of graph programs. Instead of employing a rigorous formalism

such as the Hoare-logic in [13], we use standard mathematical language for expressing assertions and

proofs. This both increases the expressive power of specifications and frees programmers from the

notational constraints of a formal verification calculus. The main mathematical tool in our sample proofs

is induction over derivation sequences of graph transformation rules.

We do not propose to abandon rigorous program verification in favour of a more liberal approach to

justifying correctness. In contrast, proof calculi with precise syntax and semantics are indispensable for

achieving confidence in verified software. We view this paper’s approach as complementary in that it

allows programmers to reason about graph programs without getting stuck in formal detail. Future work

should address the question how to refine proofs in ordinary mathematical language into rigorous proofs

in verification calculi.
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