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Abstract 

Background: The SI-CURA project (Soluzioni Innovative per la gestione del paziente e il follow up terapeutico della Colite 

UlceRosA) is an Italian initiative aimed at the development of artificial intelligence solutions to discriminate patholo-

gies of different nature, including inflammatory bowel disease (IBD), namely Ulcerative Colitis (UC) and Crohn’s disease 

(CD), based on endoscopic imaging of patients (P) and healthy controls (N).

Methods: In this study we develop a deep learning (DL) prototype to identify disease patterns through three binary 

classification tasks, namely (1) discriminating positive (pathological) samples from negative (healthy) samples (P vs N); 

(2) discrimination between Ulcerative Colitis and Crohn’s Disease samples (UC vs CD) and, (3) discrimination between 

Ulcerative Colitis and negative (healthy) samples (UC vs N).

Results: The model derived from our approach achieves a high performance of Matthews correlation coefficient 

(MCC) > 0.9 on the test set for P versus N and UC versus N, and MCC > 0.6 on the test set for UC versus CD.

Conclusion: Our DL model effectively discriminates between pathological and negative samples, as well as between 

IBD subgroups, providing further evidence of its potential as a decision support tool for endoscopy-based diagnosis.

Keywords: Artificial intelligence, Machine learning, Inflammatory bowel disease, Endoscopy, Predictive models, 

Diagnosis, Ulcerative Colitis, Crohn’s disease
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Introduction

Inflammatory bowel diseases (IBD), including Crohn’s 

disease (CD) and Ulcerative colitis (UC), are chronic 

and recurrent diseases. CD patients have healthy parts 

of the intestine mixed in between inflamed areas, while 

UC induces a continuous inflammation of the colon. 

Further, CD may occur in all the layers of the bowel walls, 

while UC only affects the innermost lining of the colon. 

Although they both have an undetermined etiology, 

research advances have outlined some of the pathways 

leading to their insurgence: (1) genetic predisposition 

associated with the environment induces disruption 

of the intestinal microbial flora; (2) the structure of the 

epithelial cells and of the immune system of the intes-

tine determine the risk of developing the disease. IBD is 

diagnosed using a combination of endoscopy (for CD) 

or colonoscopy (for UC) and imaging studies, such as 

contrast radiography, magnetic resonance imaging, or 
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computed tomography. Physicians may also check stool 

samples to make sure symptoms are not being caused 

by an infection or run blood tests to help confirm the 

diagnosis. Still, a definite diagnosis of IBD remains a 

challenging task  [1], often affected by subjective judge-

ment [2]. Several automated approaches have been pub-

lished in the recent literature [2, 3] attempting to provide 

computational support to improve the diagnostic task, 

with machine learning (ML) models playing a major role, 

however several challenges remain [4, 5]. In this line Stid-

ham et al. [6] found deep learning model performance to 

be similar to an experienced clinician in evaluating sever-

ity of UC, while Takenaka et al. [7] derived a high perfor-

mance model in identifying UC patients with endoscopic 

remission. Klein et al.  [8] focused on analysis of colonic 

biopsies of CD patients to predict post-biopsy clinical 

phenotypes and outcomes, similar to Waljee et  al.  [9, 

10] developing a model to predict IBD-related hospital 

admission and disease flare.

As a consequence, the emergence of Artificial Intel-

ligence (AI) solutions based on Deep Learning (DL) 

models comes as no surprise. The models exploit the 

potential of artificial neural networks to automatically 

process different types of data [11, 12], including endo-

scopic imaging [13]. Our work naturally embeds in this 

research line, combining recent DL architectures with 

more classical ML strategies such as ensemble learn-

ing to further enhance the predictive performance. The 

promising results obtained can support the clinicians in 

providing a more objective and reliable diagnosis, thus 

reducing the risk of misidentification of CD and UC, 

an important aspect considering different treatment 

options and follow-ups of the two conditions [13].

Methods

We tackle the problem of IBD detection from endo-

scopic imaging with an ensemble learning approach 

based on a fine-tuned ResNet architecture. An over-

view of the general workflow is presented in Fig.  1. 

Briefly, the input images first undergo a random par-

titioning into train and test sets: the train set is used 

for model development in a k-fold cross-validation 

(CV) schema, while the test set is kept apart to obtain 

predictions from the trained model. Then, after a pre-

processing phase aimed at preparing the images for 

the predictive modeling, three pre-trained Residual 

Network models [14] of increasing complexity are fine-

tuned on the preprocessed images in a transfer learn-

ing setting. Finally, the models are combined in a single 

meta-model with a stacking ensemble method.

Fig. 1 Experimental workflow. After an upstream processing of the input images (blocks “Data splitting”, “Class balancing”, “Transform”), for each 

classification task three pre-trained ResNet variants of increasing complexity (“Model i”, i = 1, 2, 3 ) are used as weak learners and fine-tuned in 

5-fold cross-validation on the input data (see Methods). A meta-model is then built by stacking ensemble of the three weak learners, evaluating 

the performance on the external test set in terms of different classification metrics (see Methods). N–P, negative versus positive; UC–CD, Ulcerative 

Colitis versus Crohn’s Disease; UC–N, Ulcerative Colitis versus negative; MCC, Matthews Correlation Coefficient (MCC); TNR, true negative rate; TPR, 

true positive rate; NPV, negative predictive value; PPV, positive predictive value
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Outcome definition

In this work, we investigate three major outcomes, 

namely: (1) discrimination between negative (healthy) 

samples and positive (pathological) samples (N–P), (2) 

discrimination between Ulcerative Colitis and Crohn’s 

Disease (UC–CD) samples and, (3) discrimination 

between negative samples and Ulcerative Colitis (UC–N).

Dataset description

The SI-CURA dataset includes 14,226 three-channel 

RGB (red, green, blue) endoscopic images of different 

sizes split between “Positive” patients (P, n = 11,404) and 

“Negative” healthy controls (N, n = 2822). In this work, 

we consider a single image to be a sample for the clas-

sification task. Positive (pathological) samples are further 

labeled as Ulcerative Colitis (UC), Crohn’s disease (CD), 

and Inflammatory bowel disease (IBD). Table 1 illustrates 

the sample stratification for each class and Fig. 2 shows 

an example of positive and negative images.

In developing and evaluating the model, the overall 

dataset was split into two main subsets: training (90% 

of total sample size) and test (10%). The training set was 

further split for model development according to a 5-fold 

cross-validation schema. Since the P data is 3 × the N 

data, under- and over-sampling were used to balance the 

class distributions using the Imbalanced-dataset-sampler 

Python library,1 which automatically estimates the sam-

pling weights and mitigates overfitting when used in con-

junction with data augmentation techniques.

Data preprocessing

An image editor was used to remove undesired arti-

facts, such as signs, writings, medical instruments, black, 

white, and corrupted images. Further, all images were 

converted to JPEG with lossy compression to have a con-

sistent format across the dataset. Table 1 details the num-

ber of elements in each class after preprocessing.

Data augmentation is a technique commonly used to 

increase the amount of relevant data in the original data-

set, thus providing additional examples to the neural net-

work. Augmentation exploits the fact that convolutional 

neural networks are invariant to transformations such as 

translation, size, viewpoint, rotation. The following tech-

niques were used: RGB to HSV (hue, saturation, value) 

colour model conversion, random horizontal flip, and 

random vertical flip, all of which had an equal probability 

of being applied.

Several experiments were performed with different 

batch and image sizes. The best results were obtained 

with a batch size of 32, 64, and 128, depending on the 

model’s depth. To speed up the training time, we rescaled 

all images to 700×700 pixels, equal to the average image 

dimension.

Deep learning architecture

We tackled the tasks through a transfer learning 

approach using the following variants of Residual Net-

works (ResNet)  [14]: ResNet18, ResNet34, ResNet50, 

ResNet101, and ResNet152, all of which were imported 

pre-trained on ImageNet from the PyTorch Hub.2 The 

choice of using pre-trained models leverages the infor-

mation already learned by the network after an extensive 

training on the large ImageNet dataset. The fully-con-

nected head of the ResNet networks was swapped with 

one performing binary classification: an untrained 

sequential module ending with a linear transformation 

and two outputs. Moreover, the rectified linear unit func-

tion (ReLU)  [15] and dropout technique (with p = 0.5 

probability) were used in this module. ReLU activation 

has been widely used in deep neural networks due to 

its advantages over other functions (e.g. sigmoid): most 

importantly, it overcomes the vanishing gradient prob-

lem  [16] that has been afflicting neural networks for 

several years. We adopted dropout to increase regulari-

sation, preventing the coadaptation of the neurons. The 

weights of the layers were frozen except for the last two, 

which were updated with a small variation of the learning 

rate. In a typical transfer learning approach, the layers of 

the network are frozen to the trained weights except for 

the last (“higher”, or “top”) layers (farther to the input). 

This is because the first-layer features are more general 

and the last-layer features are more specific  [17]. There 

are different strategies for fine-tuning the higher lay-

ers: typically, the final fully-connected classification part 

of the network is trained, leaving the convolutional lay-

ers frozen. However, it is also possible to unfreeze one 

or more convolutional layers as well to fine-tune the 

performance. We chose to unfreeze the last two con-

volutional layers as a compromise between achieving a 

good performance and avoiding overfitting, following 

recommendations in the literature  [18]. The optimiser 

Table 1 Number of elements (images) in each class, in the 

format “raw data (preprocessed data)”

P, positive; N, negative; UC, Ulcerative Colitis; CD, Crohn’s disease; IBD, 

inflammatory bowel disease

P N

UC CD IBD

4388 (3594) 5949 (4098) 1067 (823) 2822 (2815)

1 https:// github. com/ ufoym/ imbal anced- datas et- sampl er. 2 https:// pytor ch. org/ hub/.

https://github.com/ufoym/imbalanced-dataset-sampler.
https://pytorch.org/hub/.
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used for the training was Adaptive Movement Estima-

tion (Adam) [19], a replacement for Stochastic Gradient 

Descent that combines the advantages of the Adaptive 

Gradient (AdaGrad) and Root Mean Square Propaga-

tion (RMSProp) algorithms, making it a popular choice 

in recent studies  [20]: AdaGrad maintains a per-param-

eter learning rate that improves performance on prob-

lems with sparse gradients, and RMSProp also maintains 

per-parameter learning rates using a decaying average of 

recent partial gradients. This means that Adam improves 

parameter optimisation, particularly in online and non-

stationary (e.g., noisy) tasks. The actual number of epochs 

was determined by early stopping based on the validation 

loss, with a patience of 30 epochs. The maximum number 

of epochs was set to 200, a value high enough to allow the 

net to learn as much as possible until the early stopping 

technique takes place.

Differential learning rates

The learning rate is one of the most important hyper-

parameters that can be tuned to improve optimisation 

convergence. It is usually chosen by time-consuming 

techniques such as grid search that exhaustively experi-

ments with different values, picking the one that works 

best in terms of performance on the validation set. 

A more convenient approach, which was adopted in 

this study, is the learning rate finder  [21]. During each 

epoch, the algorithm makes the learning rate cyclically 

vary between a lower and an upper bound. The loss cor-

responding to each learning rate is computed, and the 

learning rate yielding the steepest drop in the loss is 

chosen.

The learning rate finder method was complemented by 

the use of different learning rates during the training, an 

approach commonly referred to as “differential learning 

rates”, which is particularly useful in a transfer learning 

setting. In fact, only the layers immediately preceding 

the fully-connected classifier head were unfrozen and 

trained. Since the ResNet model is pre-trained on the 

large ImageNet dataset, these layers only need a small 

amount of fine-tuning to achieve good prediction per-

formance. In particular, the learning rate values for the 

ResNet’s layer4 (just before the classifier) and layer3 

were reduced by a third and by a ninth, respectively.

Ensemble learning

Ensemble learning is a machine learning paradigm where 

multiple models (“weak learners”) are trained to solve 

the same problem and finally combined to achieve better 

results. Two ensemble methods were used in this study: 

averaging prediction and stacking. While the former 

keeps the models independent from each other and aver-

ages their predictions, the latter combines the predictions 

of the weak learners through a final classifier, resulting 

in a meta-model. We combined three weak learners in a 

stacking ensemble meta-model: ResNet34, ResNet50, and 

ResNet101 were used as weak learners in the N–P and 

UC–N cases, and ResNet34, ResNet50, and ResNet152 

in the UC–CD case. Other combinations were tried, but 

they performed worse. The ensemble meta-model has 

six input features (two for each weak learner) and two 

outputs features, and it was further trained for several 

epochs by using the early stopping criterion.

Performance evaluation metrics

The metrics used for assessing the model performance in 

both training and evaluation stages are Matthews Corre-

lation Coefficient (MCC), true positive rate (TPR), true 

negative rate (TNR), positive predictive value (PPV), neg-

ative predictive value (NPV), and the confusion matri-

ces. The MCC was used as the main metric because it is 

particularly suitable for binary and multiclass classifica-

tion [22], and it is generally regarded as a balanced per-

formance measure that can be used even if the classes are 

of very different sizes. MCC is computed from the values 

of the confusion matrix, true positives (TP), true nega-

tives (TN), false positives (FP), and false negatives (FN), 

as in the following:

The values of MCC range between −1 and 1, where 1 

means perfect classification, −1 perfect misclassification 

(inverse prediction), and 0 random guess or, generally 

speaking, absence of correlation between the predictions 

and the ground truth.

We also computed the training and validation losses 

and the 95% studentized bootstrap confidence intervals 

for the training MCC.

Model interpretation

In an attempt to better understand which input features 

are deemed important by the trained deep learning 

models, we used two explainable AI (XAI) algorithms 

implemented in the Captum library,3 namely Saliency 

and Guided backpropagation. Saliency [23] is one of the 

most straightforward approaches for estimating input 

attribution: it computes the gradient of the model output 

with respect to the input pixels of a given image. While a 

simple approach to deep model interpretation, Saliency 

maps cannot capture the input feature interactions and 

tend to be noisy. Guided backpropagation  [24] (GBP) is 

an extension of the Saliency algorithm aiming to alleviate 

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

3 https:// captum. ai/.

https://captum.ai/.
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these issues: GBP also computes the gradient of the out-

put with respect to the input; in addition, it overrides 

ReLU backpropagation, resulting in backpropagation of 

non-negative gradients only. Each method computes an 

attribution value (the higher, the more important) for 

each input pixel: the resulting attribution maps are then 

qualitatively assessed by overlaying them on the original 

image.

Implementation

The following frameworks and libraries were used: 

PyTorch v1.5.0 with torchvision v0.6.0a0, Captum v0.4.1, 

CUDA 10.2, and Jupyter v6.1.4. Color model conver-

sion was performed by the PIL library. The packages 

were installed in a Anaconda virtual environment for 

improved reproducibility. The analyses were run on a 

ppc64le server, provided by GPI S.p.A., with 128 CPUs 

(max 4023 MHz, min 2394 MHz) and 4 NVIDIA Tesla 

P100 SXM2 16GB GPUs. The training of neural net-

works was performed on multiple GPUs using PyTorch’s 

DataParallel.

Results

Classification

Figures 3, 4, 5 show the cross-validation and test set per-

formance of the weak learners and the ensemble meta-

models for all classification tasks. The test set confusion 

matrices are reported in Fig.  6 for the best-performing 

weak learner of each task. Table  2 reports the results 

in terms of average cross-validation MCC with 95% 

Table 2 Metrics values for the best trained nets, ranked by decreasing Matthews Correlation Coefficient (MCC) on the test set; cv, 

ts: cross-validation and test set; TNR, true negative rate; TPR: true positive rate; NPV, negative predictive value; PPV, positive predictive 

value; resnetX-Y-Z: meta-model obtained by stacking ensemble of the three weak learners resnetX, resnetY, and resnetZ

Task Net MCC
cv

MCC
ts

TNR
ts

TPR
ts

NPV
ts

PPV
ts

N–P resnet34-50-101 0.976 (0.976,0.976) 0.940 1.000 0.968 0.912 1.000

resnet50 0.960 (0.954,0.966) 0.937 0.993 0.969 0.915 0.998

resnet101 0.948 (0.944,0.952) 0.929 0.996 0.964 0.900 0.999

resnet34 0.954 (0.951,0.956) 0.925 1.000 0.960 0.892 1.000

UC–CD resnet34-50-152 0.906 (0.905,0.907) 0.688 0.777 0.902 0.875 0.822

resnet50 0.377 (0.362,0.398) 0.629 0.727 0.890 0.853 0.788

resnet34 0.428 (0.415,0.454) 0.611 0.744 0.861 0.824 0.793

resnet152 0.319 (0.319,0.319) 0.602 0.677 0.905 0.862 0.761

UC–N resnet34-50-101 0.988 (0.988,0.988) 0.931 0.955 0.979 0.983 0.945

resnet34 0.968 (0.966,0.970) 0.930 0.964 0.968 0.975 0.954

resnet101 0.964 (0.961,0.970) 0.895 0.967 0.925 0.943 0.956

resnet50 0.966 (0.962,0.972) 0.855 0.969 0.875 0.909 0.957

Fig. 2 An example of positive (a) and negative (b) images within the SI-CURA dataset



Page 6 of 10Chierici et al. BMC Medical Informatics and Decision Making          (2022) 22:300 
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Fig. 3 N–P classification results. Metrics values for the ensemble model (resnet34-50-101) and the weak learners resnet34, resnet50, and resnet101. 

Light blue: cross-validation; dark blue: test set. Black bars represent 95% confidence intervals
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Fig. 4 UC–CD classification results. Metrics values for the ensemble model (resnet34-50-152) and the weak learners resnet34, resnet50, and 

resnet152. Light blue: cross-validation; dark blue: test set. Black bars represent 95% confidence intervals
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Fig. 5 UC–N classification results. Metrics values for the ensemble model (resnet34-50-101) and the weak learners resnet34, resnet50, and 

resnet101. Light blue: cross-validation; dark blue: test set. Black bars represent 95% confidence intervals
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confidence intervals and the test set MCC, TPR, TNR, 

PPV, and NPV. The rows of Table  2 are ranked task-

wise by decreasing test set MCC. The average-predic-

tion ensemble models performed consistently worse for 

all tasks and are not shown. According to Table  2 and 

Fig. 3, the top three nets (or weak learners) for N–P are 

ResNet50, ResNet34, and ResNet101. While the first one 

is trained with an unbalanced training data loader, the 

latter two nets are trained using a balanced data loader.

As for the UC–CD task, the best results were obtained 

by ResNet34, ResNet50, and ResNet152 (Table 2, Fig. 4). 

The first two nets were trained with a balanced data 

loader and the last one with an unbalanced data loader. 

In this task, the classes are not as imbalanced as in N–P 

(Table  1): however, the dataset balancing technique 

helped maintain balanced the confusion matrices in the 

training and evaluation phase. As expected, the meta-

model slightly improves over the weak learners on the 

test set (Table 2).

The best-performing networks for the UC–N task 

are a ResNet34 model with a balanced data loader and 

an ensemble model using ResNet50, ResNet34, and 

ResNet101 as weak learners trained with unbalanced, 

balanced, and unbalanced data loaders, respectively. The 

best metrics are shown in Table 2. In this case, the per-

formance improvement of the ensemble model over the 

single best-performing weak learner ResNet34 is limited.

The performance on the test set is reasonably compa-

rable to that in cross-validation for all tasks and models, 

except for the UC–CD ensemble model which exhibits 

higher CV performance (MCC = 0.906 vs. 0.688, Fig. 4, 

Table 2).

Interpretability

We applied the chosen model interpretation methods 

to a random subsample of test set N–P images using a 

ResNet50 model, which was the best performing weak 

learner on the task N–P (Table 2). For two representative 

images (1 Positive, 1 Negative), Fig. 7 visualizes the Sali-

ency and Guided Backpropagation (GuidedBackProp) 

attribution maps overlaid on the original image, which is 

also shown separately for comparison. We observe that 

GuidedBackProp attributions are less noisy than Sali-

ency ones, as expected. Moreover, typical endoscopic fea-

tures of IBD such as mucosal erythemas appear to have 

higher attribution values according to GuidedBackProp 

(Fig.  7, bottom). Using a gradient-based XAI method 

such as Saliency and Guided backpropagation is particu-

larly appealing because it allows a straightforward visual 

interpretation of the input features deemed important by 

the underlying model. However, the identified features 

should be the object of further analyses since they may 

be affected by different kinds of bias, such as illumination 

(Fig. 7).

Discussion

In this work, we developed and evaluated a prototype 

DL framework based on ResNet architectures merged by 

ensemble learning, able to identify disease patterns from 

endoscopic images of different IBDs, namely Ulcerative 

Colitis and Crohn’s Disease, and distinguish negative 

(healthy) samples. The DL models achieve a test set per-

formance MCC = 0.940 for the classification of healthy 

controls versus IBD patients, MCC = 0.688 for Ulcera-

tive Colitis versus Crohn’s Disease, and MCC = 0.931 

for Ulcerative Colitis versus healthy individuals. On the 

UC–CD task, we observed a lower, yet relatively good, 

predictive performance (MCC = 0.688). This result 

might be due to the intrinsic difficulty in distinguishing 

between these two clinical subtypes of IBD, using solely 

colonoscopy-based diagnosis, whereas additional meth-

ods such as endoscopic ultrasonography may be more 

effective in differentiating UC from CD  [25]. It should 

be noted that the results of the ensemble model demon-

strate that there is only a marginal increase in predictive 

performance compared to using a single ResNet, possibly 

Fig. 6 Confusion matrices. Test set confusion matrices for the best-performing weak learners of each classification task (see Table 2)
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because it is difficult to further improve over already 

high-performance results. Overall, the obtained results 

in all the three classification tasks indicate a very good to 

excellent predictive performance, highlighting the poten-

tial of the framework to evolve into a valuable tool for the 

clinicians in their diagnostic tasks. Given the several sub-

tleties of endoscopic imaging, linked to both the intrinsic 

disease features and to potential artifacts (for instance 

due to light effects), disagreement on the diagnosis is not 

uncommon among clinicians dealing with this task: the 

automated system proposed here can provide an addi-

tional view on the problem, clarifying the issues hamper-

ing the correct assessment of the pathology. Nonetheless, 

despite the encouraging results, the current study should 

be considered a proof of concept rather than a consoli-

dated pipeline, which we have already planned to improve 

in future development. In this regard, additional model 

architectures other than ResNet could be evaluated, and 

different loss functions can be used to overcome the data 

limitation involving unbalanced classes. Moreover, the 

neural networks could be trained for more epochs, with 

additional combinations of hyperparameters, including 

automated approaches to data preprocessing and artefact 

removal, such as traditional image segmentation [26]. 

Additionally, alternative ensemble models can be tested, 

trained with images in different colour spaces. The model 

outcome can also be improved by enhancing the training 

data, even through augmenting techniques creating syn-

thetic data: for example, generative adversarial networks. 

Finally, strengthening the resampling strategy will further 

improve the overall reproducibility of the study, while 

the analysis of the data trajectories across the DL lay-

ers can provide a valuable direction regarding the model 

interpretability.

Conclusions

The results presented in this study demonstrate the 

vast potential of deep neural networks in discriminat-

ing between pathological and negative samples as well 

as discriminating between IBD subgroups, namely 

Ulcerative Colitis and Crohn’s Disease. Further devel-

opment of this work and other studies in this area in 

general have the potential to become powerful tools in 

the hands of clinicians, aiding diagnosis and the clini-

cal decision process. However, additional studies would 

Fig. 7 Model interpretability. Qualitative visualization of attribution maps by Saliency and Guided backpropagation (GuidedBackProp) algorithms 

for a Negative (A, top row) and Positive (B, bottom row) input image. The original image is also shown for comparison. The attribution maps are 

visualized as heatmaps, with darker shades representing more important features according to the algorithm
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be required to evaluate the utility of machine-learning 

aided diagnosis of IBD in clinical practice.
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