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Algorithms for restoring disaster-struck seaport operations considering 

interdependencies between infrastructure availability and repair team assignments 

 

Abstract 

This paper presents new algorithms for restoring seaport operations after a disaster and develops 

a model considering interdependencies to select an efficient course of action. The model 

prioritises the infrastructure to be repaired, identifies the equipment required and the number of 

repair teams to be deployed. This paper develops a new dynamic programming model to assign 

multicrew repair teams and shows that the solution is exact. This paper then develops a new 

variant of the Hungarian Algorithm by embedding an exploitation-exploration strategy to obtain 

an approximate solution for large-sized assignment problems. Furthermore, this paper solves 

the restoration problem in totality by accounting for interdependencies between marine/land-

side infrastructure/equipment and repair team assignments. This paper also develops a new 

variant of Genetic Algorithm based on a deletion-mutation technique and explores reducing the 

computation time involved in solving optimisation problems. This paper applies the principles 

laid out to restore Pantoloan seaport in Indonesia which was struck by a tsunami. The 

approximate solution obtained by the extended Hungarian Algorithm for small problems is 

quicker and matches with the exact solution obtained by the new dynamic programming. In 

case of large-sized problems, the extended Hungarian Algorithm has been found to arrive at a 

solution which allows reopening the seaport 48% sooner than the other algorithms. The new 

variant of Genetic Algorithm outperforms the Genetic Algorithm with Local Search, needing 

only 40% of the computation time and the solution found to be particularly stable too.    

Keywords: Operations research in disaster relief; Dynamic programming; Seaport 

restoration; Genetic algorithm; Hungarian algorithm. 
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1. Introduction 

Aid supplies become primary concern when a disaster strikes as they are essential for avoiding 

loss of life (Ahmadi et al., 2015). However, transportation network poses a major challenge in 

delivering supplies due to the disruption caused by a disaster (Maya Duque et al., 2016). 

Therefore, the network restoration problem deals with assignment of equipment and/or teams 

for repairing the disrupted infrastructure, the aim of which is to seek an optimum schedule to 

restore the degraded parts of infrastructure. However, a classic feature of those studies means 

almost all of them are focused on road networks (see Çelik, 2016). Rarely ever seaports feature 

in disaster recovery studies despite their key role in reaching supplies in bulk to the affected 

areas.   

Research body on disaster recovery acknowledges that they destroy not only the road networks 

but also seaport terminals (AHA Centre, 2018). For ensuring a smooth transfer of goods 

between sea and land transportation modes, a seaport is generally equipped with several pieces 

of physical infrastructure, for instance, breakwaters, quay, dockyard, stacking yard, and 

internal/external road network. Furthermore, seaport also includes loading/transport equipment 

such as cranes, fork-lift trucks, which are essential to move the goods between locations. 

Interaction among them defines the key nature of seaport operations, in which, disruption to 

any individual entity will result in an intertwined effect, adversely affecting the entire seaport 

operations. For instance, to carry the goods from the vessel to stacking yard, transport vehicles 

are essential, which practically rely on using the internal road network (Please see Figure 1). 

Thus, any disruption to road network will increase the transport delays potentially influencing 

the operational processes of the entire seaport. A similar situation arises even in the case of 

road network remaining in an excellent condition but without any unloading equipment being 

available to empty the vessel. Therefore, in restoring a seaport after a disruption, 
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interdependency between the equipment/ infrastructure plays a critical role which needs to be 

properly accounted for.  

 

Figure 1: Illustration of seaport restoration problem 

There are three different levels of decisions needed to restore a network. The first level is to 

select the priority infrastructure that must be repaired, and the next level is to assign/schedule 

a repair team (henceforth, RT) to the selected infrastructure. The final level is to decide the 

shortest operational route to reach the selected infrastructure location. In the literature, this 

decision-making process is described as the integrated network design/ scheduling problem 

(INDS), which combines network design with a restoration model (Nurre et al., 2012). We note 

that the INDS problems in the literature are limited as they consider single crew (Maya Duque 

et al., 2016) and neither they attempt to account for the interdependencies involved. This paper 

fills the gap in literature and develops a new model of restoration, considering the 

interdependency of operations between marine infrastructure, landside infrastructure and 

assigning/scheduling of repair teams. This paper develops a new dynamic programming model 

(DP) for handling restoration problems by considering multicrew assignment. The 

simultaneous work of multiple crews creates an opportunity to represent the restoration 
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activities realistically, which is not possible with the single crew DP reported in the literature. 

The multicrew DP, however, can handle only small-sized problems due to the extensive 

computation involved. To handle large-sized problems, we extend the Hungarian Algorithm 

by adopting an exploitation-exploration based strategy with a continuous updating of the 

availability of repair teams and the status of the infrastructure.  

Consideration of interdependencies adds complexity to decision-making process because of a 

very large number of feasible combinations to be evaluated in an efficient manner. Such 

complexities can be viewed as the core of an optimisation problem, for which we need to find 

a feasible solution. Metaheuristic approaches are generally found suitable for tackling complex 

optimisation problems, including Genetic Algorithm (GA) (Guo et al., 2021) though they are 

computationally intensive. This paper explores reducing the computation time involved in 

solving complex optimisation problems and proposes new variants of GA by modifying the 

mutation steps and adding an adaptive mutation rate.  

Thus, the main aim of this paper is to develop an interdependency-focused model to restore the 

operations of a disaster-struck seaport in an efficient manner considering the interactions 

between infrastructure and repair teams. The specific contributions made by this paper are 

threefold – (i) a new dynamic programming algorithm to assign multicrew repair team which 

can efficiently deal with small-sized restoration problems, (ii) an extended Hungarian 

Algorithm to solve large-sized restoration problems; and (iii) a new variant of GA to improve 

the computational efficiency of optimisation. This paper, thus, adds to the growing body of 

research on disaster recovery of transport systems and helps the authorities in planning for 

restoration in real life facilitating the movement of aid supplies. Researchers also will benefit 

from the extended Hungarian Algorithm and new variants of GA to improve the efficiency of 

optimisation methods.   
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The remainder of the paper is structured as follows. Section two reviews the past studies 

conducted, followed by a mathematical modelling framework specified in the third. The case 

study in section four illustrates the application of principles to recover Pantoloan seaport in 

Indonesia describing the results of the new dynamic programming, the extended Hungarian 

Algorithm and the new variant of GA-based algorithms. Finally, section five concludes the 

paper. 

 

2. Literature review 

2.1 Network Restoration 

A considerable number of researchers have proposed methods for tackling transport network 

disruption from a pre-disaster perspective (i.e., preparation and mitigation), or a post-disaster 

perspective (i.e., restoration and recovery). The pre-disaster perspective relies on identification 

of critical network elements for planning/strengthening (e.g. Bell et al., 2017), whilst the post-

disaster effort focuses on restoring the state to a normality as soon as possible (Lu et al., 2016; 

Sanci and Daskin, 2019). Despite the pre-disaster planning involved, the impact of the disaster 

itself is unavoidable, which motivates an increasing number of post-disaster studies. The 

studies traditionally comprise of several problems, including the last mile distribution problem 

(Ferrer et al., 2018), the facility location problem (Chen and Yu, 2016; Oliveira et al., 2019), 

and the network restoration problem (Maya Duque et al., 2016; Morshedlou et al., 2018). 

In the past, network restoration used to be planned manually based on the knowledge of 

experienced decision-makers (Yan and Shih, 2009). However, there are notable developments 

since in handling the restoration systematically which are motivated by treating it as a 

scheduling problem (Chen and Tzeng, 1999; Feng and Wang, 2003). The objective function 

relates to network and assignment performance, for example, maximising the total length of 
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accessible roads (Feng and Wang, 2003), minimising the total travel-time of all travellers, 

minimising the total reconstruction time (Yan et al., 2014) and/or the idle time for RTs (Chen 

and Tzeng, 1999). As the restoration process cannot be separated from relief distribution, the 

model evolved further by integrating the relief distribution into the objective function, for 

instance, by aiming to minimise the completion time of operation (Yan and Shih, 2009), to 

minimise delivery time, and/or to maximise the demand satisfied (Liberatore et al., 2014).  

Notable efforts were made by adding a network design perspective to the restoration models. 

This perspective emphasises the selection of infrastructure to be restored in a network (Nurre 

et al., 2012). Thus, the model evolved further by integrating three levels of decisions, namely, 

the restoration location selection decision, the task assignment of various activities to repair 

teams, and the scheduling of repair teams (Maya Duque et al., 2016). The class of problem 

named as the integrated network design and scheduling or simply the INDS, is formulated as a 

mathematical optimisation problem. The objective function is constructed to measure the 

recovery time (Averbakh, 2012), the cumulative flow in the network over a planning horizon 

(Nurre et al., 2012), the sum of flow costs, unsatisfied demand costs, assignment costs 

(Cavdaroglu et al., 2013), and the cumulative weighted distance between the demand and the 

closest open facilities (Iloglu and Albert, 2018). 

Furthermore, the restoration processes have been formulated as vehicle routing problems too, 

where the main goal is to find the set of disrupted roads to be primarily restored. Consequently, 

the model builds synchronised routes for a single vehicle or multiple vehicles (Morshedlou et 

al., 2018) to restore the disrupted roads in the shortest time possible. The routing incorporation 

has also been considered by  Maya Duque et al. (2016) addressing the scheduling and routing 

of a single repair team while optimising the demand accessibility for distributing relief supplies.  
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Despite the extensive growth in restoration studies, earlier works heavily focused on road 

networks (Çelik, 2016; Morshedlou, et al.,  2018), whereas, the disasters are also known to 

severely damage seaport operations (AHA Centre, 2018). Seaport operations face several 

uncertainties, thus, typical approaches evaluate the risks by identifying the causal factors, 

which may be categorised as operational, security, technical, organisational, and natural risk 

factors (John et al., 2014). The natural risk factors include catastrophic events of weather and 

seismic activity, which gather an increasing attention (Zhang and Lam, 2015), even though 

those studies are mainly developed in the context of pre-disaster mitigation. Furthermore, in 

pre-disaster mitigation studies, the economic-related, and resilience-related parameters have 

commonly appeared which are used for describing the impact of seaport disruption  (Zhang 

and Lam, 2016; Chen et al., 2017).  

Based on the literature above, we can point out two major gaps that remain needing attention:  

i) most restoration studies concentrated on road network restoration while the impacted 

seaports play a pivotal role in disaster management, thus leaving the scope for carrying out 

further work; and ii) little evidence is available in the context of post-disaster recovery phase, 

specifically involving port component restoration for servicing relief distributions.  

2.2 Solution techniques for solving network restoration 

Several solution techniques have been proposed to tackle the network restoration  (See Table 

1).  Maya Duque et al. (2016) developed an exact-solution based method (i.e., DP) to solve a 

small-sized problem. However, their DP can only fit with a single crew of restoration team, 

which is rarely applicable in practice. Therefore, this paper proposes a new DP that can deal 

with multiple crews of restoration teams, which is essential in real life practice when restoring 

a network.  

Table 1: Network consideration and solution techniques of the reviewed literature 
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Authors Network consideration Solution techniques 

Feng & Wang (2003) Road network, multicrew Mathematical programming 

using a software package 

Yan, & Shih (2009) Road network, multicrew A heuristic algorithm based on 

weighting method 

Yan et al. (2014) Road network, multicrew Ant colony system –based 

hybrid global search algorithm 

Kasaei & Salman (2016) Road network, single vehicle Mixed integer programming 

formulation, variable 

neighborhood search algorithm, 

variable neighborhood descent 

algorithm 

Maya Duque et al. (2016) Road Network, single crew Dynamic programming,  

iterated greedy-randomized 

constructive procedure  

Akbari & Salman (2017) Road network, multi-vehicle Mixed integer programming 

and local search 

Morshedlou et al. (2018) Infrastructure network, 

multicrew 

Initial solution pre-processing 

and feasibility algorithm 

Almoghathawi et al. (2019) Infrastructure network Mixed integer programming 

Moreno et al. (2020) Road network, multicrew Mixed integer programming 

Ghannad et al.(2021) Road network A multiagent reinforcement 

learning model, and monte 

carlo simulation 

 

Because of known limitation due to the problem size that can be handled by DP, heuristic 

algorithms (e.g., greedy algorithm) have been widely used in disaster recovery studies (Maya 
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Duque et al., 2016). Despite its efficiency, greedy heuristic approach, however, could trap into 

local optimum obtaining a feasible solution which may be far from the global optimal. On the 

other side, scheduling problems can practically be viewed as an extension to task assignment, 

if regularly updated. Gao et al. (2018) utilised Kuhn–Munkres algorithm, which is also known 

as the Hungarian Algorithm, for optimising packet scheduling problem in an integrated cellular 

network. They represent the packet scheduling problem using a bipartite graph, where the 

Hungarian Algorithm attempts to find a complete match on the graph by gradually considering 

more and more links. A similar approach could possibly be applied for scheduling the repair 

team assignment in a restoration model, which remains unexplored to date. This paper modifies 

the Hungarian Algorithm to handle large-sized seaport restoration problems and avoids local 

optima with the help of an exploitation-exploration strategy added. 

Seaport operation involves interaction between physical infrastructure and facilities that are 

interdependent on each other. Disruption to one facility can potentially cascade to others, 

triggering serious consequences on the entire operation. In recent times, there has been a 

growing number of works conceptualising the infrastructure interdependencies in general (e.g.,  

Cavdaroglu et al., 2013; Sharkey et al., 2015), however, there are none involving a seaport 

restoration, which to date remains unexplored.  

The interdependencies involved will generate a significant complexity in decision making, 

which can be efficiently solved by invoking a metaheuristic approach. There are several types 

of metaheuristic algorithms, including Genetic Algorithm (Bodaghi et al., 2020; Guo et al., 

2021), Tabu Search (Wei et al., 2014), Simulated Annealing (Zhou et al., 2019) and Swarm-

based Algorithm (Lagaros and Karlaftis, 2011) among others. GA mimics the natural process 

which is represented by a pipeline process of operators. Although the component GA has been 

extensively improved, the recombination and mutation operators are practically assembled as 

primary operators. Recombination mimics the mating process to generate an offspring, while 
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the mutation represents a random change in chromosome. The availability of new molecular 

technology has made more information available relating to the natural genome process (viz., 

recombination and mutation), which is significantly different from that previously available. 

As GA is motivated by natural process, the latest information available could be useful in 

improving its performance.  

We found several gaps remaining in the case of solution techniques, which relate to i) DP that 

can handle multiple crews of restoration teams, ii) an algorithm to handle large-sized 

restoration problems, iii) adoption of recent findings from the mutation processes to improve 

the GA efficiency, and iv) study of interdependencies involving seaport restorations. 

3. Modelling framework 

The seaport restoration problem has been set up as an Integrated Network Design and 

Scheduling (INDS) optimisation model which aims at maximising the efficiency of restoration 

considering the interdependencies between marine/ land-based infrastructure and 

facilities/teams as described in this section.  

Figure 2 outlines the modelling framework of the problem involved. The model aims to restore 

the seaport operations struck by a disaster. The restoration decision is formulated as a binary 

optimisation problem which is solved by using a new variant of GA. The GA helps to decide 

the number of RTs for restoring the internal road network, the number of equipment to be 

purchased, rented, and repaired for unloading the relief goods. The number of RTs is used as 

an input for handling the internal road restoration problem, which involves an integer 

optimization for assigning the teams to undertake repairs and the routing required to reach the 

disrupted road locations. A new DP is proposed and it is shown that it can generate an exact 

solution. A new variant of Hungarian Algorithm is also presented as the DP is not efficient in 

terms of computation time involved for large-sized problems.  
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Figure 2: Modelling framework 

We, first, start with stating the modelling assumptions involved. 

3.1 Modelling assumptions 

The proposed INDS for restoring seaport operations, makes the following assumptions: 

• Seaport consists of physical infrastructure (e.g., breakwater, quay/dock/jetty, 

dockyard, stacking yard, internal road network) and equipment facilities (e.g., quay 

cranes, trucks, forklifts, teams of gangs), each of which has a known capacity. 
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• Each infrastructure and facility is subjected to disruptions due to natural disasters, in 

which it is either completely disrupted or undisrupted following a major incident. 

However, cascading disruptions are not taken into account. 

• The infrastructure disruption is modelled from the perspective of a node accounting 

for the disruption to infrastructure, for example, debris blocking a road/terminal, road 

cut off, structural damage to the dock, and the collapse of crane etc.  

• Each disrupted infrastructure and facility can be restored in a specific period of time 

at a known cost. Any element of infrastructure remains non-operational until it is fully 

restored.  

• The interdependence among various infrastructure elements and facilities is 

considered. That is, for a dependent node or facility to become operational, it may 

require other node(s) from the network also to be operational. 

• The number of available repair teams for restoring disrupted infrastructure is known, 

and each has a defined productivity.  

• Each repair team can work on restoring a single disrupted infrastructure element at a 

time. 

• A repair team is not allowed to move from a disrupted location to another unless they 

complete the restoration job assigned. 

• The restoration includes the activities of repairing, renting/outsourcing, and 

purchasing, in which the number of units available and the capacity is known a-priori.  

 

Table 2: Notation for the integrated optimization model for restoring seaport operations 

Set and Indices 

T  set of time periods indexed by t 
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R  set of restoration teams indexed by r, where |R| denotes the maximum 

number of teams available 

B  

 

set of unloading equipment indexed by b, where |B| denotes the 

number of equipment types 

N  set of operational nodes, where |N| denotes the number of operational 

nodes 

𝑵! set of disrupted nodes, where |𝑵!| denotes the number of disrupted 

nodes 

A  set of nodes in network G = (A, L) 

L  set of links in network G = (A, L) 

M set of nodes with interdependency 

Parameters 

𝑞" maximum throughput of seaport in time period t 

σ  unit value of goods, which is unloaded at seaport 

𝑐#$  unit cost of team-r for restoring infrastructure 

𝑐%&   unit cost for renting unloading equipment-b 

𝑐'&  unit cost for purchasing new unloading equipment-b 

𝑐(&  unit cost for repairing unloading equipment-b 

𝑛#   number of repair teams assigned for restoring infrastructure 

𝑛%& , 𝑛'& , 𝑛(&  numbers of equipment-b possible to be rented, purchased, and 

repaired, respectively 

𝛾#$ , 𝛾%& total working time for repair team-r, and equipment-b, respectively 

𝑢)*"  freight flow capacity through link- (i,j) at time period t 

𝑥)*"  freight flow through link-(i,j) at time t 
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𝑝𝑟𝑜𝑑)"   productivity of node-i at time period t 

𝑝%& , 𝑝'& , 𝑝(& productivity of equipment-b, which is rented, purchased, and 

repaired, respectively 

𝐸#  length of GA’s allele represents the decision of RTs number  

𝐸%&+,)-, 𝐸%&./01 , 𝐸%&23$.  length of GA’s allele represents the number of equipment-b possible 

to be rented at ship, dock and yard respectively 

𝐸'&+,)-, 𝐸'&./01 , 𝐸'&23$. length of GA’s allele represents the number of equipment-b possible 

to be purchased at ship, dock and yard respectively 

𝐸(&+,)-, 𝐸(&./01 , 𝐸(&23$. length of GA’s allele represents the number of equipment-b possible 

to be repaired at ship, dock and yard respectively 

𝛤4&  

 

unloading capacity of equipment-b, which is rented, purchased, and 

repaired (i.e.,	𝜒 = 2,3,4, respectively) 

𝛶4&(𝑖, 𝑗, 𝑵!)  
 

Moving time of equipment-b from node-i to node-j by avoiding 

disrupted node 𝑵! 

 𝜚 working hours per day 

𝑠)   restoration duration of node i 

𝜏 maximum time horizon of analysis 

Decision Variables 

𝛽#   binary decision variable related to the number of repair teams to be 

assigned 

𝛽%  binary decision variable related to the number of equipment to be 

rented 

𝛽'  

 

binary decision variable related to the number of equipment to be 

purchased 
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𝛽(  binary decision variable related to the number of equipment to be 

repaired 

𝜃%&)" , 𝜃'&)" , 𝜃(&)"   binary variables indicating whether or not equipment-b, which is 

rented, purchased, and repaired at node-i is available at time t. 

𝜔)"  binary variable indicating whether or not node- i is operational at 

time t 

𝜍)"   binary variable indicating whether or not node-i is to be restored by 

repair team-r at time t 

𝑧)  binary variable indicating whether or not node-i is to be restored 

 

3.2 Optimisation model 

The objective function in this paper (see Equation (1) and Table 2 for the notation) 

represents the efficiency and is defined as the ratio of total throughput value to the total 

cost of implementing the required set of restoration actions. The value of throughput is 

calculated by multiplying the total volume of throughput over the horizon period with 

the value of goods unloaded at seaport. The seaport throughput is a function of 

infrastructure availability and equipment productivity, which is recovered gradually 

over a time period. The total throughput is calculated by summing the maximum 

throughput over all time periods. We used the throughput in our model since it 

represents the operational activity of seaport in handling the flow of goods, which is 

considered useful in the seaport disaster impact studies (e.g., Zhang and Lam, 2015, 

2016). The throughput can also be viewed as the benefit produced by applying a set of 

restoration actions which is notionally different to the tangible revenue although both 

terms may have the same units. Each combination of restoration actions incur 

expenditure for restoring the infrastructure and/or for providing the equipment (e.g., 

cranes, forklifts, the crew), possibly by repairing, renting, and purchasing. The 

estimated benefit is then divided by the cost incurred for investigating the efficiency of 

the alternative actions.  

Max E∑ 5!6
7"∈9 G  (1) 



 17 

Δ = ∑ 𝑐#$:"(<")
$># 𝛾#$ +∑ 𝑐%&|𝑩|

&># 𝛾%&𝑛%&(𝛽%) + ∑ 𝑐'&|𝑩|
&># 𝑛'&(𝛽') + ∑ 𝑐(&|𝑩|

&># 𝑛(&(𝛽()				  (2) 

∀	𝑟 ∈ 𝑹, 𝑡 ∈ 𝑻, 𝑏 ∈ 𝑩   

Equation (2) computes the total cost of implementing the seaport restoration. The number of 

RTs to be assigned and the number of equipment to be rented, purchased, and repaired are 

naturally formed as positive integers. However, to gain the benefit from binary GA, we decode 

a binary variable to calculate the positive integer using Equations (3) - (6). Please note that 

Equations (4) and (5) allow more than one equipment to be rented and purchased each at the 

ship, dock, and yard. However, the number of equipment to be repaired is bounded by the 

number of existing equipment. 

𝑛# = ∑ 2(AB#)𝛽#AA∈C"           (3) 

𝑛%& = ∑ 2(AB#)𝛽%&AA∈C
#$

%&'( +∑ 2(AB#)𝛽%&AA∈C#$)*+, + ∑ 2(AB#)𝛽%&AA∈C
#$

-./)    (4) 

𝑛'& = ∑ 2(AB#)𝛽'&AA∈C
0$

%&'( +∑ 2(AB#)𝛽'&AA∈C0$)*+, + ∑ 2(AB#)𝛽'&AA∈C
0$

-./)    (5) 

𝑛(& = ∑ 𝛽(A + ∑ 𝛽(AA∈C1$)*+, + ∑ 𝛽(AA∈C
1$

-./)A∈C
1$

%&'(       (6) 

The seaport operations consist of several stages, which have a physical interdependence among 

themselves. In order to define the interdependencies, a node-link representation of seaport 

operations is adopted in which the activities are assumed to be embedded in nodes (Figure 3). 

We represent the set of available time periods by T, the set of nodes by A, the operational node 

by N, the disrupted node is denoted as N', and set of links by L. We will denote the set of nodes 

with interdependency by M. For instance, the interdependency between nodes i and j is denoted 

by M (i,j), meaning node i is dependent on node j; specifically, node i can be regarded as the 

parent of child node j.  
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Figure 3: Network illustration 

In the case of a berth not disrupted, it is possible for a vessel to moor at the dock.  After berthing, 

the goods are placed in the loading dock by using equipment of the vessel. The unloading 

equipment at the dock is then employed for placing it over a transport vehicle. The transport 

vehicle carries the goods to stacking yard, which is located in the inner/outer seaport area. The 

road infrastructure plays an important role in the goods distribution smoothly. This intertwined 

operation thus defines the term, maximum throughput, which is equal to the minimum of 

capacities across all stages of an operational process (see Equation (7)). Furthermore, as can 

be inferred from Equation (8), the flow capacity at a link is strongly influenced by the 

productivity of an adjacent node.  The network flow conservation is ensured by defining the 

constraints as in (9) and (10).  

 𝑞" = minT… , 𝑢)*" , … V , ∀𝑡 ∈ 𝑻, (𝑖, 𝑗) ∈ 𝑳, 𝑖 ∈ 𝑴, 𝑗 ∈ 𝑴 (7) 

 𝑢)*" = minT𝑝𝑟𝑜𝑑)" , 𝑝𝑟𝑜𝑑*"V , ∀𝑡 ∈ 𝑻, (𝑖, 𝑗) ∈ 𝑳, 𝑖 ∈ 𝑴, 𝑗 ∈ 𝑴 (8) 
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 ∑ 𝑥)*"(),*)∈𝑳 −∑ 𝑥*)"(),*)∈𝑳 = 0, ∀𝑡 ∈ 𝑻, 𝑖 ∈ 𝑴, 𝑗 ∈ 𝑴 (9) 

 𝑥)*" − 𝑢)*" ≤ 0, ∀𝑡 ∈ 𝑻, (𝑖, 𝑗) ∈ 𝑳, 𝑖 ∈ 𝑴, 𝑗 ∈ 𝑴 (10) 

Equation (11) shows the productivity of node i in time period t in terms of the productivity of 

equipment, the number of equipment involved, and the availability of nodes. The availability 

of node-i at t-time (i.e.,	𝜔)" ) will be updated based on the restoration processes, which is 

provided by the new DP or the strategy-based Hungarian Algorithm (see Section 3.3). Equation 

(12) represents the physical interdependence between nodes, in which it ensures that the child 

node-j is operated only if the parent node-i is operationalised. Equations (13)-(14) ensure the 

plausibility of flow on link ij at time t for the network with restoration decisions. 

 𝑝𝑟𝑜𝑑)" = ∑ (𝑛%&𝑝%&𝜃%&)" + 𝑛'&𝑝'&𝜃'&)" + 𝑛(&𝑝(&𝜃(&)")𝜔)" , ∀𝑡 ∈ 𝑻, 𝑖 ∈ 𝑴|𝑩|
&>#  (11) 

 𝜔*" − 𝜔)" ≤ 0, ∀𝑡 ∈ 𝑻, 𝑖 ∈ 𝑴, 𝑗 ∈ 𝑴 (12) 

 𝑥)*" − 𝑢)*"𝜔)" ≤ 0, ∀𝑡 ∈ 𝑻, 𝑖 ∈ 𝑴, 𝑗 ∈ 𝑴 (13) 

 𝑥)*" − 𝑢)*"𝜔*" ≤ 0, ∀𝑡 ∈ 𝑻, 𝑖 ∈ 𝑴, 𝑗 ∈ 𝑴 (14) 

 𝜃%&)" , 𝜃'&)" , 𝜃(&)" , 𝜔)" , 𝜔*" ∈ {0,1}   (15) 

As the restoration progresses resulting in nodes being made available, it changes the seaport 

throughput. The restoration not only provides the node for placing the unloading equipment 

but also opens up the link for horizontally transporting the goods. Let us assume that the 

productivity of equipment b (i.e., truck or forklift) is dependent on the road network for their 

movement, then Equation (16) indicates the relationship between infrastructure restoration and 

its productivity. 

 𝑝4& = 𝛤4& _ F
G2$(),*,𝑵3)

`∀𝜒 = {2,3,4}, (𝑖, 𝑗) ∈ 𝑳 (16) 
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Here	𝛶4&(𝑖, 𝑗, 𝑵!)  is a function that returns the minimum travel time from i to j over all the 

paths that do not pass-through disrupted nodes. The function returns infinity if no such paths 

exist. Shortest path travel time in this paper is derived efficiently by invoking Dijkstra’s 

algorithm (Dijkstra, 1959). 

Road restoration constraints are defined by Equations (17) – (21). Constraint (17) guarantees 

that if node-i is to be restored, it is assigned to team-r at time period-t. Equation (18) ensures 

that team-r can only work on a single disrupted node during the restoration time-t. Equation 

(19) makes sure that if node-i is operational, it is attended by team-r until completion. Besides, 

Equation (20) ensures that the disrupted node-i is operationalised if only the required time for 

restoring is passed. Equation (21) imposes a similar condition from the perspective of the repair 

team-r, namely, team-r cannot complete the restoration process prior to the required time. 

 𝑧) = ∑ ∑ 𝜍$)""∈𝑻$∈𝑹 , ∀𝑖 ∈ 𝑵!, 𝑡 ∈ 𝑻, 𝑧) ∈ {0,1}   (17) 

∑ ∑ 𝜍$)K ≤ 1LMN{P,KQ+'B#}
K>")∈𝑵3 , ∀𝑟 ∈ 𝑹, 𝑡 ∈ 𝑻, 𝑻 = [1,… , 𝜏]       (18) 

 𝜔)" ≤ ∑ ∑ 𝜍$)K"
KB#$∈𝑹 ∀𝑡 ∈ 𝑻, 𝑖 ∈ 𝑵! (19) 

 ∑ 𝜔)" = 0, ∀𝑡 ∈ 𝑻, 𝑖 ∈ 𝑵!+'B#
">#  (20) 

 ∑ ∑ 𝜍$)" = 0, ∀𝑡 ∈ 𝑻, 𝑖 ∈ 𝑵!+'B#
">#$∈𝑹  (21) 

In the ensuing, we describe the essential algorithms for assigning repair teams to nodes in 

restoring the internal road network. 

3.3 Algorithms for solving the internal road restoration problem  

 

3.3.1 New Dynamic Programming to Assign Multicrew Restoration Teams 

The internal road restoration problem involves assigning teams to disrupted nodes and also 

identifying the route to reach the location as some parts of the network have degraded. For 



 21 

tackling the road restoration problem, Maya Duque et al. (2016) proposed a method using DP 

that provides an exact solution. It is noted that their method works with a single crew of RT, 

which needs extending to deal with multiple crews for a real-life application. Therefore, we 

formulate a new DP-based method that can deal with multiple crews of RTs. The restoration 

process can be viewed as a sequence of RTs visiting disrupted nodes, which can be represented 

as a permutation set. Each subset of a permutation indicates the candidate solution, which must 

be evaluated for optimality. However, not all subsets can provide a feasible solution because 

the generation of permutation set may not consider the connectivity of a disrupted node with 

the location of RT. This phenomenon could mean that an RT might be blocked from completing 

a sequence as instructed by the permutation subset. For instance, assume that there are three 

disrupted nodes (say, A, B and C), and A is the only node that can be visited by RT in the initial 

condition, where C cannot be reached before restoring B. Therefore, any sequence without A 

as the first in the order will not be feasible. In addition, the subset that provides an order for 

visiting C before B will also give an infeasible solution. To remove such infeasible sets, we 

have embedded a new local rule to reduce the network. In the initial step, the rule will enable 

removing the subset(s) that include a non-connected node first in the order, for instance B-C-

A or C-B-A in the above case. The rule also adjusts the iteration in case of RT movement being 

blocked, which can happen in the middle of the sequence, for instance A-C-B. 

 

Table 3: Notation for the New Dynamic Programming 

Set and Indices 

𝑵$,S𝑹  Set of nodes that locates RT-r along the stage-g 

𝑵𝑷  Set of all permutations of disrupted nodes 
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𝑵𝒂  the subsets of 𝑵𝑷  which do not connect RT depot with disrupted nodes in the 

initial state, where 	𝛹 denotes the number of subset members’ (i.e., 𝛹 = d𝑵𝒂 d) 

𝑵S3"A Set of gate’s nodes   

𝑵&A$", 

𝒁𝑹  

Set of berth’s nodes   

Optimal solutions sets of RT assignment for permutation sets 𝑵𝑷  

Parameters 

g Current state of system in dynamic programming  

g' Updated state of system in dynamic programming  

𝜛$,S Road restoration cost incurred at state-g by assigning RT-r  

𝑡$3V3 The time of RT-r to be available for restoring the disrupted node 

𝛶$  The travel time to the disrupted node from the current node of RT-r 

𝑓(𝑔) The minimum cost of system from the initial state to the current state-g 

𝑁$,#W  Node of RT-r depot location 

𝛼S Disrupted node to be repaired at state-g 

𝑑$,S3 The arbitrary cost for state due to restoration efforts of RT-r 

𝑜𝑝𝑒𝑛 The time of gate and berth to be connected 

 

For dealing with multiple crews of RTs, we have a developed a DP that seeks to optimally 

assign RTs within each permutation subset. To restore the disrupted network, we configure the 

problem into a multistage decision process, where we aim to minimise the sum of restoring 

cost over all stages of the decision process. The stages are derived from the permutation subset, 

where in each stage the DP decides the particular RT crew to be assigned to the disrupted nodes 

given by the subset. The repairing order of nodes is then explored by generating a permutation 

set of disrupted nodes. RT assignment decision will change the state of system (𝑔 → 𝑔′), which 
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includes the disrupted nodes that are not yet restored, the current location of RT, and the time 

of RT to finish the job at the current node. Each decision will be incurring a restoring cost 𝜛$,S. 

The cost involves the time of RT available to restore the disrupted node (𝑡$3V3), the travel time 

to the disrupted node from the current node of RT (𝛶$ ) and the duration for repairing the node 

( ) (Please see Table 3 for the notation used).  

𝜛$,S = 𝑡$3V3 + 𝛶$ (𝑖, 𝑗, 𝑵!) + 𝑠) , ∀𝑖 ∈ 𝑵!, 𝑗 ∈ 𝑵$,S𝑹 , 𝑟 ∈ 𝑹       (19) 

The next state depends on the current state and the decision taken. Let us denote 𝑓(𝑔)  as the 

minimum cost of system from the initial state to the current state, the objective function of 

network restoration can be written as follows:   

𝑓(𝑔!) = min
$∈𝑹

n𝑓(𝑔) + 𝜛$,So                (20) 

By recursively solving Equation (20), the optimal solution for each permutation subset can be 

obtained. However, in general, the road restoration in seaport aims to minimise the connection 

time of entrance gate and berth (i.e., 𝑜𝑝𝑒𝑛). This connection can be regarded as an operational 

performance indicator of a seaport. Therefore, the selection of optimal solution from the set of 

all permutations is conducted by sorting the connection time in a descending order. The 

algorithm for the new DP is shown as in Algorithm 1. The proposed DP requires running time 

of  𝑂(|𝑹|𝑵3), which increases with the number of RTs and disrupted nodes. 

Algorithm 1: The New Dynamic Programming 

Input: The set of operational nodes (𝑵), the set of disrupted nodes (𝑵!), the number of RTs 

(𝑛# ), the location of gate (𝑵S3"A), berth (𝑵&A$",), and RT at depot (𝑁$,#W ) 

Output: RT schedule for restoring the disrupted network 

1:  Generate vector 𝑵𝑷  containing all permutations of disrupted nodes. 
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2:  Reduce vector 𝑵𝑷   to 𝑵𝒂   by removing the subsets which do not connect RT depot with 

disrupted nodes in the initial stage. 𝑵𝒂 = [𝑵#𝒂, … , 𝑵1
𝒂, …𝑵X

𝒂 ]  denotes the reduced 

permutation set and 𝛹 = d𝑵𝒂 d  .  
3:  Set k=1  

4:  while 𝑘 ≤ 𝛹 do 

5:           Initialise number of RTs, which is available at depot, and select the permutation subset 

-k denoted by  𝑵1
𝒂 = s𝛼# , … , 𝛼S , … , 𝛼Y𝑵,𝒂Yt , ∀	𝛼𝒈 ∈ 𝑵!  

6:           Set g =1                                     

7:      while g<|𝑵1
𝒂|  do      

8:                    for r = 1 to 𝑛# 	do      

9:                        Estimate the cost of restoring the node-𝛼S  by RT-r  

                            𝜛$,S = 𝑡$3V3 + 𝛶$ n𝑁$,SW , 𝛼S , 𝑵!o + 𝑠[5 , ∀𝛼S ∈ 𝑵𝒌
𝒂, 𝑟 ∈ 𝑹   

10:                     Calculate the arbitrary value of function by considering the cost incurred by 

RT-r  𝑑$,S3 = 𝑓(𝑔) +	𝜛$,S 

11:                    end for  

12:                    if mins𝑑#,S3 , … , 𝑑$,S3 , … , 𝑑|𝑹|,S3t = inf  then 𝑓(𝑔) = inf go to line 24:  

13:                    else   

14:                         Calculate objective value 𝑓(𝑔) = mins𝑑#,S3 , … , 𝑑$,S3 , … , 𝑑|W|,S3t 

15:                   Assign the RT with smallest objective value to node 𝛼S 	until the end of 

restoration (i.e., 𝜛$,S) 

16:                                Add node-𝛼S  to the operational node 𝑵  at 𝜛$,S  and set  𝑡 = 𝜛$,S,	𝑖 = 𝛼𝑔   

and 𝜔)" = 1	 
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17:                          Update the location of RT 𝑁$,SQ#W = 𝛼S  ,	𝑓(𝑔) = 𝑓(𝑔!) , and 𝑔=	𝑔 +1 

18:                      end if 

19:                        Estimate the shortest travel time 𝛶n𝑵S3"A , 𝑵&A$", , 𝑵!o  from the gate to berth 

avoiding the disrupted nodes 𝑵! 

20:                       if 𝛶n𝑵S3"A , 𝑵&A$", , 𝑵!o ≠ inf  then 𝑜𝑝𝑒𝑛n𝑘,𝑵S3"A , 𝑵&A$",o = 𝜛$,S  

21:                       else 𝑜𝑝𝑒𝑛n𝑘,𝑵S3"A , 𝑵&A$",o = 𝜏, 𝑻 = [1,… , 𝜏]  
22:                       end if 

23:      end while 

24:         Save optimal solution of RT assignment for permutation set 𝑵1
𝒂 as 𝒁𝑹1 

25:         k=k+1 

26:  end while 

27:  Create a list by sorting 𝑜𝑝𝑒𝑛n𝑘,𝑵S3"A , 𝑵&A$",o of the solution from the smallest value to 

largest value 

28:  Select the top solution of the list as the optimal solution, where 𝒁𝑹1∗  denotes as optimal 

RT assignment 

Preposition 1. Let be an order of disrupted nodes to be repaired and let 𝒁𝑹1 denote the 

optimal solution of RT assignment, which is provided by a new DP, then 𝒁𝑹1  is an exact 

solution for 𝑵1
𝑷 . 

Proof. Let us assume that we have an order of disrupted nodes 𝑵1
𝑷 , the order reflecting the 

sequence for restoring the nodes. For instance, 𝑵1
𝑷 = (1,2,3)  means that RT needs to firstly 

repair node 1, then node 2, and finally node 3.  The repairing decision generates a cost 𝜛$,S  

and will change the state of the system (𝑔 → 𝑔′). In the case of multicrew RT, the solution 

technique i.e., the new DP should decide the appropriate RT to be assigned to each sequence 

by minimizing the system cost of restoration from the initial state to the final state. This 
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objective is formulated as Equation (20), wherein 𝑓(𝑔) is the minimum cost of system from 

the initial state to the current state. Equation (20) follows the Bellman's principle of optimality  

(Bellman, 1954), by solving the equation recursively, the optimal solution of the order (i.e.,	
𝑵1
𝑷) can be guaranteed. Therefore,	𝒁𝑹1  denotes the optimal solution of RT assignment, which 

is provided by a new DP, then 𝒁𝑹1  is an exact solution for 𝑵1
𝑷  

Preposition 2. If 𝑵𝑷  denotes all permutation sets of restoration order i.e., 𝑵𝒑 =

w𝑵#𝒑, … , 𝑵1
𝒑, …𝑵Y𝑵𝒑 Y

𝒑 x and 𝒁𝑹 = w𝒁𝑹#, … , 𝒁𝑹1 , … , 𝒁𝑹`𝒁𝑹 `x  denotes the set of optimal solutions 

for each 𝑵1
𝒑

 , then 𝒁𝑹1∗  provides the minimum value of the Bellman equation which is an 

optimal solution of all the permutation sets 𝑵𝑷  . 

Proof. Preposition 1 proves that the	𝒁𝑹1 guarantees the optimal solution of repair order 𝑵1
𝒑
 .  

By evaluating all possible repair orders in 𝑵𝒑
 , we can create a set of optimal solutions derived 

for each 𝑵1
𝒑

, namely 𝒁𝑹  . As the restoration model aims to minimise the system cost (i.e., 

Equation (20)), the set 𝒁𝑹1n𝑖. 𝑒. , 𝒁𝑹1 ∈ 𝒁𝑹 o that gives a minimum value of the system cost 

then guarantees the optimal solution for all permutation sets. A similar situation happens in the 

case of the model aim to minimise the connection time of the entrance gate and berth. Please 

note that for reducing the permutation set, we refine the 𝑵𝒑
 by removing the set which does 

not connect RT depot with disrupted nodes in the initial state, namely 𝑵𝒂 . 

3.3.2 Exploitation-exploration based Dynamic Hungarian Algorithm 

 

Although the new DP provides an exact solution, it cannot deal with large-sized problems due 

to excessive computation time involved. Thus, there is a need to develop a new algorithm to 

efficiently solve large-sized problems as the available alternatives such as greedy algorithm 

may get trapped into local optima. In this research, we propose to extend the Hungarian 
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Algorithm for tackling large-sized problems which promises an efficient solution to the 

problem. The Hungarian method assigns a repair team to a disrupted node by evaluating several 

feasible combinations (Kuhn, 1955; Munkres, 1957). The original version of the Hungarian 

Algorithm (HA) is a single-pass method for assigning a repair team to a disrupted node, where 

the restoration cost is configured by the assignment matrix with (|𝑯𝒕| × |𝑵"
𝑯|) dimension (see 

Table 4 for the notation description). 	𝑵"
𝑯 ∈ 𝑵!  denotes the set of candidate nodes to be 

restored, and  𝑯𝒕 ∈ 𝑹  represents the set of  available teams at time- t. The candidate node is 

located in the top row of the matrix and the available teams in the left most column of the 

matrix (see Table 5). Please note that the perspective for calculating the restoration cost 

incurred by RT is different to that of the DP. HA counts the minimum cost for restoring the 

node-i  at time-t whereas DP tracks the cost from an initial state to the current state of system. 

See Appendix A for the steps involved in running the original HA. Zukhruf and Frazila (2020) 

utilised the original HA for tackling the road restoration by dynamically updating the 

availability of repair teams and regularly revising the condition of nodes through time steps up 

to the horizon period (see Appendix B for the algorithm involved). We refer to their algorithm 

as the Dynamic HA or simply DHA. It is noted that the quality of the solution to DHA, however, 

largely depends on the initial conditions and thus can lead to poor solutions.  In this research, 

we extend the DHA by adopting an exploitation-exploration based strategy as described further.    

 

Table 4: Notation for Dynamic Hungarian Algorithm 

Set and Indices 

𝑯" Set of available teams at time- t, where |𝑯" | describe the number of available 

team at time-t 

𝑵"
𝑯 Set of candidate nodes to be restored, where |𝑵"

𝑯| describe the number of 

candidate nodes to be restored at time-t 
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𝑵𝒍 Set of nodes resulted from the reduced algorithm 

𝑵𝒍𝟏 Subset of 𝑵𝒍 that only containing disrupted nodes (i.e.,	𝑵𝒍𝟏 = T𝑵𝒍𝟏d𝑵𝒍 ∈ 𝑵!V) 

𝑵𝒍𝟐 Subset of  𝑵𝒍 that only containing operational nodes (i.e., 𝑵𝒍𝟐 =
T𝑵𝒍𝟐d𝑵𝒍 ∈ 𝑵V) 

𝑵𝒄 Set of nodes, which is sorted based on the fraction value (i.e.,𝛿)) in descending 

order 

𝒇𝒊𝒕 Set of fitness values from Dynamic Hungarian Algorithm (i.e., 𝑜𝑝𝑒𝑛), indexed 

by 𝑓𝑖𝑡)  
𝒄𝒐𝒏𝒕 Set of operational nodes from Dynamic Hungarian Algorithm indexed by 

𝑐𝑜𝑛𝑡)  
𝒅𝒊𝒔 Set of disrupted nodes from Dynamic Hungarian Algorithm indexed by 𝑑𝑖𝑠) 
Parameters 

𝜛$,) Cost incurred by RT-r for restoring the disrupted node-i   

𝑆𝑃($,1) Shortest path from node-r to node-k 

𝛿) Fraction value of node-i representing the value of betweenness centrality index 

𝑓𝑖𝑡∗ Fitness value of optimal solution 

𝑐𝑜𝑛𝑡∗ Operational nodes of optimal solution 

𝑑𝑖𝑠∗ Disrupted nodes of optimal solution 

 

Table 5: Assignment matrix 

 1 … 𝑖 … d𝑵𝒕
𝑯d 

1 𝜛#,# … 𝜛#,) … 𝜛#,Y𝑵𝒕𝑯Y 
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…
 

…
  …
  …
 

𝑟 𝜛$,# … 𝜛$,) … 𝜛$,Y𝑵𝒕𝑯Y 

…
 

…
  …
  …
 

d𝑯𝒕 d 𝜛`𝑯𝒕 `,#
 … 𝜛`𝑯𝒕 `,)

 … 𝜛`𝑯𝒕 `,Y𝑵𝒕𝑯Y
 

 

The extended DHA includes an exploitation-exploration strategy within the DHA and is 

referred as ee-DHA henceforth. The strategy considers optimal solutions, firstly, by reducing 

the network (exploitation by narrowing the search space) and then gradually adding the 

disrupted node(s) to be optimised by the DHA (exploration by widening the search space). The 

strategy initially reshapes the disrupted network to a reduced network. The reduced network 

contains disrupted nodes that are included in the essential shortest path between gate and berth, 

which are called SP-nodes (see Figure 4 (b)). To ensure that an RT can visit the SP-nodes, we 

also add the nodes that are included on the shortest paths between other nodes e.g. RT depot 

and SP-nodes (i.e., Depot-Nodes see Figure 4 (c-d)). The algorithm for reducing the network 

is given in Algorithm 2.  

Algorithm 2: Reduced Network Algorithm 

Input: The set of operational nodes (𝑵), the set of disrupted nodes (𝑵!), the number of RTs 

(𝑛# ), the location of gate (𝑵S3"A), berth (𝑵&A$",), and RT at depot (𝑁$,#W ) 

Output: Reduced disrupted network consists of  𝑵𝒍
 nodes 

1 :  for i = 1 to	|𝑵!|  do 

2 :      Estimate the time for repairing node-i (i.e., 𝑠)  ). 
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Algorithm 2: Reduced Network Algorithm 

3 :  end for 

4 :  for i = 1 to (|𝑵!| + |𝑵|) do 

5:       for j = 1 to (|𝑵!| + |𝑵|) do      

6:           Estimate the travel time if 𝛶(𝑖, 𝑗)  for each pair of nodes (i,j)  

7:            if  𝑖 ∈ 𝑵' or 𝑗 ∈ 𝑵' then add 𝑠)   (or 𝑠* ) to  𝛶(𝑖, 𝑗) 

8:            end if  

9:       end for 

10:  end for 

11:  for r = 1 to	𝑛#   do 

12:      for k = 1 to (|𝑵S3"A|+|𝑵&A$",| + |𝑵23$.|	)    do      

13:          Generate the shortest path 𝑆𝑃($,1) from to 𝑁$,#W  , 𝑵S3"A, 𝑵&A$", and 𝑵23$.  based on 

the 𝛶(𝑖, 𝑗) 
14:      end for  

15:  end for  

16: Create a list of nodes  𝑵𝒍
 which is included in the 𝑆𝑃($,1) 

17: Refine 𝑵𝒍   by containing only the member of 𝑵' (i.e., 𝑵𝒍 ∈ 𝑵')  to create  𝑵𝒍𝟏 

18:  for r = 1 to 	𝑛#  do 

19:      for k = 1 to |𝑵𝒍𝟏|  do      

20:          Generate the shortest path 𝑆𝑃($,1)  from 𝑵$,#
𝑹  to 𝑵𝒍𝟏 based on the 	𝛶(𝑖, 𝑗) 

21:      end for  

22:  end for  

23: Update the 𝑵𝒍   by adding the new nodes generated from 𝑆𝑃($,1) 
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Algorithm 2: Reduced Network Algorithm 

23: Refine 𝑵𝒍  by containing only the member of 𝑵 ' to create 𝑵𝒍𝟏 and the rest (i.e., 

operational node) is stored to 𝑵𝒍𝟐
 

 

This reduction scheme forces the DHA to assign an RT only to important nodes connecting the 

route between gate and the berth. However, the reduction of network may drive the algorithm 

to trap into a local optimal solution. Hence, we gradually add the rest of disrupted nodes to the 

reduced network for avoiding the local optimal. From the perspective of optimisation, the 

reduction scheme creates a narrower search space, which is commonly called as the 

exploitation strategy. This strategy works well for improving the solution but can adversely 

lead to a local optimal solution. Furthermore, the addition of disrupted nodes drives a wider 

search space, which can be viewed as the exploration strategy. The broader search space poses 

difficulties to the algorithm in providing optimal solution, thus, a gradual addition is adopted 

in the ee-DHA, which balances the exploitation-exploration strategy.  
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Figure 4: Illustration of reduced network 

To facilitate gradual addition of the remaining disrupted nodes which are not part of SP-Nodes 

or Depot-Nodes, nodes are then sorted based on a connectivity index. More specifically, this 

paper invokes the betweenness centrality index (Freeman, 1977). The index value of a node 

tends to be higher if it is on shortest paths of many node-pairs in a network. In terms of seaport 

operations, we are mainly concerned with pairs of essential nodes, viz., entrance/exit gate - 

berth access, stacking yard - berth access and entrance/exit gate - stacking yard. The 

betweenness centrality of nodes is calculated by assuming the road network was intact i.e. not 

struck by a disaster. Therefore, the value can partly guide the RT to restore the vital nodes, 

which can connect the pairs of essential nodes within the shortest time. For calculating the 

betweenness centrality index value of each node, we firstly employ Dijkstra’s algorithm 

(Dijkstra, 1959) for generating the shortest paths between essential node pairs. Then the 

fraction value of a disrupted node is calculated by dividing the number of shortest paths passing 

through the node with the number of node pairs evaluated.  For instance, if there were four 

pairs of nodes evaluated, and the shortest paths between two of the pairs pass through the 

disrupted node-i, the fraction value (i.e.,𝛿)) would be (2÷4) equal to, 𝛿)=1/2. The fraction value 

calculation is repeated for every disrupted node. In the case of a disrupted node that did not 

appear on any of the shortest paths, the fraction value of the node is set to a small number (e.g., 

δM= 0.001) to avoid the division by zero in the computation. The algorithm for implementing 

the ee-DHA can be found in Algorithm 3. 

Algorithm 3: Exploitation-exploration based Dynamic Hungarian Algorithm (ee-DHA)  

Input: The set of operational nodes (𝑵), the set of disrupted nodes (𝑵!), the number of RTs 

(𝑛# ), the location of gate (𝑵S3"A), berth (𝑵&A$",), RT at depot (𝑵$,#
𝑹 ), and set of nodes as 

resulted from reduced algorithm (𝑵𝒍 ) 
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Output: RTs schedule for restoring the disrupted network 

1: Calculate the betweenness centrality index for all disrupted nodes and sort from the largest 

value to the smallest and obtain the sorted nodes 𝑵𝒄  

2: Invoke Algorithm 2 for reducing the disrupted network  

3: Set 𝑵𝒍𝟏 and 𝑵𝒍𝟐  as the initial subset of  that contains only the disrupted nodes and the 

operational nodes, respectively 

4: for i=1 to (|𝑵𝒄 | − d𝑵𝒍𝟏d + 1) 

5:     Utilise 𝑵𝒍𝟏 and 𝑵𝒍𝟐 as input for Dynamic Hungarian Algorithm (see Appendix B)  

         by replacing	𝑵!  (i.e., 𝑵! = 𝑵𝒍𝟏  ) and 	𝑵  (i.e., 𝑵 =𝑵𝒍𝟐), respectively 

6:      Record 𝑜𝑝𝑒𝑛n𝑖, 𝑵S3"A , 𝑵&A$",o, 𝑵, and 	𝑵! from DHA (see Appendix B)  

          as fitM ,	contM , and disM  
7:      for j=1 to	|𝑵𝒄 |  

8:          if  𝛼* ∉ 𝑵𝒍𝟏	∀𝛼* ∈ 𝑵𝒄  then add	𝛼*  to 𝑵𝒍𝟏 

9:          end if  

10:     end for  

11: end for  

12: Create a list of solutions as 𝒇𝒊𝒕 = s𝑓𝑖𝑡#, … , 𝑓𝑖𝑡) , … , 𝑓𝑖𝑡|𝑵𝒄 |B|𝑵𝒍𝟏|t  and then sort fit  from 

the smallest value to largest value. 

13: Create	𝒄𝒐𝒏𝒕  and 𝒅𝒊𝒔  as a set of 𝑐𝑜𝑛𝑡) and 𝑑𝑖𝑠) by following order of  sorted	𝒇𝒊𝒕  
14: Select the top of list of 𝒇𝒊𝒕  as the fitness value of optimal solution (i.e.,	𝑓𝑖𝑡∗) and the 

related 𝑐𝑜𝑛𝑡),  𝑑𝑖𝑠) 	as 𝑐𝑜𝑛𝑡∗, 𝑑𝑖𝑠∗, respectively 

15: From the optimal solution, check whether all disrupted nodes are restored 

16: if |𝑑𝑖𝑠∗| > 0 then  

17:   invoke DHA by replacing	𝑵!  with 𝑑𝑖𝑠∗ and 	𝑵 with 𝑐𝑜𝑛𝑡∗ 
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18:   update 𝑓𝑖𝑡∗, 𝑑𝑖𝑠∗, and 𝑐𝑜𝑛𝑡∗ 
19:end if  

 

3.4 Algorithms for solving the outer optimisation problem 

3.4.1 Simple Genetic Algorithm (SGA) 

As a popular solution technique for solving engineering optimisation problems, GA has grown 

extensively. Simple GA (SGA) involves three basic operations, viz., recombination, mutation, 

and selection. SGA is formed by a group of individuals that has specific chromosome 

information (i.e., set of alleles), which constructs the fitness value. The offspring is produced 

from the recombination (i.e., also known as “crossover”) by mating two individuals in the 

population. Each mating (i.e., parents) produces two off-springs, in which a single point 

crossover or a uniform crossover method is applied.  The mutation operator is employed for 

enriching the chromosome information of an individual because it is possible to generate the 

information that is not inherited from its parents. In addition, a selection process is included 

ensuring the number of individuals is kept constant in each generation. The roulette wheel-

based selection procedure is incorporated into the SGA.  

3.4.2 GA with insertion mutation (GAINMUT) 

Mutation and recombination are natural processes in genetics, which are identified as the 

source of variability. Both processes have a different mechanism (Barton, 2010), which could 

change (or not change) the phenotype of living things. Following a similar idea, GA also 

involves both processes for generating a candidate solution (i.e., individual) by varying the 

chromosome information to avoid a local-optimal solution. Taking advantage from the current 

genome evidence, Zukhruf et al. (2019) proposed GA with insertion mutation (GAINMUT). 

They modified the mutation processes by applying the “insertion” based approach. In SGA, 
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the mutation is implemented by changing the bit value from a stated condition, for instance, if 

a bit equal to 1, it is then mutated to 0, and otherwise (see Figure 5 (a)). In GAINMUT, the 

mutation process is applied by inserting the binary random value to the allele, which 

significantly alters the chromosome information. The last allele is then deleted to keep the 

chromosome length (see Figure 5 (b)). 

 

Figure 5: Illustration of the mutation process 

3.4.3 GA with deletion mutation (GADELMUT) 

We present GA with another variant of mutation processes called GA with deletion mutation 

(GADELMUT). In this mutation process, a randomly selected allele is deleted from the 

chromosome. A binary random value is then added to the last allele to keep the length of the 

chromosome consistent (see Figure 5 (c)). In addition, we also invoke an adaptive approach 

for updating the mutation rate, which has been successfully implemented by Israeli and Gilad 

(2018). The adaptive approach aims to prevent the homogeneity of chromosomes in the 
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population. It combines the time-dependent mutation rate with the rule that can reset the 

mutation rate if the chromosome variance of the population decreases below a predetermined 

threshold (see Figure 6). To prevent the loss of good individuals in selection processes, we 

also keep a number of best individuals in each generation using the elitist mechanism (Yamada 

et al., 2009).  

 

Figure 6: Possible ways for updating mutation rate 

Table 6: Notation for Genetic Algorithm 

Set and indices 

pop Set of candidate solutions of genetic algorithm 

elite Set of elite individuals of genetic algorithm 

Parameters  

V Number of individuals 

gen Number of generations 

chromo Length of chromosomes 
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𝜅 Number of elites 

𝜙 Crossover rate 

𝜖 Mutation rate 

binrand A random binary value   

child1 Offspring of V resulted from cross over procedure 

 Population variance 

locmuti Mutation location of child1-i 

randin Random number between 0 and 1 

child2 Offspring resulted from mutation procedure 

threshold Threshold for the population variance 

 

The GADELMUT procedure is then set out as Algorithm 4 (see Table 6 for the notation) as 

follows: 

Algorithm 4: GADELMUT Algorithm 

Input: Number of individuals (i.e., V), number of generations (i.e., gen), length of 

chromosomes (i.e., chromo), number of elites (i.e, 𝜅), crossover rate (i.e., 𝜙), and mutation rate 

(i.e.,	𝜖). 

Output: Optimal solution to seaport restoration problem 

1: for i=1 to V  

2:     for j=1 to chromo 

3:         pop (i,j)= binrand, where binrand is a random binary value   

4:     end for  

5: end for   

6: for l=1 to gen  
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7:       for i=1 to V/2 

8:          Randomly select two individuals 

9:          Apply uniform crossover procedure to produce offspring of V (i.e., child1). 

10:      end for  

11:      Determine the population variance,	𝜌 = :hi&A$	/k	3KKAKA	.)kkA$A:0A+
:hi&A$	/k	3KKAKA	0/i-3$A+   

12:      if 𝜌 < threshold  then 𝜖 = 0.9  

13:      else if then 𝜖 = 1/𝑙  

14:      end if  

15:      for i=1 to V 

16:          Randomly select the mutation location of child1-i (i.e., locmuti) 

17:          Generate a random number between 0 and 1 (i.e., randin)  

19:           if randin <	𝜖 then  

20:              Delete the allele of child1 offspring to the mutation location to yield child2  

21:              Insert the binrand in the last allele to keep the chromosome length 

22:            end if  

23:       end for   

24:       Evaluate the fitness value of each parent (i.e., V) and child1& child2 

25:       Select 𝜅 best individuals to make elite (i.e., elitist selection) 

27: end for  

 

4. Restoration of Pantoloan seaport operations  

4.1 Description of the case 

Pantoloan seaport, in Sulawesi, Indonesia was struck by a tsunami in 2018 causing a major 

disruption to its operations. The seaport located in Sulawesi (Latitude / Longitude: -0.7133916° 
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/ 119.8552°) is essential for reaching aid supplies in bulk to the seismic hinterland. Before the 

disruption, the seaport was equipped with two units of Quay Cranes (QC), two units of Rubber 

Tyred Gantries (RTG), four units of Reach Stackers (RS), three units of Forklifts (FL), five 

units of trucks, and 47 teams of gang. The seaport was operating as a single continuous berth 

with two yards for stacking, which were accessed by a road network of 20 nodes and 32 links 

(see Figure 7).  

 

  

Figure 7: Node-link diagram of Pantoloan seaport    

Based on the data derived from satellite imagery obtained after the tsunami, it was noted that 

all areas of Pantoloan seaport were covered by debris. The debris location is represented by 

disrupted nodes (i.e., node-a to node-af) that lie not only on the road network of the port but 

also on the roads to stacking yard. The yard is key to maintaining the throughput of a seaport, 
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as the goods will need to be stacked in the outer area if the yard is disrupted. The non-

availability of yard thus reduces the vehicle carrying capacities, and the overall throughput.  

Moreover, each disrupted node has a different volume of debris that needs to be cleared by the 

repair teams, thus, the restoration duration varies based on their capacity. For estimating the 

infrastructure restoration cost, the total time of RT is multiplied with its unit charge, accounting 

for mobilising and restoring involved. 

Furthermore, all equipment was severely damaged by the tsunami, although we assumed that 

one QC and three forklifts can possibly be repaired at a specific cost (see Table 7). It is also 

assumed that one team of the gang is available for manual unloading each at the ship, dock, 

and yard, respectively. The gang also can be enlarged by outsourcing from third parties. A 

similar approach can possibly be followed in terms of crane and forklift renting, with the 

advantage of quicker availability of equipment and the variety of choices available. Let us 

assume that three teams of gangs, three units of trucks, and one RT are ready in the first hour 

after the disaster. Furthermore, a QC, three FLs at docks, and at the yard can possibly be 

repaired. One heavy crane, three light cranes, and six FLs are available for hire. Nine 

outsourcing gangs are also available to be added for handling the loading processes at the vessel, 

dock, and stacking yard. The horizon is set to 72 hours because it is regarded as the golden 

period in the response phase of disaster management (Sanci and Daskin, 2019). The unit value 

of relief supplies is estimated at 1825 USD/tonne (See Appendix C for details). In addition, 

one RT has been assigned to restore the infrastructure network, where the port authority can 

allow a maximum of 4 RTs to work simultaneously. Constraint on the number of RTs available 

is then reflected in a binary-decision structure introduced earlier.  

Table 7: Possible restoration actions with unit costs1 
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No Action 

Available at Productivity Unit Cost 

the Hr Value Unit Value Unit 

1 Repairing QC 60th 330 tonnes/hr 13,8002 USD/unit 

2 Renting Heavy Crane 24th 495 tonnes/hr 14,400 USD/day/unit 

3 Renting Light Crane  12th 100 tonnes/hr 7,000 USD/day/unit 

4 Repairing Forklift 24th 183 tonnes/hr 5,950 USD/unit 

5 Renting Forklift 12th 27 tonnes/hr 900 USD/day/unit 

6 Outsourcing Gangs   1st 5 tonnes/hr 300 USD/day/gang 

7 Renting truck 12th 18 tonnes/trip 50 USD/hr/unit 

8 Repair team 1st 75 cubic m/hr 100 USD/hr 

1) Derived from the website of rental provider (e.g., bigge.com, bigrentz.com) 

2) Derived Burden, 2012 from Werner and Cooke (2009)  

3)The productivity of the repaired equipment is assumed to be two-thirds the productivity of similar rented 

equipment. 

Since aid supplies are very time-sensitive, the time of equipment availability becomes an 

important factor. The lateness in equipment availability directly obstructs the unloading and 

distribution processes, which can potentially affect the number of casualties. Therefore, this 

paper considers the time of availability of equipment for deciding the optimal action to restore 

the seaport operations.  

4.2 Interdependent nature of seaport restoration activities 

Before attempting to solve the full optimisation problem, firstly, we illustrate the 

interdependent nature of decision making in seaport restoration process. Let’s consider a simple 

example in which the port authority decides to employ two RTs, rent a heavy crane, and rent 

FLs to be utilised for restoration process at the dock and stacking yard. The FLs and the crane 

will be available in 12 hours, and 24 hours after the disruption, respectively. The ee-DHA 

predicts that the restoration of road access to the berth and to the stacking yard will have 
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finished in 11 hours after the disruption. In this illustration, assume that the berth was not 

disrupted, and a ship request for berthing at 12 hours after the disruption. 

Based on the example case described as above, Figure 8 shows the interdependency of 

decisions in the restoration process. For example, the internal road is available at the 11th hour, 

and the ship berths at the 16th hour yet the loading/unloading of the ship cannot be started 

immediately since the crane is not available. The loading/unloading process can only be started 

from the 24th hour when the rented crane arrives. A similar situation prevails even in the case 

of loading/unloading process at the dock and at the stacking yard. Although, the road access 

and the equipment have been restored by the 11th hour, the loading/unloading at the dock cannot 

start before the loading/unloading of the ship is started. Subsequently, the loading/unloading at 

the stacking yard cannot be initiated before FLs at the dock begin to load/unload. Note that 

there is buffer time (slackness) for restoring the road access, renting the FLs for dock and yard. 

The slack time should be minimised by evaluating critical decisions in which the goal is to 

speed up the loading/unloading at the berth. For instance, if the port authority revises their 

decision by changing the type of crane rented which can arrive earlier, the slackness might be 

reduced, allowing the seaport to operate sooner. However, such decisions must be taken 

carefully as each decision is interdependent on several other factors and involves evaluating a 

huge number of possible combinations. 
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Figure 8: Illustration of interdependency of restoration activities 

4.3 Optimal restoration plan for Pantoloan seaport 

This section evaluates the optimal restoration time of seaport operations at Pantoloan.  

We now maximise the fitness value i.e. ratio of total throughput to the cost of restoring seaport, 

by varying the number of RTs, unloading equipment and gangs involved in handling the goods. 

Based on the results from GADELMUT, the optimal outcome will involve a set of decisions 

comprising repairing the existing QC, renting a heavy crane, repairing up to three FLs at docks, 

and renting up to three FLs at docks and yards (Action Set A). To develop a better 

understanding of the optimal result, we compare it with sub-optimal restoration actions –Action 

Sets B-E, which can be derived from a complete enumeration of alternatives. These sets have 

components as shown in Table 8.   

Table 8: Details of restoration action sets 

Action Set Components of action set 

A 1 RT added, 1 heavy crane rented, 3 FLs each rented at the dock and yard, three 

gangs each at the dock, yard, respectively 
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B 1 RT added, 1 heavy crane rented, 3 FLs each rented at the dock and yard, 

respectively. 

C 3 RTs added,1 heavy crane rented, 3 FLs each rented at the dock and yard, three 

gangs each at the dock, yard, respectively. 

D 3 RTs added. 

E 3 RTs, 1 QC repaired, 3 FLs each rented at the dock and yard, respectively 

 

Figure 9 compares the performance of Action Set A with Action Sets B-E. Action Set A is the 

best performing of all with the highest fitness value. Action Set B has a lower cost without 

deploying the gangs as in Action Set A, though it results in lower productivity. Action Set C is 

almost identical to Action Set A, except that it deploys a higher number of RTs. Since both sets 

can restore the gate to berth connection after the 11th hour, the productivity resulted from both 

actions is also similar. However, Action Set C incurs extra cost for mobilising the RTs, thus, it 

has a slightly lower fitness value than Action Set A. Action Set D involves increasing the 

number of RTs without seeking to rent or repair the unloading equipment. The productivity of 

this set is significantly lower. This outcome indicates that the decision to support the road 

restoration in isolation is useless without considering the seaport operations as a whole. Finally, 

Action Set E illustrates the dis-benefit of repairing QC in the golden hours for humanitarian 

distribution. This repairing action requires a longer time than the renting option, and hence, the 

value of the total throughput is also significantly lower.  
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Figure 9: Value of total throughput, cost, and overall efficiency of seaport 

restoration 

Figure 10 shows the maximum throughput by Action Set A over the time horizon, noting that 

the seaport operation can be restored within 12 hours after a disaster. Although one gang has 

been ready for unloading in the 1st hour, the seaport remains closed due to the blockage of 

internal roads. As the restoration of roads progresses, the seaport opens up for operations at the 

12th hour. In this period, 25% of the disrupted road network (8 nodes out of 32) will have been 

restored, constituting the nodes on the critical path from berth to gate and stacking yard. 

However, rest of the road network (75%) is restored gradually which takes 53 hours in all. Note 

that the maximum throughput of the seaport will be reached in the 24th hour as the heavy crane 

rented arrives at that time. Before this time, the unloading processes at the ship are mainly 

dependent on manual handling by gangs.   
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Figure 10: Maximum throughput and the number operational roads over the 

restoration time horizon 

4.3 Comparing the performance of algorithms for solving internal road restoration 

problem 

In this section we evaluate the performance of new DP and the ee-DHA to handle the internal 

road restoration problem. The road network was adopted from inside the Pantoloan seaport. 

We varied the number of disrupted nodes - 6 or 9, 22 and 32, with a combination of different 

number of RTs made available, to create instances namely S1-S6 (small problem), M1- M3 

(medium problem), and L1- L3 (large problem) (see Table 9). The performance is assessed 

based on the computation time and the time required for opening the gate-berth connection. 

We also compare the performance of the proposed algorithms with DHA and greedy algorithm. 

Greedy algorithm is chosen as it is commonly applied in the literature for tackling the road 

restoration problem (e.g., Lu et al., 2016, Maya Duque et al., 2016). The greedy algorithm is 

specified as in the Appendix D.  

Table 9: Performance comparison of algorithms for restoring road network  
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Proble

m size 

Networ

k 

instanc

e 

Number 

of 

disrupte

d nodes 

Numbe

r of 

RTs 

Hour of operationalising the path of gate-

berth 

Computation Time (Sec) 

New DP 

ee-

DHA 

DHA 

Greed

y 

New 

DP 

ee-

DHA 

DH

A 

Greed

y 

 S1 6 2 3 3 8 3 24.99 2.37 0.81 0.93 

 S2 6 3 3 3 6 3 28.22 1.66 0.80 0.53 

 S3 6 4 3 3 5 3 26.44 1.64 0.71 0.58 

Small 

S4 9 2 5 5 13 6 

3427.5

4 4.37 1.25 0.55 

 

S5 9 3 5 5 9 6 

3366.5

3 4.53 0.67 1.67 

 

S6 9 4 5 5 9 6 

6562.7

1 4.01 0.71 0.87 

 M1 22 2 

NA 

11 29 12 

NA 

10.34 0.61 0.88 

Mediu

m 

M2 22 3 11 18 10 

7.60 0.70 1.26 

 M3 22 4 9 14 10 7.92 0.94 0.85 

 L1 32 2 11 24 21 7.79 0.71 0.57 

Large L2 32 3 11 19 18 11.05 0.63 0.82 

 L3 32 4 11 18 13 9.66 0.70 0.71 

 

The ee-DHA obtained an identical solution as generated by the new DP in the case of S1 - S6, 

though the CPU time required is only a fraction of that by new DP (e.g. 0.06% for S6).  In the 

case of M1- M3, and L1- L3 comprising a large number of disrupted nodes, the solution by 

new DP is not available due to unacceptably high computation time involved. The ee-DHA, 

DHA, and greedy algorithm could handle this type of problem with ease producing solutions 

in a very short time. Comparing the solutions provided by the algorithms, we note that the ee-

DHA outperforms the DHA and the greedy algorithm. In almost all instances, the ee-DHA 

could provide a better solution for operationalising the critical gate-berth link, though it 

requires a slightly higher computation time. The higher the number of disrupted nodes, the 

better the solution produced by ee-DHA. For instance, in case of L1 where all 32 nodes are 
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disrupted, the solution by ee-DHA allows operationalising the seaport in 11 hours compared to 

24 by DHA and 21 by greedy algorithm, thus saving at least 48% of the restoration time. 

 

4.4 Performance of optimisation with GA variants 

For handling the binary optimisation problem, we use a new variant of GA, which is compared 

to GA with Local Search (GALS) and SGA among other types of metaheuristics. The 

maximum possible number of solutions is set to 4500, similar to Yamada et al., (2009) and 

Yamada and Zukhruf (2015) to examine the performance of the proposed solution technique. 

The best parameter values used in each of the GAs are determined by conducting several 

numerical tests, which are summarised in Table 10. The numerical tests check the most suitable 

value for each parameter in which we test a value from 10 to 100 for the number of individuals, 

0.1 to 1.0 for the crossover rate, 0.01 to 0.1 for the mutation rate, 0.1 to 0.9 for the population 

variance threshold (for GADELMUT), and 1 to 10 for the number of elites (for GALS and 

GADELMUT). Each combination of these is evaluated over a total of twenty runs to determine 

the most suitable set of values to arrive at the best, average, and worst solutions.  

Table 10: Parameter values of GAs 

Parameters SGA GALS GAINMUT GADELMUT 

Number of generations 20 30 50 100 

Number of individuals 225 50 90 45 

Crossover rate 0.7 0.5 0.5 0.9 

Population variance threshold - - - 0.7 

Mutation rate 0.07 0.06 0.03 0.04 

Number of elites - 10 - 10 

Number of neighbourhoods - 3 - - 
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The performance of algorithms is tested for the case of large problem (Table 9) by optimising 

the number of RTs, unloading equipment and gangs as presented in the previous section. This 

problem requires 16 binary decisions (i.e., length of chromosomes), generating 65,535 possible 

combinations.  The performance is also compared to the solution by a complete enumeration, 

considering all possible solutions to assess whether the global optimal solution is arrived. The 

comparison will then ensure the quality of solution provided by the GAs. It was found that the 

fitness value of the solution by GADELMUT is similar to the fitness value resulted from the 

global optimal solution despite there being several local optima present (see Figure 11).  

 

 

Figure 11: Fitness values with full enumeration of candidate solutions  

Table 11 compares the values of objective function obtained by the new variant GADELMUT, 

with SGA, GALS, and GAINMUT. The computation time was recorded on a PC with Intel(R) 

Core (TM) i7-9700 CPU @ 3.00GHz and 4.0 GB RAM. To reduce the computation time, we 

use ‘memorization’ scheme for storing the result of road restoration problem based on the 

number of RTs. The incorporation of memorization scheme ensures that a similar RT input 

numbers will only be computed once by the ee-DHA. This scheme significantly decreases the 
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computation time for solving the optimization problem, as the assignment of RTs by ee-DHA 

depends on the number of RTs for a given number of disrupted nodes and thus there is no merit 

in running the routine again. 

Table 11 shows that GADELMUT performs better than SGA, both in terms of average and 

worst values being close to the best value. In addition, GADELMUT provides comparable 

performance in terms of stability and faster searching ability. GADELMUT could achieve a 

similar best value as can be obtained by GALS but required only 40% of the CPU time in doing 

so. Furthermore, GADELMUT demonstrates a better stability in searching for the best value, 

which is showed by a higher average value than GALS. Therefore, it can be concluded that 

GADELMUT outperforms GALS in case of 16 binary decisions. 

Table 11: Performance comparison of GAs 

  

Complete 

Enumeration 
SGA GALS GAINMUT GADELMUT 

Best Fitness 

Value 

112.55 

112. 55 112. 55 112. 55 112. 55 

Average 

Fitness Value 

109.86 112.08 109.06 112.50 

Worst Fitness 

Value 

102.50 111.69 99.60 111.54 

Average CPU 

Time (sec) 

5637.15 109.58 410.68 99.51 166.94 

 

4.5 Performance of GADELMUT with very large-sized problem 

We have investigated the performance of GADELMUT further by enlarging the possible 

number of combinations of decisions to restore the seaport operations to compare with the large 
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problem described earlier. We expand the set of decisions to include the number of light cranes 

and trucks to hire and the FLs to repair at the yard (henceforth referred as ‘very large problem’). 

This effort generates a higher complexity than before as the problem size now increases to 

2,097,151 combinations (i.e., 2^21-1).  GADELMUT required 1344 seconds of CPU time in 

this case to reach the best fitness value. The outcome, referred as Action Set ‘VL’, involves 

adding one RT, renting a light crane, adding three teams of the gang each at the dock and yard, 

and renting two units of FL each at dock and yard, respectively.  

Table 12 compares Action Set VL with optimal solution obtained earlier viz., Action Set A. 

Note that the Action Sets A and VL restore the seaport operation in 12 hours. Yet, Action Set 

A depends only on one gang available from the 12th to 24th hour, because the heavy crane 

rented can only be made available from the 24th hour. The Action Set VL indicates the 

effectiveness of renting a different type of equipment, thus producing higher throughput. The 

light crane rented in this solution has lower productivity than the heavy crane (see Table 6). 

However, as the light crane arrives sooner at the seaport, Action Set VL will generate higher 

throughput than Action Set A.   

Furthermore, Action Sets A and VL highlight the significance of interdependencies involved 

in the restoration. The higher productivity of trucks (i.e., 125.87 tonnes/hour) and cranes (i.e., 

100-495 tonnes/hour) cannot be met by the productivity of FLs, being equal to 81 tonnes/hour 

(+3 tonnes/hr by manual RT = 84 tonnes/hr). Hence, the maximum throughput is not as high 

as the productivity of cranes and trucks. This fact also explains why the optimal solution does 

not include the addition of trucks.  

Table 12: Comparing the solutions for smaller and larger problems 

Description Large problem Very Large 

problem  Action Set A 
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Action Set VL 

Number of possible combinations 65,535 2,097,151 

Average CPU time by GADELMUT (sec) 166.94 1,344 

Starting time of seaport operation (hours) 12th  12th  

Maximum throughput over time horizon 

(tonnes/hour) 

93 84 

Total throughput (tonnes)  4,593 5,124 

Value of total throughput (‘000s of USD) 8,382.23 9,351.30 

Cost (USD) 74,475 27,925 

Fitness value 112.55 334.87 

 

5. Concluding remarks 

This paper presented an integrated model to efficiently restore disaster-struck seaport 

operations considering the interdependencies between infrastructure, equipment and 

gangs/repair teams. The model selects an appropriate set of restoration actions from a number 

of possible alternatives. The problem has been set up as an integrated network design and 

scheduling - INDS, which includes three different decisions, namely, restoration selection 

decision, task assignment to repair teams and scheduling of repair teams. The uniqueness of 

INDS problem in this paper is that the interdependencies experienced at a seaport operation are 

modelled explicitly. In contrast with the INDS problems in the literature, the restoration 

selection decision not only prioritises the disrupted infrastructure to be repaired but also 

determines the number of equipment to be added/repaired/rented along with the number of 

repair teams to be deployed.  
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To restore the internal road network at a seaport, we propose a new Dynamic Programming 

that can provide an exact solution. The new DP can optimally solve small-sized problems, 

however, it requires an unreasonably high computation time for large-sized problem. We then 

develop an exploitation-exploration strategy based Dynamic Hungarian Algorithm – ee-DHA, 

to efficiently assign/schedule the repair teams for large problems. Resulting decisions are tested 

within the framework of binary optimisation, by employing a new variant of GA. The variant 

updates the mutation processes, where it applies the deletion mechanism (i.e., GADELMUT) 

with an adaptive scheme for updating the mutation rate.  

The main conclusions from this paper are summarised as below: 

• Restoration of seaport operations involves interdependencies between marine-side and 

land-side infrastructure/equipment, and any recovery effort must consider the impact 

of one element on the other in an integrated manner for an efficient restoration. 

Pantoloan seaport operations can be restored within 12 hours after a disaster albeit with 

varying levels of throughput depending on the availability of teams and equipment. The 

optimal solution involves renting of a crane and FLs whereas the repairing option will 

not be as efficient due to a longer lead time involved potentially threatening the total 

throughput which is critical in delivering humanitarian aid supplies. Renting a heavy 

crane will be efficient only if it is matched by the productivity of FLs. If not, renting a 

light crane, if available, will be a better decision as it produces higher total throughput 

at a lower cost.    

• The proposed DP can efficiently handle the small-sized restoration problems, but in 

case of large-sized problems, it involves excessive computation time, a fact also noted 

earlier. Exploitation and exploration-based Dynamic Hungarian Algorithm 

significantly reduced the computation effort compared to the new DP when dealing 

with the small-sized problems and is able to match the exact solution. Moreover, ee-
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DHA generates better solution by making the seaport operational at least 48% sooner, 

making the overall restoration operation highly efficient. 

• The GA with deletion mutation GADELMUT has been found to perform better than 

the GALS. It produces comparable solutions to that of GALS in terms of stability and 

in doing so it needs only 40% of time required by the GALS. This is a highly significant 

outcome and can be adopted into the GA as a standard which saves vast amounts of 

computation time. 

The research presented in this paper can be enhanced further by setting up optimisation 

problems by other alternative approaches such as Particle Swarm Optimization, Simulated 

Annealing to compare the solution quality and the computation effort required in solving real-

life problems. Also, the new DP and the ee-DHA allow only one crew to operate at each 

disrupted node which can be relaxed by allowing two or more teams to work simultaneously 

at any given location potentially quickening the restoration process further. Another worth- 

studying direction might be related to the development of exact-solution based method for 

tackling the seaport restoration with a lower computation time.     
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Appendix A: The original single-pass Hungarian Algorithm 

Algorithm: The original single-pass Hungarian Algorithm 

Input: The set of operational nodes (𝑵), the set of disrupted nodes (𝑵!), the number of RTs (𝑛# ), 

the location of gate (𝑵S3"A), berth (𝑵&A$",), yard (𝑵23$.), and RT at depot (𝑵$,#
𝑹 ) 

Output: a single RT assignment for restoring the disrupted node 

1: Set t=1, create an assignment matrix with |𝑯𝒕| × d𝑵"
𝑯d) dimension. 𝑵"

𝑯 ∈ 𝑵! denotes the set of 

candidate nodes to be restored, and 𝑯" ∈ 𝑹  represents the set of  available teams at time- t. 

Locate the candidate node in the top row of the matrix and the available teams in the left most 

column of the matrix (see Table 5).  

2: Calculate the assignment cost	𝜛$,) = 𝛶$ n𝑁$,"W , 𝛼) , 𝑵!o + 𝑠[' , ∀𝛼) ∈ 𝑵!, 𝑟 ∈ 𝑹                                     

3: for i=1 to H do  

4:        Identify the smallest value of each row U  

5:        Subtract it from every element in its row to obtain U’     

6: end for   

7: for j=1 to W’  do  

8:        Identify the smallest value of each column U’  

9:        Subtract it from every element in its column to obtain U’’     
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10: end for   

11: For each zero entry, denoted as Z in the matrix U’’ . 

12: If there is no starred zero in its row and none in its column, star Z, and check each zero in the 

matrix in turn. 

13: Cover every column containing a starred zero,  

14: if all the columns cover then go to line 33: 

15: end if 

16: Find an uncovered zero element in U’’ and prime it. 

17: if there is no starred zero Z in the row containing it then  

18:    Construct a series of alternating primed and starred zeros by: 

19:          Let Z0 represent the uncovered primed zero found. 

20:          Let Z1 denote the starred zero in the column of Z0 (if any). 

21:          Let Z2 denote the primed zero in the row of Z1 and there is only one. 

22:         Continue until the series terminates at a primed zero that has no starred zero in its column. 

23:          Un-star each starred zero of the series, star each primed zero of the series, erase all 

primes, and uncover ever line in U. 

25:     Return to line 14: 

26: else then 

27:     Cover the row and uncover the column of Z until all zeros are covered 

28:     Record the minimum value of elements that are not covered  

29:     Add the minimum value found to every element of each covered row  

30:     Subtract it from every element of each uncovered column.  

31:     Return to line 17: without altering any stars, primes, or covered lines. 

32: end if 

33: The required assignments are indicated by the positions of the starred zeros in U’’ .  
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34: If U’’ [r, i] is a starred zero, then the element associated with row r is assigned to the element 

associated with column i. 

 

Appendix B: Dynamic Hungarian Algorithm for Road Restoration 

Algorithm: Dynamic Hungarian Algorithm 

Input: The set of operational nodes (𝑵), the set of disrupted nodes (𝑵!), the number of RTs (𝑛# ), 

the location of gate (𝑵S3"A), berth (𝑵&A$",),  yard (𝑵23$.), and RT at depot (𝑵$,#
𝑹 ) 

Output: RT schedule for restoring the disrupted network 

1: Set t=1, create an assignment matrix with (|𝑯𝒕| × d𝑵"
𝑯d) dimension. 𝑵"

𝑯 ∈ 𝑵 denotes the set of 

candidate nodes to be restored, and   represents the set of  available teams at time- t. 

2: Locate the candidate node in the top row of the matrix and the available teams in the left most 

column of the matrix (see Table 4). 

3: while t <𝜏	do                               

4:        for i=1 to |𝑵!| do      

5:                    for r = 1 to 𝑛#  do      

6:                        if  𝜍$)" = 0 then  

7:                          Calculate the assignment cost, 

 																																	𝜛$,) = E𝛶$ n𝑁$,"W , 𝛼) , 𝑵!o + 𝑠[' G E
#
l'
G , ∀𝛼) ∈ 𝑵!, 𝑟 ∈ 𝑹                                     

8:                           Update the assignment matrix 

9:                         end if   

10:                    end for       

11:   end for     

12:   if  ∑ 𝜍$)" = 𝑛#	:"
$>#  then  go to 20:   
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13:   else   

14:          Invoke the HA for solving the assignment problem (Appendix  A) 

15:          Assign team-r to the selected node-i until the end of restoration duration  𝜍$),":"Q+' = 1 

16:              Add node-  to the operational node  and remove node-𝛼)  from 𝑵!  at 𝑡 + 𝑠['  and 

set 𝜔),"Q+=' = 1 

17:                Update the location of RT 𝑁$,"Q+='W = 𝛼)  

18:     end if   

19:         Estimate the shortest travel time from the gate to berth 𝛶n𝑵S3"A , 𝑵&A$", , 𝑵!o    avoiding 

the disrupted nodes 𝑵  

20:         if 𝛶n𝑵S3"A , 𝑵&A$", , 𝑵!o ≠ 𝑖𝑛𝑓 then 𝑜𝑝𝑒𝑛n𝑵S3"A , 𝑵&A$",o = 𝑡  

21:         else 	𝑜𝑝𝑒𝑛n𝑵S3"A , 𝑵&A$",o = 𝜏 

22:         end if 

23:          t=t+1 

24: end while                                                    
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Appendix C: Estimating the price of relief supply package 

No Items 
Price per 

item (CHF) 

Weight 

per item 

(kg) 

Quantity 

per 

Package 

Price per 

package 

(CHF) 

Weight per 

package (kg) 

Reference 

Specifications links 

1 Family kit  (5 persons) 

a Hygiene parcel 11.80 8.10 1.00 11.80 8.10 
Hygienic parcel for 5 

persons/1 month 

https://itemscatalogue.redcross.int/wash--5/hygiene--9/hygiene-

products--53/hygiene-parcel--HHYGPERS10.aspx 

b Kitchen set 21.30 5.00 1.00 21.30 5.00 
Kitchen set family of 5 

persons 

https://itemscatalogue.redcross.int/relief--4/household--8/household-

equipment-kits-and-sets--53/kitchen-set-type-a--

KRELCOOSETA.aspx 

c 
Buckets of 20 

litres 
15.80 1.22 2.00 31.60 2.44 Bucket, plastic with lid, 20l 

https://itemscatalogue.redcross.int/support--4/household--

8/household-equipment-and-ustensils--51/buckets--

HCONBUCK.aspx 

d Mosquito nets 9.80 1.00 2.00 19.60 2.00 
Mosquito net, circular, double 

bed, d:1050cm, h:220cm 

https://itemscatalogue.redcross.int/relief--3/household--8/bedding-

and-clothes--7/mosquito-net--HSHEMNET01.aspx 

e 

Jerry cans, 20 

litres 
1.50 0.32 2.00 3.00 0.63 

Jerrycan, collapsible, 20l, 

food grade ldpe., screw cap 

https://itemscatalogue.redcross.int/relief--4/household--8/household-

equipment-kits-and-sets--53/jerrycan-plastic-foldable--

HCONJCAN02.aspx 
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No Items 
Price per 

item (CHF) 

Weight 

per item 

(kg) 

Quantity 

per 

Package 

Price per 

package 

(CHF) 

Weight per 

package (kg) 

Reference 

Specifications links 

f Blankets 4.10 1.75 5.00 20.50 8.75 

Blanket, woven, 50%wool, 

1.5x2m, medium thermal 

resistance 

https://itemscatalogue.redcross.int/relief--4/household--8/bedding-

and-clothes--7/blanket-woollen--HSHEBLAN01.aspx 

g Sleeping mats 1.80 0.86 2.00 3.60 1.72 Mat, plastic 180 x 90cm 
https://itemscatalogue.redcross.int/food-and-livelihood--3/household-

-8/bedding-and-clothes--8/mats-for-floor--HSHEMATT.aspx 

h Tarpaulins 10.40 4.20 2.00 20.80 8.40 

Tarpaulins, woven plastic, 4 x 

6 m, white/white, piece 

https://itemscatalogue.redcross.int/water-and-habitat--6/shelter-and-

construction-materials--21/family-tents-tarpaulins-accessories--

35/tarpaulins-and-plastic-sheeting-roll--HSHETARP.aspx 

2 Food items (5 persons for a month) 

a Rice 0.45 1.00 45.00 20.25 45.00 Rice, white broken 5 %, 1kg 

https://itemscatalogue.redcross.int/relief--4/food--5/cereals--18/rice--

FCERRICE.aspx 

b Oil 1.26 0.96 15.00 18.90 14.40 Oil, palm, 1liter 
https://itemscatalogue.redcross.int/relief--4/food--5/edible-oils--

31/vegetable-oil--FOILGROU.aspx 

c Sugar 0.66 1.00 7.50 4.95 7.50 Sugar, white, 1kg 
https://itemscatalogue.redcross.int/relief--4/food--5/other-food-

products--90/sugar-white-crystal--FBAFSUGA.aspx 

d Salt 0.80 1.00 0.75 0.60 0.75 Salt, iodised edible, 1kg 
https://itemscatalogue.redcross.int/relief--4/food--5/other-food-

products--90/iodized-salt--FBAFSALT.aspx 

Total price of package (CHF) and weight (kg) 176.90 104.69  
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No Items 
Price per 

item (CHF) 

Weight 

per item 

(kg) 

Quantity 

per 

Package 

Price per 

package 

(CHF) 

Weight per 

package (kg) 

Reference 

Specifications links 

Price of total package (USD) # 191.05 

Price of total package per tonne (USD) 1,825 

# 1 CHF= 1.08 USD as on 17/4/2021 (https://www.xe.com) 



 67 

Appendix D: The Greedy algorithm 

Algorithm: The Greedy algorithm 

Input: : The set of operational nodes (𝑵), the set of disrupted nodes (𝑵!), the number of RTs 

(𝑛# ), the location of gate (𝑵S3"A), berth (𝑵&A$",),  yard (𝑵23$.), and RT at depot (𝑵$,#
𝑹 ) 

Output: RT schedule for restoring the disrupted network 

1: for t=1 to 𝜏 do  

2:   Calculate the assignment cost  𝜛$,) = E𝛶$ n𝑁$,"W , 𝛼) , 𝑵!o + 𝑠[' G , ∀𝛼) ∈ 𝑵!, 𝑟 ∈ 𝑹 for all 

teams and all disrupted nodes                        

3:      Rank them 𝜛$,) in the ascending order of costs  

3:      Gradually assign the team-r to disrupted node-i based on the rank  

4:      Update the number of available teams and candidate nodes 

5: end for 

 

 

 

 


