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Probabilistic Graph Programming

Timothy Atkinson*, Detlef Plump, and Susan Stepney

Department of Computer Science, University of York, UK, YO10 5DD

Abstract. We introduce a notion of probability to the graph program-
ming language GP 2 which resolves nondeterministic choices of graph
transformation rules and their matches. With our programming model
Probabilistic GP 2 (P-GP 2), rule and match decisions are assigned uni-
form distributions over their domains. In this paper, we present an im-
plementation of P-GP 2 as an extension of an existing GP 2 compiler.
As an example application, we analyse a (polynomial-time) nondeter-
ministic vertex colouring program which may produce one of many pos-
sible colourings. The uniform implementation of P-GP 2 is shown, by
sampling, to produce different colourings with different probabilities, al-
lowing quantities such as expected colouring and likelihood of optimal
colouring to be considered.

1 Introduction

As graph transformation becomes increasingly accessible to programmers through
graph programming languages such as GP 2 [17], it becomes necessary to define
programmatic behaviour over graph transformation systems which may not be
deterministic in operation. Graph programming allows for the construction of
multiple graph transformation systems, creating complex and useful transforma-
tions that can even be competitive with raw code at certain tasks [1]. However,
the execution of a program can be nondeterministic, where the result graph
cannot be predicted and different valid implementations of GP 2 can perform
different executions of the same program.

Nondeterministic programs may be of interest to a number of current research
topics. Notably, cryptography and machine learning are areas where probabilis-
tic decision making is frequently used. By extending graph programming to the
probabilistic domain it is hoped that the intuition and formalism that graph
transformation offers might aid development in these areas. The authors of this
work have particular interest in the application of graph transformation to evo-
lutionary computation, where probabilistic transformations are used to solve
optimisation and black box problems.

In this paper we discuss a programming model, probabilistic GP 2 (P-GP 2),
as a means of resolving nondeterminism in GP 2. P-GP 2 assigns a uniform prob-
ability distribution to each of GP 2’s nondeterministic rule-choice and matching
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decisions, a notion understood through probability operated graph transforma-
tion systems. This probabilistic approach is shown to induce a Markov chain, as
the probabilities for state transitions are fixed.

Implemented as an extension of an existing C-based compiler for GP 2 [3],
we show how this probabilistic refinement of GP 2 defines predictable behaviour
which can be sampled. For example, we identify a simple GP 2 vertex colouring
program which has nondeterministic execution. Executing this algorithm with
P-GP 2, it is shown that the ambiguity in the result is resolved and the behaviour
of the program can be understood in terms of quantities such as the expected
colouring and the likelihood of optimal colouring for a given input.

There are two related approaches to the probabilistic operation of graph
transformation systems; stochastic and probabilistic. The former describes sto-
chastic graph transformation systems (SGTS), where each rule in a graph trans-
formation system’s rule-set is associated with a real positive value, known as
a rule’s application rate [8,9]. The probability of each match for a given rule
occurring in continuous time is typically described according to an exponential
distribution parameterised by the rule’s application rate. An implication of us-
ing SGTSs is that the probability of a rule from the rule-set being applied in
any given step is dependent on the number of matches for that rule. SGTSs
have been generalised to a model where each match for each rule, referred to as
an event, is associated with some continuous probability distribution, inducing
generalised semi-Markov schemes describing the operation of the entire system
[11,21,10].

Probabilistic graph transformation systems (PGTS) walk a middle ground
between classical graph transformation’s freedom of choice and more probabilis-
tic notions. PGTSs are graph transformation systems where the choice of rule
and match are nondeterministic decisions but rules have different possible exe-
cutions (based on a common left hand side) which occur with different probabil-
ities [13]. This mixture of nondeterminism and probabilities over discrete space
is shown to induce Markov decision processes. The Markovian processes induced
by the stochastic and probabilistic notions are distinct; PGTSs are based on dis-
crete, rather than continuous, time and maintain a degree of nondeterminism.
Both of these approaches are discussed in relation to P-GP 2 in Section 5.

The rest of this paper is structured as follows. In Section 2, we introduce the
graph programming language GP 2, and in Section 3 we describe an example
nondeterminstic GP program and demonstrate the resolution of this program’s
nondeterminism using uniform distributions over rule matches. In Section 4 we
define P-GP 2 and discuss its properties, and in Section 5 we relate this concept
to existing work. Finally, we conclude in Section 6.

2 Graph Programming with GP 2

We explain some features of the graph transformation language GP 2 that are
relevant for this paper. The original language definition, including an operational
semantics, is given in [17]; an updated version can be found in [1]. There are



bridge(a: atom; x,y: list; m,n: int; s: string)
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Fig. 1. Declaration of a conditional rule, bridge.

currently two implementations of GP 2, a compiler generating C code [3] and an
interpreter for exploring the language’s nondeterminism [2].

GP 2 programs transform input graphs into output graphs, where graphs are
labelled and directed and may contain parallel edges and loops.

Labels consist of an expression and an optional mark (explained below).
Expressions are of type int, char, string, atomor list, where atom is the union
of int and string, and list is the type of a (possibly empty) list of atoms.
Lists of length one are equated with their entries and hence every expression can
be considered as a list. Types form a hierarchy with the most general type list
which is a supertype of atom which in turn has subtypes int and string.

The concatenation of two lists  and y is written z:y. Character strings are
enclosed in double quotes. Composite arithmetic expressions such as n * n must
not occur in the left-hand graph, and all variables occurring in the right-hand
graph or the condition must also occur in the left-hand graph.

Besides carrying list expressions, nodes and edges can be marked. In Figure
1, the outermost nodes are marked by a grey shading and the dashed arrow
between nodes 1 and 3 in the right-hand graph is a marked edge. Marks are
convenient to highlight items in input or output graphs, and to record visited
items during a graph traversal.

The principal programming constructs in GP 2 are conditional graph trans-
formation rules labelled with expressions. For example, Figure 1 shows the dec-
laration of the rule bridge, which has six formal parameters of various types,
a left-hand graph and a right-hand graph that are specified graphically, and a
textual condition starting with the keyword where. The small numbers attached
to nodes are identifiers, all other text in the graphs are labels.

Rules operate on host graphs which are labelled with constant values (lists
containing integer and string constants). We write G for the set of all host graphs.
Applying a rule L = R to a host graph G works as follows: (1) Find an injective
pre-morphism ¢g: L — G. (A pre-morphism maps nodes to nodes and edges to
edges such that each edge keeps its source and target node.) (2) Check if there
is an assignment « of values to variables that turns ¢ into a graph morphism
g: L — G, where L results from applying « to the variables in L’s labels.
(A pre-morphism is a graph morphism if it preserves labels.) (3) Check that g
satisfies the dangling condition and the rule’s application condition (see below).



(4) Replace the subgraph g(L%*) of G with R as follows: numbered nodes of
L* stay in place (possibly relabelled), edges and unnumbered nodes are deleted,
and edges and unnumbered nodes of R are inserted.

In this construction, the dangling condition requires that nodes in g(L®) that
are unnumbered in L (and hence should be deleted) must not be incident with
edges outside g(L®). The rule’s condition is evaluated after each variable x has
been replaced with «(z). For example, the condition of Figure 1 requires that
the list label of node g(1) starts with a positive integer or with the string “?".

If clauses (2) and (3) above are satisfied, we call the pair (r,g) a match of
rin G. We write G =, 4 H if H is isomorphic to the graph constructed in (4).
The GP 2 syntax imposes restrictions on the left-hand graph L such that the
pre-morphism g: L — G induces at most one assignment « that turns g into a
graph morphism. Hence the following holds.

Proposition 1. Given a match (r,g) of r in G, there exists up to isomorphism
exactly one graph H such that G =, 4 H.

A GP 2 program consists of declarations of conditional rules and procedures,
and exactly one declaration of a main command sequence following the key word
Main. Commands include calls to individual rules and to rule sets {ry,...,r,}.
The latter call nondeterministically picks a rule r; that has a match in the host
graph and applies it. The rule set call fails if none of the rules has a match.

We omit the description of branching commands and procedures as they are
not needed in this paper. A loop command P! executes the body P repeatedly
until it fails. When this is the case, P! terminates with the graph on which
the body was entered for the last time. The or command nondeterministically
chooses between two program branches; this source of nondeterminism is only
briefly discussed, in Section 4.2, due to its simplicity.

In general, the execution of a program on a host graph may result in different
graphs, fail, or diverge.

3 Case Study: Vertex Colouring

In this section we discuss a very simple nondeterministic vertex colouring pro-
gram VC (taken from [18]). Computing a vertex colouring that uses the minimal
number of colours is a NP-complete problem [20], the program VC only guaran-
tees to compute some colouring but does this in polynomial time. In Section 3.3
we discuss the behaviour of VC under P-GP 2 on members of a problem set, grid
graphs, that have known optimal colourings. This gives value to a probabilistic
analysis of VC that was previously not possible.

3.1 Grid Graphs

In a grid graph, nodes are organized in a square lattice. We give direction to
grid graphs by allocating one node as a source and all edges directed outwards
of that source. Figure 2 shows a 5 x 3 grid graph with node 1 as its source. Let



Fig. 2. GG53: a 5 x 3 grid graph

Main = mark!; init!; inc!

mark x llst 1n1t x llst

O-® OO

inc(a,x,y: list; i: int)

Fig. 3. The program VC

GG be the family of all unlabelled directed grid graphs and GG, specifically
refer to a z x y unlabelled directed grid graph.

In this case study, we discuss the likelihood of VC producing an optimal
colouring over GG in terms of parameters = and y. We choose GG as a motivating
example as each of its members has a known optimal colouring. Using 2 colours,
a grid graph can be coloured in a checkerboard fashion, and GG is therefore a
family of bipartite graphs.

3.2 Vertex Colouring Program VC

Figure 3 shows our graph colouring program VC. The colour assigned to a par-
ticular node is an integer which is appended to the node’s existing label. The
first part of the program, mark!;init!, is deterministic, assigning to each node
the colour 1. The second part of the program, the loop inc!, is terminating
but highly nondeterministic, matching adjacent pairs of nodes that are identi-
cally coloured and incrementing the colour of the target node of the matched
connecting edge.

The time complexity of the initial part is quadratic in the number of host
graph nodes; both mark and init are applied to each node once and finding a
match for either rule requires a single search over all nodes. It can be shown that



Fig. 4. Different results from executing VC

the number of inc applications is quadratic in the number of host graph nodes
[18]. Moreover, the compiled GP 2 code will find a match of inc in linear time
by searching once over all edges in the host graph. Therefore the run time of
the loop inc! is cubic in the size of the host graph and hence VC’s overall time
complexity is also cubic.

Figure 4 shows two executions of VC on a small host graph. Whereas the
left execution produces an optimal colouring with 10 rule applications, the right
execution returns the worst colouring after 14 steps. Because of the nondeter-
minism, different (deterministic) implementations of GP 2 could produce entirely
different results for VC, in accordance with the language specification.

3.3 Behaviour with Uniform Matching

To address VC’s nondeterminism, we ran the algorithm using a uniform distri-
bution over inc’s matches to make the behaviour of the program correspond to
a clearly defined probability distribution over result graphs. These uniform dis-
tributions over matches are a feature of P-GP 2, discussed in detail in Section 4.

While such an implementation of GP 2 can be sampled, exhaustive sampling
is expensive; this is an issue we seek to move away from in future work. In the
interim, it suffices to describe the behaviour of a program on a given input to an
arbitrary degree of detail, here chosen to be when 5% or less of the behaviour
is unknown. This can be achieved by sampling more than 95% of the program’s
behaviour on a given input.

We study the likelihood of optimal colouring for a set of inputs, given as
the cumulated probability of samples producing an optimal colouring, which in
this scenario corresponds to samples producing a 2 colouring. Table 1 shows the
observed behaviour of VC over grid graphs with width in the integer interval
[1,3] and height in [1,5]. Each result is given as a pair (a,b) where a describes
the degree to which the program was sampled and b describes the summed
probability of samples for that input which returned 2 coloured result graphs.

As an observation, the likelihood of generating a 2 colouring for a grid graph
appears greatly reduced as the graph grows in width and height. Figure 5 shows
the worst case (assuming all remaining samples do not produce optimal colour-
ings) likelihood of optimal colouring of grid graph classes GG1 ,, GG2, and
GG3 ; from Table 1, each indicated by a separate series.
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Fig. 5. Worst case scenario described by VC’s observed behaviour. Each series corre-
sponds to a group of grid graphs of a given width, 1 2 or 3. Each data point in a series
corresponds to the worst case likelihood of a particular graph of that series’ width and
x height being optimally coloured by VC.
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Fig. 6. Probability of different colourings when executing VC on GG1,7. Each column
shows the summed probability of observed samples producing each possible colouring.



width
1 2 3

(100%, 100%)  (100%, 100%) (100%, 50%)
(100%, 100%)  (100%, 25%) (96.19%, 15.24%)
(100%, 50%)  (96.19%, 15.24%)  (95.11%, 3.55%)
(100%, 50%)  (95.13%, 4.29%)  (95.00%, 0.43%)
5 (100%, 25%)  (95.01%, 2.00%)  (95.00%, 0.01%)

height

B W N =

Table 1. Results from sampling members of GG for derivations producing optimal
colourings. The first value in an entry indicates the proportion of the space sampled,
the second value indicates the proportion of samples producing optimal colourings.

It is also possible to study the behaviour of VC in depth for particular inputs.
The expected colouring of an input is the average colour we expect VC to pro-
duce, corresponding to the notion of expected value more generally. This value is
calculated as the weighted sum of colourings produced by VC according to their
probability. We take the input GG 7 as such an example and measure the prob-
ability of each of its possible colourings when sampling 95% of the distribution of
its behavior. Figure 6 shows the results of this sampling. From our observations,
the expected colouring is 3.08. Assuming the best case (all remaining samples
are 2 coloured), the expected colouring is 3.03 whereas assuming the worst case
(all remaining samples are 7 coloured) the expected colouring is 3.27.

We therefore claim to have resolved the nondeterminism in VC’s operation;
the behaviour of VC can be sampled when using P-GP 2.

4 Probabilistic GP 2 (P-GP 2)

In this section we describe the programming model probabilistic GP 2 (P-GP 2).
The model described here has been implemented as an extension of the existing
C-based compiler [1].

P-GP 2 is a refinement of GP 2 where nondeterministic choices are decided
according to probability distributions, rather than arbitrary determinism. Con-
sider a call to a rule-set R with host graph G. The expected outcome of this
call is G =, H, where some rule r € R is applied to G producing graph H.
Additionally, if no rule » € R has a valid match in G, the rule-set call fails,
acting as a deterministic operation.

A rule-set call’s execution requires a decision over the set of possible matches
for all » € R in the host graph G, a notion drawn from generalised stochastic
graph transformation systems [21]. Each match for some rule r is identified using
a rule-match pair (r, g), where g is a pre-morphism, rather than a pre-morphism
alone to retain information about which rule induces a certain pre-morphism.

We refer to this decision space as the projection of R onto a graph G, denoted
GR:



G® ={(r,g) |r € R and G =, , H for some graph H} (1)

A rule-set R has a corresponding set of all possible rule-match pairs over all
possible host graphs G, denoted as X1

X% =|JG* (2)
Geg

We associate a function Pr with each rule-set R used in a program such
that when calling R on any possible host graph G, Pr provides a probability
distribution over G®. Let [0.0, 1.0] denote the real-valued interval between 0 and
1. The function Pgr for a given rule-set R has domain and co-domain:

Pr : X® —[0.0,1.0] (3)

For a given projection G, the probability distribution assigned to it must sum
to 1:

> Prz)=1iGR#0 (4)

VzeGR

We use Pr to decide which member (r,g) € G to execute when calling
rule-set R on some host graph G. In the case where G® is empty and there are
no applicable rules, the application of R to G becomes a deterministic operation
returning fail.

For simplicity, in this paper we treat rule choice and match choice as separate
decisions. A rule r is chosen with uniform probability from the set of rules with
valid matches in the host graph G, and a match is then chosen with uniform
probability from the set of possible matches for r in G. This approach has two
practical benefits facilitating the extension of GP 2 to the probabilistic domain;
(1) rule choice and match choice are already treated as separate decisions in
existing implementations [1,2], and (2) uniform distributions have no additional
parameters so require no new syntax. This approach minimizes change to GP 2’s
implementation and leaves the language specification unchanged.

For a rule-set R, Pg is defined for any pair (r,g) € X, where r = (L «+
K — R,c) and g : L — G describes a match of 7 in some graph G, as:

Pr(r,g) = PR""(r, g) x PR“""(r,9) (5)

Here the probability of choosing a pair (r, g) € G is equal to the probability
of choosing the rule, P{z“le(r, g), multiplied by the probability of choosing the
match if the rule is chosen, PRt (r, g). A uniform distribution is assigned to
the choice of rule, assigning equal probability to each member of R, the set of
rules from R that have matches in G:

! This set corresponds to the set of events, £, used in [21], but we avoid that termi-
nology as we are outside of the continuous modelling domain.



RY = {r € R| G =, H for some pre-morphism f and host graph H} (6)

(7)

Note that for (r,g) to exist, it must be true that r € RY. Let G™ denote
the projection of the single rule r onto host graph G. Then the probability of
choosing the specific pre-morphism g once rule r has been chosen is defined:

PR (r,9) = i )

This gives an overall formula for Pg for any rule r = (L < K — R, c¢) and
associated pre-morphism ¢ : L — G in some host graph G as:

1 1
Pr(r,g) = R X Ieg] 9)

In Subsection 4.1 we describe probability operated graph transformation sys-
tems, the intuition behind P-GP 2, which we show to induce Markov chains. In
Subsection 4.2 we reason that these POGTSs cause P-GP 2 programs executed
on individual inputs to induce Markov chains.

4.1 Probability Operated Graph Transformation Systems (POGTS)

In this section we describe the intuition behind using probability distributions to
operate the execution of a given graph transformation system in discrete time,
calling this model probability operated graph transformation systems (POGTS).
This intuition is the basis for the programming model P-GP 2; a single rule-set
call R is the execution of a single step of a POGTS, while calling a rule-set call
as long as possible, R!, is the execution of a POGTS until termination.

The main concept can be understood as associating a conventional graph
transformation system with a function P such that when applying R to some
possible graph G, there is an associated probability distribution over G pro-
vided by P. A POGTS is theoretically capable of describing a unique distribution
for every possible graph, such that even if two graphs have similar topologies,
their assigned distributions may be entirely different.



Definition 1. (Probability Operated Graph Transformation System).A
POGTS = (R, P) is a finite set of rules R and a function P such that when

transforming any graph G, P associates a fixed probability with each pair (r,g) €
GR:

P:X® - 0.0,1.0] (10)
> P(rg)=1ifG*#0 (11)
(r,g)eGR

Each possible transformation, G =, 4 H, is executed with probability P(r,g).

We assume a discrete time model for POGTSs as we are only concerned with
the step-wise operation of a graph transformation system, rather than a specific
modelling domain.

Each POGTS applied to a graph induces a Markov chain. A Markov chain
is a model in probability theory where there are transitions between states in
a countable set S occurring with fixed probabilities [19,16]. This is viewed as a
Markov process, see Definition 2, over a discrete, countable state space.

Definition 2. (Markov process)[19,16]. A Markov process is a stochastic
process X = (Xo, X1, Xo,...X,,) consisting of a sequence of random variables
where for each random wvariable X; at time i, all future states are conditionally
dependent on the current state and independent from previous states:

PT(Xi—i-l =T ‘ XO = .’L‘(),Xl = J}l,XQ = T2, 7)(Z = xl) = P’I“(XH_l =X | Xz = l‘l)
(12)

Fixed probabilities mean that the probability of transitioning from one state
to another depends only on the current state. The transition probabilities can be
represented as a |S| x |S]| transition matrix ¢ where for any two states s, s’ € S,
Q(s, ') is the probability of transitioning from state s to state s’. The behavior of
the process can then be simulated by repeatedly multiplying initial distribution
X, a vector of size |S| describing a probability distribution of the process’s initial
state, by Q. After n transitions (time steps) this produces vector X,, describing
the probability of being in a state s € S as X,,(s). If S is countable but infinite,
there may be no natural representation for Q.

Definition 3. (Markov chain) [19,16]. A Markov chain is a Markov process
X = (Xo,X1,X5,...X,,) on a countable state space S, such that each random
variable X; at time i is a probability distribution over S.

For a POGTS (R, P) applied to graph G, the induced Markov chain’s state
space S is every graph reachable by repeatedly applying R to G:

S={H|G="*H} (13)

For any POGTS and input graph G, the implied state space must be a subset
of the set of all possible host graphs: S C G. As G is countable, it entails that S
must always be countable. The induced transition matrix @ is defined according



the possible transitions between pairs of graphs A, B € S and their associated
fixed probabilities given by P:

Q(A,B) = > P(r,g) (14)

(r.9)€AR|A=, 4B

Informally speaking, the transition matrix entry for the transition between
graphs A and B is the total probability of A being transformed into B in a single
step by the POGTS using any of the matches in AR.

The initial distribution X is a trivial case; the probability of being in initial
state GG, the input graph, is 1. This means that the initial distribution can be
defined, for any graph G’ € S, as:

1 G =G

. (15)
0 otherwise

Xo[G'] = {
In special cases, it may be possible to consider transition matrix ) explicitly
for a POGTS and find probabilities of its resultant graph accordingly, but more
generally an input graph may not be known until a program using POGTSs is
executed preventing pre-computation of state space S and therefore Q. In this
case, a step-wise execution of some POGTS to produce a result graph can be
seen as sampling from its induced Markov chain. The execution of a single rule-
set call in P-GP 2 corresponds to a single step of the induced Markov chain of
the corresponding POGTS, whereas the as-long-as-possible call R! corresponds
to steps of the induced Markov chain until reaching some absorbing state (see
[16] for more information).
Probability operated graph transformation systems are compared to related
work in Section 5.

4.2 P-GP 2 as a Markov chain

A P-GP 2 program executed on some input graph induces a Markov chain con-
structed from component Markov chains. This claim depends on the knowledge
that all GP 2 operations excepting rule-set calls and or commands are deter-
ministic in operation, as can be seen in the operational semantics of GP 2 [17].
The or command is assigned simple probabilistic behavior, both here and in [1],
where the probability of taking either branch is fixed to 50%.

A P-GP 2 program’s execution can be discussed in terms of its operational
semantics over configurations, where a configuration (Q, G) is a sub-program Q
to be executed, and a host graph G. As a program consists of finitely many com-
mands, there are finitely many possible sub-programs Q). G € G, the countable
set of possible host graphs, and therefore the set of reachable configurations for
a program must be countable. Each rule-set call treated as a POGTS induces
a Markov chain as described in Section 4.1. Every P-GP 2 program executed
on some input graph therefore describes a scenario where operations are either
deterministic, execute simple fixed probabilistic behaviors (or commands) or



induce Markov chains, with each operation leading to a new configuration or
termination. Viewing configurations as the state space of a P-GP 2 program,
the program is constrained to a countable state space where each probabilistic
decision depends only on the current state; the P-GP 2 program itself induces a
Markov chain. This logic extends to branching commands and Procedure calls,
where nondeterminism is ultimately resolved by probabilistic rule-set calls and
or commands.

It is possible to sample from the Markov chain underlying an entire P-GP 2
program to build a partial distribution of its behaviour. This can be done by
repeatedly executing a P-GP 2 program on a given input and recording the re-
sultant graph and probability of its derivation. By ignoring duplicate derivations
with identical matching morphisms and or branching choices, a partial distribu-
tion can be built to an intended degree of completeness. This technique is used
to produce the results given in the case study in Section 3.2; the probability of
producing a graph is given by the summed probability of observed derivations
producing that graph.

5 Related Work

Comparing the stochastic and probability operated models, the first distinction
is the choice of time model. The former are concerned with real time mod-
elling problems, and therefore use a continuous time model, whereas the latter
are concerned with operating the discrete steps of a graph transformation sys-
tem and therefore use a discrete time model. The conventional stochastic graph
transformation model uses function F' : R — Z* to assign to each rule an ap-
plication rate which induces some continuous time distribution [8]. This means
that the discrete decision processes of POGTSs cannot be universally simulated
in SGTSs; the probability of a rule being applied in the stochastic setting is de-
pendent on the number of matches for that rule, making uniform distributions
over rule choice such as those described in Section 4 impossible.

However, for generalised stochastic systems [21], function F : X — [R —
[0.0,1.0]] assigns each possible pair (r,g) a continuous time distribution. This
is clearly related to probability operated graph transformation systems, and it
may be possible to simulate the distribution over produced result graphs for
each approach in the other. However, these two approaches are philosophically
distinct, using different models for time to address different problems: POGTSs
are used to facilitate algorithms on graphs whereas SGTSs are used for real time
modelling.

Probabilistic graph transformation systems [13] share a discrete time model
with the probability operated setting. The choice of rule and match in the prob-
abilistic setting is nondeterminstic, so while an individual execution in the prob-
ability operated setting can be described by nondeterministic choices in the
probabilistic setting, PGTSs exhibit the same ambiguity in execution character-
istic of classical graph transformation systems. It may be possible to simulate
probabilistic rule executions in the probability operated setting by using rules



Model Deciding Rule & Time Probabilistic Rule

Match Choice Model Execution

Classical Graph Nondeterministic — No
Transformation

Probabilistic Graph Nondeterministic D Yes
Transformation

Stochastic Graph Probabilistic C No
Transformation

Probability Operated Graph Probabilistic D No
Transformation

Table 2. Different approaches to decision making in graph transformation. D indicates
discrete time, C indicates continuous time.

with common left hand sides, although whether this is universally true remains
to be seen. Table 2 explains the distinction between conventional graph trans-
formation, stochastic graph transformation, probabilistic graph transformation
and the probability operated graph transformation model used in this paper.

As this paper deals with the graph programming language GP 2, it is natu-
ral to examine how probabilistic decisions are made in mainstream probabilistic
programming languages. Typically, a probabilistic programming language is pri-
marily capable of drawing values from random distributions and conditioning
variables on observations [7]. There are a number of dedicated probabilistic lan-
guages spanning paradigms, for example, the functional language BUGS [6], C#
based Infer.NET [15] and SQL variant PSQL [4]. A key notion contained within
this field is that probability distributions are defined and conditioned within
language constructs, rather than constructing procedures with pseudo random
number generators to achieve probabilistic behaviour as one might in conven-
tional languages. For example, the language Picture [14] elegantly demonstrates
the expressiveness brought by dedicated probabilistic programming; competing
with highly specialised scene recognition programs using concise programs de-
scribed in a new language. There is a parallel here; P-GP 2 allows the program-
mer to describe a probability distribution over result graphs conditioned on the
input graph which can be sampled, although whether more advanced notions
such as inference are relevant remains to be seen.

6 Conclusion and Future Work

In this paper we have identified a nondeterministic vertex colouring algorithm
and proposed a programming model, P-GP 2, as a means of overcoming this
nondeterminism and executing GP 2 programs consistently. Using uniform dis-
tributions over matches, we have measured quantities such as expected colouring



and likelihood of optimal colouring for a set of input graphs. This allows quan-
titative evaluation of the vertex colouring algorithm under P-GP 2 that was
previously unavailable.

Additionally, we have described the underlying decision process used to guide
P-GP 2 as probability operated graph transformation systems. These systems in-
duce Markov chains, transitioning over a countable state space with fixed prob-
abilities. This notion is used to justify the treatment of a P-GP 2 executing on
some input graph as a Markov chain for sampling.

We note a number of directions in which P-GP 2 can be extended. Firstly,
the ability of a programmer to define custom distributions over a projection G
may be useful for implementing nondeterministic algorithms. For example, there
are Genetic Algorithms which have both crossover and mutation operators which
are applied with different probabilities [5]. Treating both operators as rules, a
programmer might even wish to optimise their algorithm for a specific domain
by tuning these probabilities throughout execution [22]. The role of varying
probabilities in match choice remains unclear, although the use of rule schemata
in GP 2 potentially allows quantitative distinction between matches according
to their assignments. It is also appealing to allow user driven choice in parts
of the execution of a GP 2 program as this would both allow full simulation
of probabilistic graph transformation systems and accommodate for user driven
nondeterministic algorithms such as human based genetic algorithms [12].

At the time of writing, we leave it open as to how GP 2 constructs should be
extended to allow the programmer to define different distributions across their
program.
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