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Determination of the space-dependent blood perfusion
coefficient in the thermal-wave model of bio-heat transfer

Abstract. This paper aims to retrieve the space-dependent blood perfusion coefficient in
the thermal-wave model of bio-heat transfer from final time temperature measurement. This
non-linear and ill-posed problem is reformulated as a non-linear minimization problem of a
Tikhonov regularization functional subject to lower and upper simple bounds on the un-
known coefficient. For the numerical discretization, an unconditionally stable direct solver
based on the Crank-Nicolson finite-difference scheme is developed. The Tikhonov regulariza-
tion functional is minimized iteratively by the built-in routine lsgnonlin from the MATLAB
optimization toolbox. The reconstruction of the unknown blood perfusion coefficient for
three benchmark numerical examples is illustrated and discussed to verify the proposed nu-
merical procedure. Moreover, the proposed algorithm is tested on a physical example which
consists of identifying the blood perfusion rate of a biological tissue subjected to an external
source of laser irradiation.

Keywords: Inverse problem; bio-heat transfer; blood perfusion coefficient; Tikhonov regu-
larization; thermal-wave model

1. Introduction

Heat transfer in biological bodies is driven by processes such as conduction, blood perfusion
and heat generation due to metabolism [18]. The widely used Pennes’ bio-heat model 28]
implies that (as it is based on the classical Fourier’s law) any thermal change in the medium is
felt instantaneously at all locations, i.e. an infinite speed of thermal propagation occurs. The
Pennes’ bio-heat parabolic PDE model [28] has proved sufficiently accurate to approximate
a wide range of physical applications such as the prediction of temperature evolution during
cancer’s hyperthermia [32], estimation of thermal effects of radiation from cellular phones
[41], the use of thermal therapies for the ablation of diseased tissues [17], etc. However, when
modelling heat propagation in biological bodies, a non-negligible relaxation time (typically
between 15-30 seconds) is required for the thermal waves to accumulate and transfer, i.e.
thermal waves propagate at a finite velocity, |7, 24, 29]. Cattaneo [9] and Vernotte [40]
independently modified Fourier’s law to account for such a realistic and physical feature.
Such extension has been the basis of the thermal-wave model of bio-heat transfer given by,
[20]7

0T

oT 0
ptCtTW + (ptct + prcbwb)a = kVQT + pbcbwb(Ta - T) + Qm + Qe + Ta(Qm + Qe)> (1)

where T, pi, ¢, and k are the temperature [K or °C|, density [kg/m?|, specific heat [J/(kg
K) or J/(kg °C)] and thermal conductivity [W/(m K) or W/(m °C)]| of the tissue, respec-
tively, py, ¢ and wy stand for the density |kg/m?|, specific heat [J/(kg K) or J/(kg °C)]
and perfusion rate [s71] of the blood, respectively, 7 is the relaxation time [s], V? is the
Laplace operator, ¢ is the time [s| and T}, is the (arterial) blood temperature [K or °C|. The
sources @,, and Q. are heat generations due to metabolism and external heating [W/m3],
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respectively. In the model (1), 7 = a/c?, where a = k/(pc;) is the thermal diffusivity of the
tissue [m?/s] and c is the velocity of thermal waves [m/s], [24].

Research in coefficient identification has been concerned with reconstructing the blood
perfusion with various dependencies, e.g. constant, time-wise, space-wise, space- and time-
wise or temperature-dependent [6, 8, 13, 35, 36, 37, 38, 39|. These studies have been possible
only through the use of numerical optimization methods and were based on the Pennes’
bio-heat parabolic model. Although these studies estimated an important thermo-physical
parameter, they neglected the wave-like nature of heat conduction present in biological tis-
sues and captured by the thermal-wave model of bio-heat transfer [1]. The novelty and
objective of this paper are to account for such a more accurate thermal-wave bio-heat model
and investigate the possibility of determining its space-dependent blood perfusion coefficient
from temperature measurements at the final time.

This paper is organized as follows. The mathematical formulation of the inverse prob-
lem of identifying the space-dependent perfusion coefficient along with the temperature is
undertaken in Section 2. In Section 3, the finite-difference method (FDM) used as a direct
solver, is discussed, while the numerical optimization approach for inversion is presented
in Section 4. Numerical benchmark examples for identifying blood perfusion coefficients of
different nature are illustrated and discussed in Section 5, along with a physical example
concerning the estimation of the blood perfusion rate of a biological tissue subjected to an
external source of laser irradiation. Section 6 highlights the conclusions of this work.

2. Mathematical formulation
We investigate the governing hyperbolic partial differential equation (1) subject to appro-
priate initial and boundary conditions when the unknown perfusion coefficient wy(z) is not
constant, but it depends on the space variable. Therefore, this generality allows extending
previous analyses |3, 4, 5] by the authors to investigate heterogeneous tissues which are more
general /realistic than the homogeneous ones. For simplicity, all the other thermal param-
eters are assumed to be known and constant, and we shall consider the one-dimensional
time-dependent case only although a similar analysis holds also in higher dimensions.
Letting L [m] denote the length of the finite tissue slab and ¢ [s| a time duration of
interest, then equation (1) simplifies to, [21],
o*T aoT 0T

Cor g (2,8) + (Co 4 7Cpwy(w)) o (@) = kg (2,1) = Chn(a)(T = To) + Qm + Qe

+T%(Qm +Q.), (x,t)€(0,L) x[0,t], (2)

where C; = pie; [J/(m? K) or J/(m? °C)] and C, = pyep [J/(m? K) or J/(m? °C)] are the
heat capacities of tissue and blood, respectively.
We consider the hyperbolic partial differential equation (2) subject to the initial con-
ditions
oT

T(ZE,O) - ¢(I), E(l’?O) = 1/}(1’), LS [07L]7 (3)



where ¢ and v are prescribed functions, and the convective Robin boundary conditions

—k‘;—Tm, t) = ho(t)(Tooo(t) = T(0,2)), t €0t )
T 4
ROL(L1) = ha ()T () — T(L,1)), 1€ (0,1,

where hy and hy, are heat transfer (exchange) coefficients [W/(m? K) or W/(m? °C)] at the
boundaries x = 0 and x = L, respectively, and T, o and T 1, are the ambient temperatures
[K or °C| outside the boundaries x = 0 and « = L, respectively.

As an additional measurement to compensate for the missing knowledge of wy(x), we
consider specifying the final time temperature

T(x,t) = Ty, (x), x€]0,L], (5)
where T}, is a prescribed function. Alternatively, one could measure the boundary tempera-
ture

T(0,t) = m(t), telo,t, (6)
or
T(L,t) = pua(t), te€][0,t], (7)

such that from (4), partial Cauchy boundary data would be prescribed, [14, 22, 33, 42|, the
partial interior observation

T(x,t) =T (z,t), (z,t) € w x(0,t, (8)

where w is a subdomain of (0, L), [15], or the time-average temperature specification

/0 D OT (e t)dt = E(x), € [0.L] (9)

where x is a given function, [19].
Uniqueness results for the pair of functions (wb(x), T(x, t)) satisfying the inverse prob-
lem given by equation (2) with 7 = 0, i.e. the Pennes’ bio-heat parabolic equation
oT 0*T

Ct—<l',t) = /{?w

It (l’, t) - wab(x)<T - Ta) + Qm + Qea (JI, t) < (07 L) X {07 tf]? (10)

initial condition

T(x,0) = ¢(x), x€]0,L], (11)

Dirichlet boundary conditions (6), (7) and the extra measurement (5) of the temperature or

the heat flux oT oT
—ka—I(O,t) =qo(t) or ka_x(L’t) =qr(t), tel0,t (12)

are provided in [16] and [31], respectively. On the other hand, for the hyperbolic inverse
problem (2)—(5), or (2), (3), (5)—(7), or (2)—(4), (6), or (2)—(4), (7), uniqueness results are
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not known yet, but they could be investigated in the future using, e.g. the techniques from
[19] (Carleman estimates) and Chapter 8 of [30] (semi-group theory).

The thermal-wave model of bio-heat transfer (2)-(5) can be non-dimensionalized, as
follows. Assuming that 7, is a non-zero constant, we introduce the following dimensionless

[ 1 T-T, . 4-T,
(va)_ kT(x’L)’ <t7tf)_7_(t>tf)u U = T, ) ¢— T, )

%E_Tw _Too,O_Ta _Too,L_Ta T;f -
- Ta ) uoo,O - Ta ; uoo,L - Ta ) -

o T T(Qe + Qm) TCpwy
(ho, Fe) \ kcn<h“’hL)’ T.c, = YT ¢

Then, the dimensionless form of the thermal-wave model (2)-(5) (omitting the bars for
clarity and denoting f = F' + F}) can be written as

variables:

0%u ou 0%u
W(z,t} +(1+ w(x))a(x, t) = @(x,t) —w(z)u(z, t) + f(z,t),

(x,t) € &, = (0,L) x [0, t¢], (14)

subject to the initial conditions

u(‘T?O) = 925(‘7:)7 _(xv()) - ¢(x)a LS [07 L]? (15)

the convective Robin boundary conditions

ou

X

_@anzhdw@wdﬂ—qu»v

O (L, 1) = hi(t) (oo (t) — u(L, 1)),

te [Oa tf]? (16)
and the final time temperature

u(x, tr) = u,(x), x€[0,L]. (17)

In the particular case that the ambient temperatures 7o, and T ; are constant and
equal to the arterial temperature T,, and that the heat transfer coefficients hy and hj are
also constant, the boundary conditions (16) simplify as

ou ou
——(0,t) + hou(0,t) =0, —(L,t)+ hru(L,t) =0, t & |0,t, 18
C2(0,8) + hou(0,8) = 0, SE(L,t) + hyu(L, ) 0,4 (18)
and the problem (14), (15), (17) and (18) can be seen as a one-dimensional model of the
more general higher-dimensional setting of the inverse problem given by
0%u

W(m,t) + (1 - w(x))

ou

Eg%ﬂ:V%@ﬁ—w@W@ﬁ+f@ﬁv



(x,t) € D x [0, ], (19)

ou
U(ZL’,O) :gf)(l’), 5(1‘70) =¢($)7 reD, (20)
%(m,t) + h(z)u(z,t) =0, (x,t) € 9D x [0,t, (21)
u(z, te) = u,(x), x €D, (22)

where D is a bounded domain in RY, (d = 1,2, 3), with sufficiently smooth boundary 9D of
outward unit normal n, h = h(z) is a given, sufficiently smooth, time-independent boundary
heat transfer coefficient, f € C([0,tg]; L*(D)), ¢ € H'(D) and ¢ € L*(D) are given data,
w € C?(D) and uy, € D(A), where

D(A) =k U = ( if ) € H*(D) x H'(D); (g—erhu) =0y, (23)

oD

is the domain of the operator

=
(3 4)

acting on the space X = H'(D) x L*(D) equipped with the family of equivalent norms, see
p.590 of [30],

U = IVullzap) + Bllullzam) + IV1Z20) + /8D h(z)u®(z)ds, (25)

for 8 > 0 sufficiently large. The operator A is closed and its domain of definition (23) is
dense in the space X. On rewriting (19) as the system

{ Uy =V — u, (26)

vi = V2u —w(x)v + f(x,t),
we can view the direct problem (19)-(21) as the abstract Cauchy problem

U'(t)= AU(t) + F(t), t €0, tq,
U(0) = Uy,

where A is given by (24), U(t) = (u,v)T, F = (0, f)T and Uy = (¢, ¢ + ).



Remark 1. (Case of Dirichlet boundary conditions)
In case of homogeneous Dirichlet boundary conditions

w(0,8) = u(L,t) =0, te[0,t, (28)

obtained when py and py in (6) and (7) are constant and equal to T,, or its higher-dimensional
form

u(z,t) =0, (x,t) € 9D x [0, tq], (29)

in place of the homogeneous Robin boundary conditions (21), the domain of the operator A
and the space X simplify as D(A) = (H*(D) N H}(D)) x Hy(D) and X = Hy(D) x L*(D)
equipped with the usual family of norms

U = lullz ) + V1220 (30)

To advance the theoretical analysis one could possibly make use of the theory of semi-
groups to show that, under certain conditions, the operator A defined by (24) is the in-
finitesimal generator of a Cy-group of bounded linear operators in the space X, see [27,
pp.220-222|, but this is not yet available. Instead we solve numerically the inverse coeffi-
cient problem in the non-dimensional thermal-wave model of bio-heat transfer (14)-(17) for
reconstructing the temperature u(x,t) and the space-dependent blood perfusion coefficient
w(z) = Twy(x)Cy/ C.

Before we proceed with the inversion in Section 4, in the next Section 3, we solve the
linear and well-posed direct problem (14)-(16) when the blood perfusion coefficient w(x) is
assumed to be known using an unconditionally stable FDM based on the Crank-Nicolson
scheme. Furthermore, the convergence of the FDM direct solver is verified on a benchmark
example.

3. Numerical solution of direct problem
Before attempting to solve the non-linear and ill-posed inverse problem (14)—(17), we describe
the numerical solution of the linear and well-posed direcy problem given by equations (14)—
(16) when the blood perfusion coefficient w(x) is assumed to be known.
We introduce the intermediate variable v, [11], as
ou

v(z,t) = E(x,t) + (1 +w(@))u(z,t), (z,t) € Q. (31)

Then, equation (14) rewrites as

v 0*u
E(x,t) = @(az,t) —w(z)u(z,t) + f(x,t), (x,t) € Q. (32)

From (15) and (31) we obtain the initial condition
o(e,0) = ¥(x) + (1+w(z))g(z), =€ 0,L]. (33)
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An alternative to the above split (31) and (32) could be given by ¢ = u; + w(z)u and
Vg + 0 = Uge + f(x,1).

We subdivide the computational domain 2, into M and N subintervals of equal mesh
sizes Az = L/M and uniform time step At = t¢/N, respectively. At the node (x;,t;), we
denote w;; = u(w;,t;), vij = v(wi,t;), wi = w(w), bl = ho(t;), hi = hy(t;), Uio,o =
Uoo,0(t5), uiO’L = U (t;) and fi; = f(x;,t;), where x; = tAz and t; = jAt for i = 0, M
and j =0, N.

The Crank-Nicolson method, which is unconditionally stable and second-order accurate,
discretizes (31) and (32) as

% = (Ui,j — (1 —+ wi)ui’j + Uz’,j—i—l — (1 + wi)ui,jﬂ),

j=0,(N-1), (34)

‘wl»—

—_ O

At

\V]

0

1 =0,M,

Vig+1 — Ui 1 o I o

— Ay = degui,j — witi; + fij + W(qui,j—i-l — Witlij+1 + fije1 )
1 =0,M,

j=0,(N—-1), (35)

where u_y; = u(—Ax,t;) and upiq; = u(L + Ax,t;) for j = 0, N, and 62u;; == uj—1, —
2u,-7j + U415+
Equations (15) and (33) are discretized as

Ui, 0 = Cb(l"i)a Vi0 = ¢($z) + (1 + wi)¢($z’)> i=0,M, (36)

and equation (16) is discretized as

Uy — U1, ; i Up41,5 — UM—-1,5 j j
—— ) = ph ! — g : L =np(uw_, —up
2(A$) 0 00,0 J ) Q(AJJ) L oo,L ] )0

Solving (34) for v; j41, we obtain

2 2
Uz',j+1 = <1 -+ w; -+ E) Uz‘,j+1 + <1 -+ w; — E)ui,j — Um‘, (38)

fori=0,M, 7=0,(N —1). Introducing (38) in (35), we obtain

—Aui—y g1+ Biti g — Aty g =Aui + Ciugj + A j + 20

At
+ T(fi,j + fi,j—i—l)a (39)
At 2 At At
for i = = —1), wh = ==+ 1 1+ 20
ori=0,M,7=0,(N—1), where A STINSER (At+(Ax)2+ >—|—< + 2)w
2 At At S
i=————=—-1)—(1+— |w; fori=0, M.
and C; (At (A0)? 1) ( + 5 )wl ori =0,

At each time step ¢4 = (j + 1)At for j = 0, (/N — 1), incorporating the discretized
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boundary conditions given by (37), the difference equations given by (38) and (39) can be
reformulated as a two-step implicit FDM procedure of the form:

Ej—’_luj_H = Ej’u]' + 27.7]' + i)j, (40)
2 . 2 z
Vjy1 = 1—|—E I+WwW ’U/j+1+ 1_E [—l—W'U,j—’Uj, (41)
where:
T T = .
u; = (Uo,j7 e ,uM,j) o U= (Uo,j, e ,UMJ) , W = diag(wy, ..., wu),

I is the (M + 1) x (M + 1) identity matrix,

By+ XNt —24 0 ... 0 0 0
= . : |
0 0 0 —A By —A '
! 00 0 —24 By+X"
Co — )‘{ 24 0 ... 0 0 0
A ci; A ... 0 0 0
Bl = : ST 5 |
0 0 0 ... A Cy_ A
0 0 0 ... 0 24 Cy—X\
A J+1, j+1 j o
o (foq + foj) +2AAz (ho wlo+ houoo,o>
At
T(flﬁj + fij1)
b = : |
At
7 (fM—l,j _I_ fM—l,j-i—l)
At o -
5 (Farg + Fargin) + 2400 (Rl L 4+ Wl )

where X = 2AAzh) and X, = 2AAzh] for j = 0,(N — 1).
We next consider a numerical example to verify the convergence and accuracy of the
proposed FDM scheme.

3.1 Verification example
We consider the direct problem (14)—(16) with L = t; = 1 and the following input data:

u(z,0) = ¢(x) = x + sin(wx) + 5, %(m, 0)=v¢(z) =1, (42)
ho(t) =hi(t) =1, tUso(t) =t—7+4, uorL(t)=t—7+7, (43)



f(@,t) =2+ (x+1)(t + z + sin(7z) + 5) + 7 sin(7z) + 2, (44)

and
w(x) =14+ x. (45)
Then, the exact solution is given by

u(z,t) = x4+t + 5+ sin(mx). (46)

The root mean square error (rmse) given by

M
rmse (utf) = ]\/[1—1— : ; [u{lf”merical(xi) — ygxact (JZZ)]Q (47)
was obtained as rmse(u,) € {0.0354,0.0083,0.002} for M = N € {5,10, 20}, respectively,
indicating that the order of convergence of the FDM is two.

In the next section, the inverse problem of identifying the space-dependent blood per-
fusion coeflicient w(x) alongside the temperature u(z,t) in the inverse problem (14)-(17)
is recast as a constrained minimization problem and a procedure based on the MATLAB
built-in routine Isgnonlin is described for the solution of such a minimization problem.

4. Numerical solution of inverse problem

In this section, we wish to obtain accurate and stable reconstructions of the unknown blood
perfusion coefficient w(x) and the temperature u(x,t) satisfying the inverse problem (14)-
(17) reformulated as minimizing the regularized objective function

G(w) = [[u(-, te) — ue, ()|* + Mw ()|, (48)

where u solves the direct problem (14)—(16) for a given element w(x), A > 0 is a regularization
parameter to be prescribed and the norm is the L?[0, L]-norm.
The discrete form of (48) reads as

G(w) = Z [, te) — uyy ()] + A Z w?, (49)

where w = (w;),_g737 € RY*. The minimization of the objective function (49) is performed
using the MATLAB optimization toolbox routine lsqgnonlin, which does not require supplying
by the user the gradient of the objective function (49), [23]. This routine attempts to find
the minimum of a sum of squares by starting from an arbitrary initial guess w® for w. This
routine is compiled with the following parameters:

e Algorithm is the Trust-Region-Reflective (TRR) minimization, [10].
e Maximum number of iterations — 400.

e Maximum number of objective function evaluations = 10* x (number of variables).

9



e Termination tolerance on the function value = 10720,
e Solution tolerance = 10720,

e Lower and upper simple bounds on the unknowns are 1071° (very small positive num-
ber) and 10® (large positive number), respectively.

The inverse problem (14)—(17) is solved subject to both exact and noisy final time temper-
ature measurements (17). The noisy data are numerically simulated as follows:

g (1) = wee(25) + €, 1=0,M, (50)

where ¢; are random variables generated from a Gaussian normal distribution with mean
zero and standard deviation o given by

o=pX mrg[%,}}f] |utf(x)|7 (51)
where p is the percentage of noise. We use the MATLAB function normrnd (0,0, M + 1)
to generate the random variables € = (€;);_g7;- In the case of noisy data (50), we replace
ug () by uf (z;) in (49).

The convergence, accuracy and stability of the procedure just described are tested
for three numerical benchmark examples in which the blood perfusion coefficient exhibits
different behaviours such as smooth, piecewise smooth or discontinuous. Moreover, the
reconstruction of the blood perfusion rate of a real-world laser-irradiated biological tissue is
performed.

5. Numerical results and discussion

This section assesses the convergence, accuracy, and stability of the minimization procedure
described in the previous section. We test for a: (i) smooth (Example 1), (ii) piecewise
smooth (Example 2) and (iii) discontinuous (Example 3) space-dependent blood perfusion
w(z). Furthermore, we consider retrieving a dimensional blood perfusion rate of a biological
tissue irradiated by laser (Example 4). The root mean square error (rmse) is utilized to
evaluate the accuracy of the reconstructed perfusion coefficient w(z), as follows:

M
L . 2
rmse(w) — 71 E [wnumerlcal(xi> — quexact (-Tzﬂ ) (52)

=0

In the first three benchmark numerical examples presented below we take, for simplicity,
tr =L = 1. We also take M = N = 40 in the inverse calculations.

5.1 Example 1 (smooth coeflicient)
We consider the inverse problem (14)—(17) with a linear and smooth unknown blood perfusion
coefficient w(z) with the input data (42)—(44) and

ug,(x) = x + sin(wz) + 6. (53)

10



The analytical solution with the above input data is given by (45) and (46). We take the
initial guess for w(x) as the parabola given by

w'(z) =2 +1, z€l0,1] (54)

which is reasonably different from the true solution (45). In general, other initial guesses
produced similar results but, of course, since the inverse problem is non-linear the objective
functional (49) is non-convex and the iterative process of minimization requires a good initial
guess; otherwise one can get stuck in a local minimum.

First of all, we start the investigation of identifying the space-dependent blood perfusion
coefficient w(x), where there is no noise in the final time temperature measurement (53), i.e.
p = 01in (51). The unregularized (i.e. with A = 0) objective function (49), as a function of
the number of iterations, is displayed in Figure 1(a), showing a rapid monotonic decreasing
convergence to a low value of O(107%) in 7 iterations. The corresponding numerical retrieval
of w(x) is presented in Figure 1(b) in comparison with the exact solution (45), where we
accomplish a small rmse(w) = 2.4 x 1073, From this figure, it can be seen that an accurate
and stable numerical solution is obtained.

(a) (b)

(I T T T T T T 2 T T T T fj
10°F 1
1.8}
O]
o
5] L
'*5 10710 1.6 4
= — L
= S 14
= =
% 1 0'20 1 2 B
o ! —— Exact solution
14 O Numerical solution|]
-0 Initial guess
1030 : : : : : 0.8 : : ' '
0 1 2 3 4 5 6 7 0 0.2 0.4 0.6 0.8 1
Number of iterations T

Figure 1: (a) The objective function (49), as a function of the number of iterations, and (b)
the perfusion coefficient w(z), with no noise and no regularization, for Example 1.

Next, the stability of the numerical solution is investigated with respect to noise in
the data (50). We add various levels of noise p € {0.01,0.1}% to the input data (17), via
(50) and (51). Figures 2 and 3 illustrate the recovered function w(x), without and with
regularization. From Figures 2(a) and 3(a), it can be seen that the numerical solutions for
w(z) with no regularization possess some oscillations with rmse(w) = 0.5151 for p = 0.01%
and rmse(w) = 0.8802 for p = 0.1%. This is expected since the inverse problem (14)-
(17) is ill-posed and sensitive to small perturbations into the measurement (17). Hence,
regularization is necessary to store the stability of the solution. Throughout this section, we
choose the Tikhonov regularization parameter based on trial and error. That is, we start
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with a small value of A and then gradually increase it until any high oscillations disappear.
By doing so, we conclude that the choices of A = 107 for p = 0.01%; see Figure 2(b), and
A = 1073 for p = 0.1%; see Figure 3(b), provide accurate and stable numerical solutions for
the space-dependent blood perfusion coefficient w(zx), where we accomplish small rmse(w) €
{0.0956,0.1829} for p € {0.01,0.1}%, respectively. The corresponding numerical solution
for the temperature u(z,t) is depicted in Figure 4 alongside the exact solution (46) and the
absolute errors between them. From this figure it can be seen that good agreement between
the exact and numerical solutions for u(x,t) is achieved. From Figures 1(b), 2(b), 3(b), 4
and Table 1, it can be concluded that convergence of the numerical solutions for the pair of
functions (w(x), u(x,t)) with respect to decreasing the percentage of noise p from 0.1% to
0.01% and then to zero has been accomplished.

Table 1: The rmse(w) defined by (52), the minimum value of (49) and the number of
iterations for p € {0,0.01,0.1}% noise, and without and with regularization, for Example 1.

P A rmse(w) | Minimum value of (49) | Iter
0 0 2.4 %1073 3.1 x 1072 7
0 0.5151 1.1 x 1076 50

10°¢ 0.1456 9.8 x 107° 40

0.01% | 10° 0.0956 9.6 x 1074 38
1074 0.1049 9.5 x 1073 44

1073 0.1405 9.4 x 1072 36

0 0.8802 3.3x107* 88

1074 0.2722 1.1 x 1072 41

0.1% | 1073 0.1829 9.7 x 1072 39
1072 0.1885 9.4 x 1071 97

1071 0.2411 9.1439 97

5.2 Example 2 (piecewise smooth coeflicient)

The previous example has considered retrieving a simple linear space variation of the perfu-
sion coefficient (45). In this example, we investigate the numerical algorithm for estimating
a less smooth coefficient given by (56) below. We take the input data given by (42), (43),
(53) and

f(l’,t) =

1
T — 5‘ + 7 sin(7z) + (

1 1 3
x_§‘+§>(t+x+sin(wx)+5)—1—5- (55)

Then, the analytical solution with this input data is given by (46) for the temperature u(z,t)
and
1 1
r— = a
2 2
for the blood perfusion coefficient. The initial guess for the unknown function w(z) in this

w(x) = +

(56)

example is taken as 1, namely,

w'(z) =1, z€[0,L]. (57)
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Figure 2: The exact (45) and numerical perfusion coefficient w(z), for p = 0.01% noise and
(a) A = 0 (i.e. without regularization) and (b) A = 107 (i.e. with regularization), for
Example 1.

@ (b

2.5

—— Exact solution
=p=01%, =103

—— Exact solution
-B-p=01%A=0

4 Oj6 0i8 1 0 0.2 0.4 0.6 0.8 1
x .Z'
Figure 3: The exact (45) and numerical perfusion coefficient w(z), for p = 0.1% noise and (a)

A = 0 (i.e. without regularization) and (b) A = 1073 (i.e. with regularization), for Example
1.

As previously carried out in Example 1, we begin the examination of estimating the
space-dependent perfusion coefficient w(x) in the case of noise-free input data, i.e. p =0
in (51). The unregularized (i.e. with A = 0) objective function (49), as a function of the
number of iterations, is plotted in Figure 5(a). From this figure it can be observed that a rapid
monotonic decreasing convergence to a low value of O(107%) is achieved in 10 iterations.
Figure 5(b) depicts the numerical reconstruction of w(z) alongside the exact solution (56),
where we achieve a small rmse(w) = 1.9 x 1073, From this figure it can be observed, as in
Example 1, that an accurate and stable numerical solution for w(x) is obtained.
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(46) and numerical solutions for the temperature u(z,t), with (a)

The analytical

Figure 4

p

01% noise and A = 1077,

0.1% noise and A = 1073, for Example 1. The absolute errors between them are

0

)7 (b)p:

ion

1zat

0 and A = 0 (i.e. with no noise and no regular

and (c) p

also included.
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Figure 5: (a) The objective function (49), as a function of the number of iterations, and (b)
the perfusion coefficient w(z), with no noise and no regularization, for Example 2.

Next, we include p € {0.01,0.1}% noise in us,(z) given by (53), using (50) and (51),
to assess the stability of the numerical solution. The estimated perfusion coefficient w(z)
is presented in Figures 6 and 7, without and with regularization. As in Example 1, high
oscillatory and inaccurate solutions for w(z) are obtained with rmse(w) = 0.5184 for p =
0.01% and rmse(w) = 0.5682 for p = 0.1%, when regularization is not implemented; see
Figures 6(a) and 7(a). Therefore, regularization is required to recover the stability of the
solution. By trial and error we conclude that the choices of A = 1075 for p = 0.01%; see
Figure 6(b), and A = 1072 for p = 0.1%; see Figure 7(b), provide accurate and stable
numerical solutions for w(z), where we obtain small rmse(w) € {0.0721,0.1329} for p €
{0.01,0.1}%, respectively. The corresponding numerical solutions for the temperature u(z,t)
are shown in Figure 8 in comparison with the exact solution (46) and the absolute errors
between them. From this figure, it can be observed that good agreement between the exact
and numerical solutions is accomplished. From Figures 5(b), 6(b), 7(b), 8 and Table 2, it
can be concluded, as in Example 1, that the numerical solutions become closer to the exact
solution as p decreases from 0.1% to 0.01% and then to zero.

5.3 Example 3 (discontinuous coefficient)

The previous two examples possessed an analytical solution available for the pair of func-
tions (w(x), u(z, t)) In this example, we examine the proposed inversion method for recon-
structing a discontinuous coefficient given by (60) associated with an example for which an
analytical solution for u(x,t) is not available. We take (44) for the source f(x,t) and the
following input data:

u(,0) = 6(r) = 0, 2(2,0) = () = 0 (%)
ho(t) = hr(t) =0, Usoo(t) = teor(t) = 0. (59)

With (59), the boundary conditions (16) become adiabatic. As for the blood perfusion

15



Table 2: The rmse(w) defined by (52), the minimum value of (49) and the number of
iterations for p € {0,0.01,0.1}% noise, and without and with regularization, for Example 2.

p A rmse(w) | Minimum value of (49) | Iter

0 0 1.9 x 1073 1.4 x 1072 10

0 0.5184 7.9 x 1077 63

10-¢ 0.1095 2.6 x 1075 45

0.01% | 107° 0.0721 2.4 x 1074 52

1074 0.0725 2.4 %1073 42

1073 0.0891 2.4 x 1072 40

0 0.5682 8.1x107° o8

1074 0.2547 2.8 x 1073 46

0.1% | 1073 0.1453 2.5 x 1072 47

1072 0.1329 2.3x 107! 97

107t 0.2005 2.2102 97

() (b)
—Elxact solutlion I h 12 I —Exlact solutioln
B p=001%A\=0 =p=001%,\=10"°
1.5}

0.5

0 0.2 0.4 0.6

Figure 6: The exact (56) and numerical perfusion coefficient w(zx), for p = 0.01% noise and
(a) A = 0 (i.e. without regularization) and (b) A = 107 (i.e. with regularization), for
Example 2.

coefficient w(z), we take

1, 0.25 <z <0.75,
w(z) = (60)
0, otherwise,

which represents a discontinuous piecewise constant function. In the absence of an analytical
solution for the temperature u(z,t) being available, we generate the input data (17) numer-
ically by solving first the direct problem (14)—(16), using the FDM described in Section 3,
with the input (44) and (58)—(60), where the blood perfusion coefficient (60) is assumed to
be known. The numerical results for u,(x) in equation (17) are shown in Figure 9, for various

16



() (b)
T 1 T

—— Exact solution —— Exact solution
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Figure 7: The exact (56) and numerical perfusion coefficient w(z), for p = 0.1% noise and (a)

A =0 (i.e. without regularization) and (b) A = 1072 (i.e. with regularization), for Example

2.

mesh sizes M = N € {20, 40,60}, showing that convergent results have been achieved.

We consider half of the data for u () obtained by solving the direct problem with
M = N = 80 as our input data (17) and then solve the inverse problem with a coarser mesh
of M = N = 40 to avoid committing an inverse crime. We take the initial guess for the
unknown perfusion coefficient w(z) as

w’(r) =04, x€]0,L] (61)

Analogous quantities and conclusions to Figures 1-3 and Table 1 of Example 1 and
Figures 5-7 and Table 2 of Example 2 are presented and obtained in Figures 10-12 and
Table 3 of Example 3.

The examples considered so far have been benchmark test examples to demonstrate the
numerical procedure proposed for reconstructing test functions of decreasing smoothness.
The following example illustrates the inversion algorithm for retrieving a blood perfusion
rate w, associated with a physical situation of an irradiated biological tissue.

5.4 Example 4 (irradiated biological tissue)

Unlike the previous examples that considered identifying fabricated perfusion coefficients
(smooth, piecewise smooth and discontinuous), in this final example we consider recover-
ing the blood perfusion rate wj, in the governing equation (2)-(5) associated with a one-
dimensional, one-layered biological tissue. We assume that the biological tissue undergoes
laser irradiation of the form, 34|,

Qe(l’> = pt’iAoeg(xioi(]l% UES [07 L]7 (62)

where x [kg™!] and g [m™!] are the antenna constants, and A [W] is the transmitted power.
The initial and boundary conditions taken from [1] and [12]|, respectively, read as:
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01% noise and A = 1077,

0.1% noise and A = 1072, for Example 2. The absolute errors between them are
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(46) and numerical solutions for the temperature u(z,t), with (a)

The analytical

0 and A = 0 (i.e. with no noise and no regular

Figure 8

p

and (c) p

also included.
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Figure 9: The numerical solutions for u,(x) of the direct problem of Example 3 with various
mesh sizes M = N € {20, 40, 60}.
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Figure 10: (a) The objective function (49), as a function of the number of iterations, and
(b) the perfusion coefficient w(z), with no noise and no regularization, for Example 3.

Tlieo = ¢ =37°C, Ti|i=o =t =0and hg = hy = T = Too,. = 0. We also take ¢ = 100
s and L = 0.04 m from [18]. The thermo-physical properties of the tissue are taken as the

reference values presented in Table 4. The values of the parameters in the source (62) are
considered as: k = 12.5 kg™, g = —127 m~! and Ay =5 W, [34].
The above dimensional quantities transform, via (13), into the following dimensionless

input data:

L = 25.2666, t; = 5, w(z) = 0.8, u(x,0) = ¢(z) = 0, (63)
%(CE? 0) = 1/}(':(:) - O’ hO(t> = hL(t) = 07 uoo,O(t) = UOO,L(t) = 07 (64)
f(z,t) = 0.0089¢~*-20H=+1-2T 1 0046. (65)
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Table 3: The rmse(w) defined by (52), the minimum value of (49) and the number of
iterations for p € {0,0.01,0.1}% noise, and without and with regularization, for Example 3.

P A | rmse(w) | Minimum value of (49) | Iter
0 0 0.0592 1.7 x 1079 65
0 0.1162 1.5 x 107° 59
1076 0.1089 3.5 x 107° 62
0.01% | 107° 0.0849 2.2x 1074 63
1074 0.1007 1.9 x 1073 52
1073 0.1405 1.9 x 1072 56
0 0.6854 9.1 x 1074 83
1074 0.1685 3.3x 1073 59
0.1% | 1073 0.1498 2.1 x 1072 52
1072 0.1913 1.8 x 107! 49
101 0.2836 1.4815 97
(b)
1.4 1.4 T
1.2¢ 1.2+
1t 1t
—~ 0.8 —~0.8
B &
S 06 S 06
04r 0.4
0.2F | ——Exact solution 4 02+ —— Exact solution 4
5p=001%A=0 | |-e-p = 0.01%, A =107
e : : i) Otbiiieris : : e
0 0.2 0.4 0.6 0.8 1 0 0. 0.4 0.6 0.8 1
X T

Figure 11: The exact (60) and numerical perfusion coefficient w(x), for p = 0.01% noise
and (a) A = 0 (i.e. without regularization) and (b) A\ = 107° (i.e. with regularization), for
Example 3.

We wish to recover the perfusion coefficient w(x) = 0.8 for = € [0,25.2666] and the
tissue temperature u(z,t), allowing us to obtain, via (13), the dimensional quantities wy(z)
and T'(x,t). This knowledge is required, for instance, in computing the Arrhenius thermal
damage, [1, 25].

In the absence of an analytical solution for the temperature u(z,t) being available, we
generate the input data (17) numerically by solving first the direct problem (14)—(16), using
the FDM described in Section 3, with the input data (63)—(65), where the blood perfusion
coefficient w(z) is assumed known. The numerical solutions for u,(x) in equation (17) are
depicted in Figure 13, for various mesh sizes M = N € {5,10,15}. From this figure it can
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Figure 12: The exact (60) and numerical perfusion coefficient w(x), for p = 0.1% noise
and (a) A = 0 (i.e. without regularization) and (b) A = 1073 (i.e. with regularization) for
Example 3.

Table 4: Thermo-physical properties of a typical skin tissue.

Symbol | Value | Unit Ref.
pi,ps | 1050 | kg/m? 2]
Ct, Cb 3800 | J/(kg°C) | [2]
k 0.5 W/(m °C) | [2]
wy 0.04 |s! 2]
T, 37 |°C 2]
: 20 s [26]
Onm 33800 | W/m? [18]

be concluded that convergent numerical solutions have been obtained.

We consider half of the data for u;(z) obtained by solving the direct problem with
M = N = 80 as our input data (17) and then solve the inverse problem with a coarser mesh
of M = N = 40 to avoid committing an inverse crime. In this example, we take the initial
guess (61). Figure 14 depicts the unregularized (i.e. with A = 0) objective function (49), as
a function of the number of iterations, for exact (i.e. p = 0) and noisy (with p = 0.1% noise)
data. From this figure, a rapid monotonic decreasing convergence to low values of O(1073!)
in only 6 iterations is observed.

Figure 15 shows the corresponding numerical solutions for the space-wise perfusion
function wy(x). From this figure, it can be seen that accurate and stable numerical identifi-
cations are obtained from both exact and noisy measurements. No regularization was found
necessary for such a small amount of noise in the data, but, nevertheless, this needs to be
enforced for higher levels of noise.

6. Conclusions
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Figure 13: The numerical solutions for u (z) of the direct problem of Example 4 with various
mesh sizes M = N € {5,10,15}.
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Figure 14: The objective function (49), as a function of the number of iterations, with no
noise (i.e. with p =0) and p = 0.1% noise, and no regularization, for Example 4.

The reconstruction of the space-dependent perfusion coefficient and the temperature in the
thermal-wave model of bio-heat transfer from final time temperature measurement has been
investigated. For the numerical discretization, an unconditionally stable FDM based on the
Crank-Nicolson scheme has been used as a direct solver. This has been combined with a
constrained regularized minimization problem. The resulting objective functional, penalized
by a Tikhonov regularization term to restore the stability of the solution, has been mini-
mized iteratively using the MATLAB optimization toolbox routine Isgnonlin. Accurate and
stable numerical solutions for the unknown perfusion coefficient and the temperature, from
both exact and noisy data, have been successfully achieved using the proposed computa-
tional method which has been verified for three benchmark numerical examples. Moreover,
a dimensional blood perfusion rate of a biological tissue subjected to an external source of
laser irradiation has been successfully identified.
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Figure 15: The retrieved coefficient w,(x), with (a) no noise (i.e. p =0) and (b) p = 0.1%
noise, and no regularization, for Example 4.

The analysis presented in this paper can be extended to more complex and potentially

more accurate governing equations of bio-heat transfer, e.g. models of fractional-order or in
integro-differential form. This extension will be undertaken in future work.
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