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Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc 
(Zn), remain one of the most serious public health challenges, affecting more 
than three billion people globally. A number of strategies are used to ameliorate 
the problem of micronutrient deficiencies and to improve the nutritional pro-
file of food products. These include (i) dietary diversification, (ii) industrial food 
fortification and supplements, (iii) agronomic approaches including soil mineral 
fertilisation, bioinoculants and crop rotations, and (iv) biofortification through 
the implementation of biotechnology including gene editing and plant breeding. 
These efforts must consider the dietary patterns and culinary preferences of the 
consumer and stakeholder acceptance of new biofortified varieties. Deficiencies 
in Zn and Fe are often linked to the poor nutritional status of agricultural soils, 
resulting in low amounts and/or poor availability of these nutrients in staple food 
crops such as common bean. This review describes the genes and processes as-
sociated with Fe and Zn accumulation in common bean, a significant food source 
in Africa that plays an important role in nutritional security. We discuss the con-
ventional plant breeding, transgenic and gene editing approaches that are being 
deployed to improve Fe and Zn accumulation in beans. We also consider the re-
quirements of successful bean biofortification programmes, highlighting gaps in 
current knowledge, possible solutions and future perspectives.
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1   |   INTRODUCTION

Future projections for population and climate change give 
cause for concern in terms of increased food insecurity. 
The United Nations (2019) predicts that although the in-
crease in population growth is slower than at any time 
since the 1950s, the 2019 projection continues to suggest 
that the global population will be about 8.5 Bn, 9.7Bn and 
10.9Bn in 2030, 2050 and 2100, respectively. Despite the 
beneficial carbon fertilisation effect of rising global CO2 
concentrations, associated changes in weather patterns 
will have variable impacts on crop productivity and nu-
tritional quality highlighting the need to limit climatic 
changes induced by human activity.

The Intergovernmental Panel on Climate Change (2018) 
and others (Fawzy et al., 2020) have recommended that sig-
nificant behavioural changes are needed in all sectors of life 
if global emissions are to be reduced to limit global tempera-
ture increases to <2°C by 2100. The adverse consequences 
of climate change such as storms, floods, wildfires and 
drought are likely to affect ~68 million people and create 
economic losses of about $131 billion (Fawzy et al., 2020). 
These changes will severely impact on the global food sys-
tem, particularly agriculture, which is itself a major emitter 
(21%–37%) of greenhouse gases (GHSs; Mbow et al., 2019). 
Climatic instability will inevitably lead to decreased crop 
productivity. Irregular and/or extreme rain patterns will be 
particularly problematic for crop production in developing 
nation (Malhi et al., 2021). Developing countries are most 
affected by global temperature rise. As an example, an in-
crease of 1°C results in serious changes in yield losses were 
consistently across 5 global sites and ranged between 3.1% 
and 7.1% for soybean across countries (Zhao et al., 2017).

Elevated atmospheric CO2 (eCO2) levels tend to have 
a negative impact on the protein content of cereals and 
vegetable crops and increase secondary metabolites 
such as flavonoids and ascorbic acid (Dong et al.,  2018; 
Halford et al.,  2015). Crucially, growth under eCO2 re-
sults in reduced grain legume Fe and Zn contents (Köhler 
et al., 2019; Myers et al., 2014) although elevated tempera-
tures decreased the negative impact of eCO2 on grain le-
gume Fe and Zn levels (Köhler et al., 2019). While drought 
decreased the Fe levels of common beans, the Zn content 
was increased together with phytic acid, a key antinu-
trient that adversely affects Zn bioavailability (Hummel 
et al., 2018; Losa et al., 2022).

At a global level the interplay between agriculture, cli-
mate change, GHG emissions, food security and nutrition 
has sparked many debates such as conventional versus 
regenerative agriculture, circular versus linear produc-
tion chains and livestock versus plant-based foods. None 
of these are clear cut but the potential of plant-based 
foods, both in minimising the environmental impact of 

agriculture as well as in providing an inexpensive source 
of appropriate nutrition, especially in developing coun-
tries, cannot be understated.

2   |   IRON AND ZINC DEFICIENCY

Access to dietary Fe and Zn is strongly influenced by eco-
nomic circumstances and dietary patterns. For example, 
haem Fe, available from animal-based foods, is better ab-
sorbed (15%–40%) than non-haem Fe from plant-based 
foods (1%–15%; Shubham et al., 2020). Vegan diets, con-
sumer preferences and limited meat availability (e.g. de-
veloping countries), dictate that an adequate intake of Fe 
and Zn must come from plant-based foods. Significant 
deficiencies in these minerals are common in develop-
ing countries (Joy et al.,  2014; Ohanenye et al.,  2021; 
Wessells & Brown,  2012) where they not only have im-
pacts on human health and well-being but also negatively 
impact developing economies. For example, undernutri-
tion defined as both insufficient intake of protein and 
calories as well as deficiencies in micronutrients repre-
sent economic losses averaging 11% of GDP across Africa 
(International Food Policy Research Institute,  2016). 
Hence, strategies to enhance Fe and Zn accumulation in 
plants as well as their bioavailability to enhance effective 
absorption by the human body, are key targets for crop 
improvement worldwide. To address these issues, inter-
national consortia such as HarvestPlus, HarvestPlus Latin 
American and Caribbean (LAC) and the Pan Africa Bean 
Research Alliance (PABRA) seek to increase the Fe and 
Zn levels of beans growing in East Africa, South Asia and 
Latin America (Blair et al., 2010, 2013, 2021; Herrington 
et al., 2019; Kimani & Warsame, 2019; PABRA, 2017).

Deficiencies in Fe and Zn affect people of all ages. 
However, their effects are greatest in pregnant women 
and children, especially young infants. The Zn require-
ment for adults ranges from 8 to 11 mg/day but pregnant 
and lactating women require 11 to 13 mg/day. The require-
ment for Fe is greater, ranging from 12 to 28 mg/day for 
most adults, increasing from 30 to 38 mg/day for pregnant 
and lactating women (Dietary Reference Intakes,  2019). 
Micronutrient deficiencies (Hidden Hunger) caused by in-
adequate dietary intake, excessive losses or malabsorption 
led to a range of pathologies including anaemia, several 
chronic diseases, weakened immunity and delayed devel-
opment (Lopez et al., 2016; Maggini et al., 2018; Philipo 
et al.,  2021; Stammers et al.,  2015; Figure  1). Although 
often less apparent than starvation or protein deficiency, 
Fe and Zn deficiency is common in less developed coun-
tries, including in sub-Saharan Africa and Central and 
South America (Gupta et al., 2020; Muthayya et al., 2013; 
Rehman et al., 2020; Figure 2).
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Zn deficiency plays a part in 18%–22% of lower re-
spiratory tract infections, 11%–13% diarrheal diseases 
and 10%–22% malaria (Philipo et al., 2021; WHO, 2013). 
Fe deficiency (including anaemia) is similarly debil-
itating where it accounts for a total of 58.6 (40.14–81.1) 
million years lived with disability in 2019 (Gardner & 
Kassebaum, 2020). Moreover, the highest burden was ex-
perienced in Western Sub-Saharan Africa, South Asia and 
Central Sub-Saharan Africa. Fe deficiency and anaemia 
are especially prevalent in children and pregnant women 
in Africa, leading to impaired cognitive and physical de-
velopment and stunting in children, as well as a reduction 
in the reproductive capacity of adults (Gupta et al., 2020; 
Mwangi et al., 2017; Mwangi et al., 2021). The 2011 Kenya 
National Micronutrient Survey showed that Fe deficiency 
and Fe deficiency anaemia in pregnant women were pres-
ent at 36.1% and 26%, respectively, and in pre-school chil-
dren at 21.8% and 13.3%, respectively. Even non-pregnant 
women had a prevalence of 21.3% for Fe deficiency and 14% 
for anaemia (Kenya National Micronutrient Survey, 2011; 
Young, 2018). Fe deficiency in the pre-school population 
living in 60 villages in Western Kenya and North Rift 
Valley was reported to be 46% (in the year 2012) and 67% 
(in the year 2021), respectively (Grant et al., 2012; Oyungu 

et al., 2021). The 2011 National Micronutrient Survey also 
found that 83.3% of pre-school children, 82.3% of non-
pregnant women, 80.2% of school going children, 74.8% 
of men and 68.3% of pregnant women suffered from Zn 
deficiency.

3   |   COMMON BEANS

Common bean (Phaseolus vulgaris L.) is the most con-
sumed food grain legume worldwide, and dried beans 
are the most produced in developing countries (Gregory 
et al., 2017; Nassary et al., 2020; Rawal & Navarro, 2019). 
Land dedicated to bean production is ~33 M hectares glob-
ally, with 7.9 M hectares in Africa alone (FAOSTAT, 2019; 
Table  1). An estimated 5 million hectares are grown by 
smallholder farmers in Africa (mainly women) in sole 
stand and in association with other legumes, cereals, root 
crops and tree crops. Beans deliver dietary protein for 
>300 million people in rural and urban Eastern African 
and Latin American communities (Buruchara et al., 2011; 
Petry et al., 2015). Indeed, bean is a primary source of pro-
tein and micronutrients especially Fe and Zn for over 200 
million people in rural and poor urban communities in 

F I G U R E  1   Overview of symptoms 
and diseases associated with imbalanced 
iron (left) and zinc (right) homeostasis in 
the human body

 20483694, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fes3.406 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [05/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 27  |      Huertas et al.

Africa, who can hardly afford alternative sources of these 
nutrients on a regular basis. The average consumption 
of common beans in Latin America ranges 10–18 kg per 
person per year, whereas in East Africa the consump-
tion can be as high as 50 kg per person annually (Celmeli 
et al., 2018; Katungi et al., 2009). The highest yields (av-
eraging 2000 kg/ha) have been achieved in Europe, which 
has only a small proportion of global production by area 
(Table 1). Yields in Africa are only half those obtained in 
Europe, largely because of poor soils, in which key micro-
elements are in short supply. Hence, there are variations 
in productivity across Africa. Northern Africa achieves 
yields of 4 tonnes per hectare while the yield in Middle 

Africa are only 0.68 tonnes per hectare (FAOSTAT, 2019). 
The effects of drought and heat associated with the global 
climate change on common bean production and mineral 
content have recently reviewed by Losa et al. (2022).

Beans have a high nutritive value due to the balance 
of carbohydrates to proteins, and a high amino acid diver-
sity compared to cereals (Sa et al., 2020). At 340 calories 
per 100 g, beans not only provide energy, but they can also 
contribute up to 35% of daily protein requirements. Beans 
also contain vitamins, dietary fibre and high concentra-
tions of micronutrients. For example, common bean seeds 
have 4–10 times more Fe and 2–3 times more Zn than ce-
reals such as maize, wheat and rice (Blair, 2013; Welch & 

F I G U R E  2   World map showing the prevalence of iron and zinc deficiencies as the percentage of population with intakes below 
physiological requirements for each country. (a) Prevalence of zinc deficiency. Map generated from Wessells and Brown (2012) and updated 
according to Joy et al. (2013) and Kumssa et al. (2015). (b) Prevalence of anaemia associated mainly to iron deficiency among preschool-age 
children (6–59 months). (c) Prevalence of anaemia among women of reproductive age (15–49 years). Map generated from WHO data (2019); 
accessed September 2021
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Graham, 2004). Bean Fe levels are generally in the range 
of 61–71 mg/kg. However, values as low as 34 mg/kg or as 
high as 152 mg/kg have been reported in some genotypes. 
Similarly, average Zn content ranges from 28 or 31 mg/kg, 
with extremes of 18 and 77 mg/kg (Beebe, 2020; Caproni 
et al.,  2020; Glahn & Noh,  2021; Gunjaca et al.,  2021; 
Katuuramu et al., 2021; Murube et al., 2021).

Countries of sub-Saharan Africa will account for more 
than half of the growth of the world's population between 
2019 and 2050, increasing the necessity for a sustainable 
provision of nutritious food. Common bean has an im-
portant role to play in this regard and it is thus likely to 
become an increasingly significant food source in Africa 
where they are predicted to play an essential role in nutri-
tional security (de Valença et al., 2017; Moloto et al., 2018; 
Philipo et al., 2021). To meet increases in demand, annual 
yields have been increasing by over 2% per year between 
2006 and 2018 in primary African production centres in 
Eastern, Southern and Western Africa. This translates 
to annual production increases as high as almost 8% in 
Western Africa, where yield increases have been matched 
by significant expansion (>5% per annum) of the produc-
tion area (Farrow & Muthoni-Andriatsitohaina, 2020).

African soils are often low in essential nutrients, par-
ticularly Zn (Hengl et al., 2017). Correlations between soil 
and leaf Zn levels have been reported for a range of staple 
crops (Kihara et al., 2020). Although Fe is not a major mi-
cronutrient that limits crop yields, significant variations 
in the Fe contents of staple crops have been reported 
and these have been linked to soil Fe availability (Gashu 
et al., 2021). Soil Fe status can therefore be an important 
factor in dietary availability. Fertilisation with Zn-based 
fertilisers at a time that ensures grain Zn enrichment 
can be cost-effective and efficient (De Groote et al., 2021; 
Praharaj et al., 2021). A number of assessments and pro-
grammes for bean improvement seeking to enhance the 
levels of these micronutrients (Beebe et al.,  2000) have 
been undertaken in recent years (Assefa et al.,  2019; 
Mukankusi et al., 2019). Indeed, an extensive international 

programme for the development and dissemination of 
micronutrient dense bean varieties in Africa started in 
2004. The programme was supported by the Association 
of Strengthening Agricultural Research in East and Central 
Africa (ASARECA) through the East and Central Africa 
Bean Research Network (ECABREN). ASARECA is a sub-
regional organisation comprising of 11 member coun-
tries: Burundi, Democratic Republic of Congo, Ethiopia, 
Eritrea, Kenya, Madagascar, Tanzania, Rwanda, Sudan, 
South Sudan and Uganda. The programme was based 
at the College of Agriculture and Veterinary Sciences, 
University of Nairobi in Kenya.

Moreover, there has been an increased focus on the 
bioavailability of Fe and Zn, and how it is affected by food 
preparation approaches such as soaking, boiling, roasting, 
dehulling, germination, fermentation, supplementation 
with various chemicals and enzymes and, more recently, 
extrusion cooking (Kinyanjui et al.,  2015). Indeed, the 
International Center for Tropical Agriculture (CIAT) in 
consultations with nutritionists established a breeding 
goal level of 94 mg/kg Fe above the value of a standard 
local variety to achieve 30% of average daily Fe require-
ment, assuming 7% bioavailability, 90% retention after 
cooking, and a high level of consumption of 200 g/day for 
adults and 100 g/day for children (Beebe, 2020).

4   |   PLANT IRON AND ZINC 
REQUIREMENTS

Fe and Zn are essential plant cofactors with key roles in 
important plant processes such as photosynthesis, respi-
ration and stress tolerance (Rout & Sahoo, 2015; Sharma 
et al.,  2013; Tripathi et al.,  2018). In addition, Fe- and 
Zn-dependent processes are crucial for the establish-
ment of endosymbiotic associations with arbuscular my-
corrhiza and with soil rhizobia in legume nodules (Day 
& Smith, 2021; Gonzalez-Guerrero et al.,  2016). Fe defi-
ciency leads to chlorosis and decreased vegetative growth, 

Area harvested Yield Total production

Mha % kg/ha % Mt %

Europe 0.2 0.6 1806.1 33.3 0.4 1.3

Asia 18.3 55.5 783.6 14.5 14.4 49.7

Americas 6.5 19.8 1075.7 19.9 7.0 24.4

Africa 7.9 23.9 893.4 16.5 7.1 24.4

Oceania 0.1 0.3 857.7 15.8 0.1 0.3

Worldwide 33.1 5416.5 28.9

Source: Food and Agriculture Organization Statistical Databases (FAOSTAT) was used to develop this 
table (Data: 2019; Accessed: September 2021).
Mha = a million of hectares (ha); Mt = megatonne, a million of metric tonnes (tonnes).

T A B L E  1   Harvested area, yield and 
total production of dry beans by continent 
and worldwide
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resulting in poor crop yield and quality. In comparison, 
plants have a relatively low requirement for Zn, even 
though it is an important micronutrient being an essen-
tial component of enzymes such as Cu, Zn superoxide 
dismutase and required for processes such as auxin me-
tabolism and chlorophyll synthesis (Sharma et al., 2013).

While Fe-deficiency is crucial to plant productivity, 
excess Fe is equally problematic, particularly in flooded 
soils, in which Fe is present mainly as soluble Fe2+ due 
to the low redox potential that prevails under anaerobic 
conditions and low pH. Fe toxicity is a serious stress that 
adversely affects the growth of crops such as wetland rice 
in Asia and West Africa (Sahrawat, 2005). Excess soil Fe 
availability can impair the acquisition of other nutrients 
(Leskova et al., 2021; Xue et al., 2016). Hence, cellular Fe 
homeostasis is tightly controlled. Fe deposits at the root 
surface can form a physical barrier to prevent unneces-
sary Fe uptake, while reduced Fe translocation from roots 
to shoots and storage of Fe in different sub-cellular com-
partments, particularly in the apoplast and vacuoles, are 
thought to alleviate Fe toxicity. The main function of the 
ferritin proteins, which can store up to 4000 Fe atoms, is 
to limit cellular Fe concentrations to levels (10−3–10−5 M) 
that are commensurate with metabolic functions (Briat 
et al., 2010). In addition, ferritin also plays an important 
role in the defence against pathogens (Aznar et al., 2015).

There have been a number of excellent recent reviews 
describing Fe and Zn metabolism and translocation in 
plants, together with the associated regulatory mechanisms 
(Balafrej et al., 2020; Curie & Mari, 2017; Dey et al., 2020; 
Gao & Dubos,  2021; Rai et al.,  2021; Ram  et al.,  2021; 
Rehman et al., 2021; Sperotto et al., 2018; Whitt et al., 2020; 
Yadav et al., 2021). Such reviews often focus on cereal crops 
such as wheat, rice and barley (Detterbeck et al.,  2020; 
Huang et al., 2020; Pandit et al., 2021; Pradhan et al., 2020; 
Xia et al.,  2020). Despite this extensive knowledge, rela-
tively little information is available on these processes in 
legumes, particularly common bean. We have summarised 
current knowledge in Figure  3, which provides a sche-
matic model of the regulation of Fe and Zn homeostasis 
in plants, highlighting findings in legumes and beans. 
There are a number of possible rate-limiting steps for Fe 
and Zn accumulation in seeds, which are potential targets 
for biofortification. These are Fe and Zn uptake from soil 
and transport from the root, the storage of Fe and Zn in 
photosynthetic and metabolic proteins, and their eventual 
remobilisation at grain filling. These processes also require 
a knowledge of the loading and transport processes in the 
phloem and unloading processes in the seed. All of these 
processes are likely to require the input and regulation of 
multiple genes, many of which are yet to be identified, 
particularly in legumes (Roorkiwal et al., 2021; Sperotto & 
Ricachenevsky, 2017).

5   |   UPTAKE FROM RHIZOSPHERE 
AND MOBILISATION INTO THE 
ROOT CELLS

Plants absorb mineral nutrients through root cells and root 
system architecture (RSA), the spatial three-dimensional 
roots arrangement, determines the active root surface area 
and allows the exploration and uptake of mineral nutri-
ents from the soil (Li et al., 2016). Reduced soil nutrient 
availability leads to specific RSA phenotypes. In general, 
limited Fe availability inhibits lateral root length and 
slightly reduces branching, while Zn limitation also inhib-
its lateral root growth but stimulates branching (Shahzad 
& Amtmann, 2017).

Plants have evolved two main strategies for uptake of 
Fe using a combination of reduction and chelation mech-
anisms (Connorton et al., 2017). Dicotyledonous and non-
graminaceous plants utilise strategy I, which requires the 
combined action of specific enzymes and transporters to 
mobilise soil nutrients making them available for uptake 
by roots. Root plasma membrane H+-ATPase (HA2-like) 
family members increase the solubility of insoluble ferric 
ions (Fe3+) by acidification of the rhizosphere in the im-
mediate vicinity of the roots. Fe3+ is then reduced by the 
activity of apoplastic ferric reduction oxidase (FRO2-like) 
prior to transport across the epidermal cell membranes. 
Fe2+ is translocated by two classes of Fe2+ transport pro-
tein families: ZIP [Zinc resistance transporter (ZRT)/
Iron-Regulated Transporter (IRT) – Related Protein] and 
DMT/NRAMP [Divalent Metal ion Transporter 1 (DMT)/
Natural Resistance Associated Macrophage Protein 1 
(NRAMP)] (Roorkiwal et al.,  2021). Induction of these 
molecular components is accompanied by changes in 
root morphology and architecture, particularly increases 
in secondary and lateral roots, absorbent hairs and 
transfer cells (Fukao et al.,  2011; Reyt et al.,  2015). The 
intracellular Fe and Zn trafficking and subcellular homeo-
stasis in organelles have been recently reviewed by Vigani 
et al.  (2019) and Przybyla-Toscano et al.  (2021) showing 
that different members of the same family (e.g. FRO) have 
specific roles in subcellular compartments in addition to 
an organ-specific role. The expression of the FRO, ZIP and 
NRAMP genes is controlled by the Fe content of the soil 
and is also regulated by different transcription factors, as 
discussed later in this review.

Fe and Zn move through the root via symplastic and/
or apoplastic pathways. Metabolites such as citrate and 
nicotianamine (NA), and also histidine and glutathione 
have been implicated in this transport. Such metabo-
lites act as chaperones limiting precipitation and poten-
tial damage (Clemens,  2019; Curie et al.,  2009). Free Fe 
is thought to form Fe3+-citrate, Fe3+-NA and Fe2+-NA 
complexes in the cytoplasm of dicotyledonous plants. 
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In contrast, monocotyledonous species utilise strategy II 
(chelating strategy) in which phytosiderophore (PS) ni-
cotianamine (NA), which bind Fe3+, are released into the 
rhizosphere (Kobayashi et al.,  2010). The Fe3+-PS com-
plexes are taken up by specific transporters belonging to 

the YS1/YSL [YELLOW-STRIPE 1 (YS1)/YS1-LIKE (YSL)] 
family (Schaaf et al., 2004; Xiong et al., 2013). The YSL3 
and YSL1 proteins are strongly expressed in the leaf vas-
culature where they function to take up Fe that arrives in 
leaves via the xylem (Waters et al., 2006). In the following 

F I G U R E  3   Schematic diagram of a mechanistic model representing current knowledge about the physiological processes, genetic 
elements and minerals movement involved in Fe and Zn homeostasis in common bean. Source–sink relationships are represented according 
to the detailed information provided in the main text: Uptake strategies from rhizosphere and mobilisation into the root cells, root-to-shoot 
translocation via xylem, mineral partitioning to the phloem and seed mineral loading, including intracellular compartmentalisation
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discussion, we will focus on the genes and processes that 
have been identified and characterised in common bean.

The common bean genome contains putative homo-
logues for all the components of uptake and chelation. 
This includes genes encoding several FRO proteins and 
up to 13 HA2-like proteins (Table  S1). Three putative 
FRO-like genes are associated with Fe and Zn content in 
beans (Izquierdo et al.,  2018). However, they have little 
homology to the Arabidopsis FRO2 genes and are cur-
rently annotated as Cytochrome b561/ferric reductase 
transmembrane proteins (Table S1). Attempts have been 
made to identify IRT1 homolog genes in common bean. 
The H+-ATPase and IRT1 proteins accumulate in root 
nodules under Fe deficiency (Slatni et al., 2012), further-
more Castro-Guerrero et al. (2016) described an IRT1-like 
gene that acts as a ZIP2 Zn transporter (Astudillo-Reyes 
et al., 2015). Several NRAMP genes have been identified in 
legumes, with 13 members in soybean (Qin et al., 2017) and 
seven in Medicago truncatula (Tejada-Jimenez et al., 2015). 
While only one NRAMP gene has been reported in peanut 
(Xiong et al., 2012), seven NRAMP genes have been iden-
tified in common bean. Analysis of their tissue-specific 
expression patterns suggests that PvNRAMP1, −2, −3, −4 
and −5 are involved in mineral uptake and mobilisation. 
The expression of PvNRAMP4 in the suspensor cells sug-
gests a role in translocation of divalent cations from the 
endosperm to the embryo (Ishida et al., 2018). PvNRAMP9 
is the only member of this family that shows differential 
expression in relation to the bean genotypes with con-
trasting seed Zn content (Astudillo-Reyes et al.  (2015). 
Two others putative NRAMP genes have been linked to 
the Fe and Zn contents of beans (Izquierdo et al., 2018). 
However, only one of these (PvNRAMP2) is annotated as 
a transporter (Table S1).

The NRAMP family proteins transport a wide range 
of metals, including Fe2+, Mn2+, Co2+ and Zn2+ (Nevo & 
Nelson,  2006). The rice (Yamaji et al.,  2013) and barley 
NRAMP transporters (Wu et al., 2016) typically transport 
Mn2+ and other minerals. The CjNRAMP1 transporter 
from the legume Crotalaria juncea (Nakanishi-Masuno 
et al.,  2018) and MtNRAMP1 from Medicago truncatula 
(Tejada-Jimenez et al., 2015) transport Cd2+ and Mn2+, as 
well as Fe2+ when expressed in heterologous systems. Zn 
is usually taken up as Zn2+ by the NRAMP transporters 
in the root epidermal cells. However, the IRT1-like pro-
teins can also transport Zn (Eide et al., 1996; Korshunova 
et al., 1999).

Several mechanisms of Fe uptake have been re-
ported in legumes. These include the aforementioned 
soil acidification but also the secretion of second-
ary metabolites that serve to mobilise insoluble Fe3+. 
Arabidopsis roots secrete phenolic compounds such as 
flavins and coumarins to mobilise Fe from alkaline soils 

(Fourcroy et al., 2016; Robe et al., 2021; Rodriguez-Celma 
et al., 2013). Similarly, the roots of the legume Medicago 
truncatula increase flavin synthesis to release insoluble 
Fe (Rodriguez-Celma et al.,  2013). Efflux transporters 
such as the ABC (ATP-biding cassette) family transporter 
PDR9/ABC37 [pleiotropic drug resistance 9 (PDR9)/ATP-
binding cassette G37 (ABC37)] and the paralog phenolics 
efflux zero (PEZ) transporters serve to transport phenolic 
compounds into the rhizosphere (Fourcroy et al.,  2016; 
Ishimaru et al., 2011). Of the 136 ABC transporters en-
coded in the bean genome, 26 proteins have a high iden-
tity to the PEZ1/ABCG37/PDR9 transporters (Table S1). 
Although there is a lack of direct evidence for phytosid-
erophore secretion from peanut roots, this species is able 
to take up the Fe3+ released by the phytosiderophore (PS) 
deoxymugineic acid (DMA) via a functional Fe3+–DMA 
transporter in the root epidermis. This process involves 
a member of the YS1/YSL family of transporters (Schaaf 
et al.,  2004; Xiong et al.,  2013). The ZIFL/TOM [Zinc-
Induced Facilitator-Like (ZIFL)/Transporter Of Mugineic 
acid (TOM)] family of proteins is important in DMA se-
cretion from roots, as well as PS and NA transport and 
Zn homeostasis (Ricachenevsky et al.,  2015). The ZIFL 
transporters in rice and Arabidopsis show tissue-specific 
expression, with overlapping expression patterns in re-
sponse to changes in Fe and Zn levels (Ricachenevsky 
et al.,  2011). Common bean has 10 putative ZIFL fam-
ily members (Table S1), that may have specific roles. For 
example, PvZFL1 and PvZFL10 were found to have dif-
ferential expression patterns in two bean genotypes with 
contrasting seed Zn concentrations (Astudillo-Reyes 
et al., 2015).

6   |   ROOT-TO - SHOOT 
TRANSLOCATION VIA XYLEM

Root and shoot processes are closely co-ordinated to max-
imise nutrient uptake. The networks of genes involved 
in the root responses of Strategy I and Strategy II plants 
to Fe-deficiency have been characterised. However, the 
signalling pathways that control these processes at the 
whole plant level remain poorly understood, particularly 
in legumes where relatively few components involved in 
shoot-to-root communication of Fe deficiency have been 
identified.

Information concerning the Fe-status of Strategy I 
shoots is transmitted to the roots to activate Fe-starvation 
responses (García-Mina et al., 2013). Similar processes are 
thought to be involved in the shoot-dependent activation 
of Fe-deficiency responses in Strategy II plants. Such re-
sponses require systemic signalling pathways that control 
root Fe uptake in response to Fe deficiency in the shoots. 
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These systemic pathways involve auxin, Fe-nicotianamine 
transporters and the IRON MAN (IMA) peptides (Garnica 
et al., 2018; Grillet et al., 2018; Kumar et al., 2017). The 
IMA peptides control Fe transport and signalling in 
Arabidopsis. Other potential Fe sensors include the 
rice HEMERYTHRIN MOTIF-CONTAINING REALLY 
INTERESTING NEW GENE (OsHRZ1) and the ZINC-
FINGER PROTEIN 1 (OsHRZ2), which negatively regu-
late Fe homeostasis. The IMA peptides work together with 
BRUTUS (BTS), which negatively regulates Fe homeosta-
sis by promoting the ubiquitin-mediated degradation of 
bHLH105 and bHLH11 that are positive regulators of the 
Fe deficiency response. The IMA peptides sequester BTS 
and thus activate the Fe deficiency response by protecting 
bHLH105/bHLH115 from degradation (Li et al., 2021). A 
light-dependent systemic signal transduction (phyB-HY5-
FER) loop was found to regulate Fe uptake in tomato roots. 
This loop involves the phytochrome B (phyB)-induced ac-
cumulation of the basic leucine zipper (bZIP) transcrip-
tion factor called ELONGATED HYPOCOTYL 5 (HY5) 
in leaves and roots. HY5 movement from shoots to roots 
activates the expression of FER and increased Fe uptake 
(Guo et al., 2021).

The flow of chelated Fe- and Zn-complexes through 
the plant requires transporters for xylem loading, as well 
as short- and long-distance transport (Curie et al., 2009). 
The YSL family transporters are required for the move-
ment of chelated Fe into the pericycle prior to loading into 
the xylem, where the pH of the xylem is likely to favour 
the generation of citrate-Fe3+ complexes (Clemens, 2019; 
Palmer & Guerinot, 2009). This is supported by FERRIC 
REDUCTASE DEFECTIVE (FRD) and FRD-like (FRDL) 
transporters that belong to the Multidrug and Toxic com-
pound Extrusion (MATE) family and are responsible for 
citrate efflux into the root xylem (Yokosho et al.,  2016). 
Other metal complexes such as Fe3+-DMA and Zn2+-DMA 
are found in the xylem sap of graminaceous (Nishiyama 
et al.,  2012; Xuan et al.,  2006) and non-graminaceous 
plants (Suzuki et al.,  2016) suggesting that metal com-
plexes with organic molecules other than citrate play an 
important role in xylem transport.

Citrate efflux-mediated transport by FRD/FRDL is 
coordinated with Fe efflux to the xylem. Three poten-
tial Fe transporters of the IRON REGULATED protein/
Ferroportin/MULTIPLE ANTIBIOTIC RESISTANCE 
(IREG/FPN/MAR) family have been identified in 
Arabidopsis of which IREG1/FPN1 is likely to control 
Fe efflux from the pericycle to the xylem (Morrissey & 
Guerinot, 2009). Something similar appears to occur in le-
gumes where ferric-citrate complexes have been observed 
in soybean and high xylem citrate levels, dependent on 
the coordinated action of the GmFRD citrate transporters 
are required for efficient root-to-shoot Fe translocation 

(Rogers et al., 2009). The common bean genome encodes 
two putative PvIREG1/FPN1-like and one MAR1-like 
transporter as well as six FRD/FRDL proteins (Table S1).

Fe is required for the enzymes catalysing symbiotic 
nitrogen fixation in legumes. Transporters that main-
tain the Fe3+-citrate levels in nodules have been reported 
in Medicago truncatula, Lotus japonicus and soybean. 
MtMATE67 is responsible for citrate efflux (Kryvoruchko 
et al.,  2018), while Fe2+ uptake requires MtNRAMP1 
(Tejada-Jimenez et al.,  2015). The soybean GmDMT1 
transports Fe2+ (Kaiser et al.,  2003) while GmMATE75, 
GmMATE79 and GmMATE87 are root citrate transporters 
(Zhou et al., 2019). The LjMATE1 citrate transporter pro-
vides Fe to the infection zone of Lotus japonicus nodules 
(Takanashi et al.,  2013). Three MATE transporters have 
been linked to Fe and Zn homeostasis in beans (Izquierdo 
et al., 2018).

Members of the PIB-type heavy metal ATPase (HMA) 
family are involved in loading Zn into the xylem, while 
the ZIP family transporters are mainly involved in Zn 
transport and homeostasis at the whole plant level 
(Ajeesh Krishna et al., 2020; Hussain et al., 2004). Several 
Quantitative Trait Loci (QTLs) have been linked to seed 
Fe and Zn concentrations in chickpea. These include 
HMA- and ZIP-like transporters (Upadhyaya et al., 2016). 
The common bean genome encodes 13 HMA transporters 
(Astudillo et al., 2013; Astudillo-Reyes, 2014), and 20 an-
notated PvZIP (Table S1). The expression levels of seven 
PvZIP genes have been analysed, revealing tissue-specific 
expression patterns in response to Zn deficiency. PvZIP12, 
PvZIP13 and PvZIP16 genes are expressed in roots, leaves 
and pods. PvZIP12 is highly expressed in leaves at the 
vegetative stage, while PvZIP13 is expressed in leaves at 
flowering (Astudillo-Reyes et al., 2015). These data indi-
cate that tissue-specific isoforms of ZIP-like transporters 
are likely to be involved in Zn homeostasis in different tis-
sues with combined transcriptional and genetic analysis 
highlighting PvZIP13, PvZIP18 and in particular PvZIP12 
as strong candidates for mobilisation and transport of Zn 
to bean seeds (Astudillo et al., 2013). On the other hand, 
a meta-QTL study linked PvZIP17 and PvZIP19 to seed 
Fe and Zn accumulation in a wider pool of common bean 
germplasm (Izquierdo et al., 2018). Of the 20 PvZIP genes 
identified in common bean, 11 are currently annotated 
as Zn transporters, while the rest are annotated as Fe/Zn 
transporters (Table  S1). This classification is similar to 
Arabidopsis, in which eight of the 15 ZIP genes are in-
duced by Zn deficiency (Thiébaut & Hanikenne,  2022). 
The large number of ZIP transporters may infer a degree 
of redundancy where IRT3, ZIP4, ZIP6 and ZIP9 have 
overlapping functions in Arabidopsis, each contributing 
to the maintenance of Zn homeostasis during seed devel-
opment (Lee et al., 2021).
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7   |   IRON AND ZINC 
PARTITIONING TO THE PHLOEM

The pH of the phloem sap favours the formation of 
NA-Fe2+ and NA-Zn2+ complexes, which can be trans-
ported throughout the plant (Clemens,  2019; Palmer & 
Guerinot,  2009). Arabidopsis has four nicotianamine 
synthase (NAS) genes that are differentially expressed 
in a tissue-specific manner, in response to Fe deficiency 
(Klatte et al.,  2009). Common bean has three genes en-
coding putative NAS proteins (Table  S1). One of these 
may serve a role in seed Fe and Zn accumulation since 
it underlies a QTL for this trait (Izquierdo et al.,  2018). 
The rice EFFLUX TRANSPORTER OF NA (ENA)-like 
transporters were originally characterised via their NA 
transport capabilities in Xenopus laevis oocytes (Nozoye 
et al., 2011). More recently, functional studies have sug-
gested a role for ENA1 in the long-distance transport of 
Fe where ENA1 expression in shoots was limited to the 
xylem–phloem translocation interface at the root-to-shoot 
junction (Nozoye et al.,  2019). Recently, two members 
of the nitrate/peptide transporter family (NAET1 and 
NAET2) were shown to be important for the NA efflux 
required for Fe translocation to Arabidopsis seeds (Chao 
et al., 2021). These proteins were shown to be NA trans-
porters by heterologous expression in yeast cells engi-
neered to synthesise NA. Although the single naet1 or 
naet2 Arabidopsis mutants had wild-type phenotype, the 
naet1naet2 double mutants exhibited chlorosis and em-
bryo development defects combined with reduced seed 
NA contents and a severe reduction in the Fe content of 
the sink tissues (flowers, seeds, young leaves). Only one 
putative NAET-like transporter has been identified in the 
common bean genome. This may represent a useful target 
in future biofortification strategies (Table S1).

YSL transporters are a subfamily of the Oligopeptide 
Transporter (OPT) family that belongs to the major facil-
itator superfamily. The YSL transporters are required for 
the import of chelated Fe into the roots and also radial 
transport in the roots before translocation to the shoots 
(Araki et al., 2011; Schaaf et al., 2004; Xiong et al., 2013; 
Zheng et al.,  2011). YSL proteins mediate long-distance 
trafficking of metal-NA complexes, and they are important 
in remobilising intracellular Fe and Zn reserves. The OPT 
genes show organ-specific and tissue-specific expression 
patterns (Su et al., 2018). These transporters participate in 
the transfer of Fe from the xylem to the phloem and regu-
late both shoot-to-root Fe signalling for Fe/Zn/Mn status, 
and Fe remobilisation from mature to developing tissues 
(García et al., 2013; Ishimaru et al., 2010; Mendoza-Cózatl 
et al., 2014; Zhai et al., 2014). The import and storage of 
Fe and Zn for processes such as photosynthetic and mi-
tochondrial electron transport in leaves and reproductive 

organs (see Vigani et al. (2019 and references therein). This 
process involves ferroportin (FPN; Kim et al., 2021) and 
the mitochondrial Fe transporter (MIT; Jain et al., 2019), 
which co-ordinate import with the assembly of cofactors, 
so as to avoid the uncontrolled generation of ROS (reac-
tive oxygen species; Lopez-Millan et al., 2016).

Studies using labelled 55Fe supplied to castor bean 
seedlings suggested that Fe translocation was mediated via 
chelation to proteins. Much of the 55Fe in the phloem sap 
was recovered in the protein fraction following size exclu-
sion chromatography. This Fe was bound to a low molec-
ular weight protein of the Late Embryogenesis Abundant 
family subsequently named ITP (Iron Transport Protein; 
Kruger et al., 2002). Such data led to the hypothesis that 
while NA serves as a shuttle facilitating the translocation 
of Fe into and out of the phloem, long-distance transport 
within the phloem requires a peptide chelator (Morrissey 
& Guerinot, 2009).

8   |   SEED MINERAL LOADING

Since Fe and Zn are required for embryogenesis 
(Connorton et al., 2017), seed development is contingent 
on the activity of YSL/OPT transporters (Mari et al., 2020; 
Senoura et al., 2017; Stacey et al., 2008; Zang et al., 2020). 
These transporters participate in the unloading of NA-
metals from the phloem into the seeds for subsequent use 
in the cells or storage, processes that require the coordi-
nated action of the Vacuolar-Iron Transporter-Like (VTL; 
Eroglu et al.,  2019; Kim et al.,  2006; Mari et al.,  2020; 
Ram et al.,  2021; Zhang et al.,  2012), NRAMP (Bastow 
et al., 2018; Lanquar et al., 2005; Mari et al., 2020; Mary 
et al., 2015) and metal tolerance protein (Chu et al., 2017) 
transporters. Comparisons of the expression profiles of 
these genes from common bean pods with differential Zn 
seed contents, led Astudillo-Reyes et al. (2015) to speculate 
that the observed variations were caused by differences in 
the Zn storage capacity of organs other than seeds.

The common bean genome encodes 19 putative YSL/
OPT proteins (Table  S1) of which four are annotated as 
metal-NA YSL transporters and the rest as OPT transport-
ers. Astudillo-Reyes et al. (2015) described nine YSL pro-
teins in two navy bean genotypes although two of these 
are not recorded in the Phytozome database. Studies using 
a combination of QTL mapping, SNP analysis and gene 
expression analysis implicated YSL transporters in loading 
Fe and Zn into chickpea seeds (Upadhyaya et al., 2016). 
The common bean genome has nine putative NRAMP 
and 11 VTL sequences. Four of the 15 members described 
by Astudillo-Reyes et al. (2015) do not appear to be VITs 
(Table S1).
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The differential distribution and accumulation of 
Fe, and Zn, in the different seed cell layers of the seeds 
is likely to result from variations in transporter function. 
About 50% of these minerals found in Arabidopsis seeds 
are concentrated in the vacuoles of the radicle and coty-
ledons of the embryo (Rehman et al., 2021). On the con-
trary, most of the Fe (71%–94%) is stored in the cotyledons 
of common bean seeds with the remainder distributed 
between the seed coat (3%–26%) and the embryo axis (1%–
4%; Ariza-Nieto et al., 2007; Zeffa et al., 2021). Similarly, 
approximately 90% of the Zn is stored in the cotyledons 
while the rest is distributed between the seed coat (~6%) 
and the embryo axis (~5%; Zeffa et al., 2021).

Fe and Zn must be stored in a stable form that can be 
remobilised during germination. Between 15% and 30% of 
the Fe is bound to ferritin in common beans seeds, while 
70%–85% is in the form of non-ferritin-bound Fe, possibly 
bound to phytate (Hoppler et al., 2009). Phytate and its de-
rivatives are the most abundant (65%–85%) storage form 
of phosphorus in seeds which is needed for important 
cellular functions during germination and seedling devel-
opment (Madsen & Brinch-Pedersen, 2020). It also seems 
likely that phytate, or a derivative, forms Zn complexes in 
seeds (Neal et al., 2013; Zhang et al., 2020). The capacity of 
phytates to bind minerals means they act as antinutrients 
in the human diet as the human intestine lacks phytate-
degrading enzymes required to allow absorption of phytate 
chelated minerals (Iqbal et al., 1994). Phytate distribution 
is similar to that of Fe and Zn in common bean seeds with 
between 94 and 98% of the total localised to the cotyle-
dons (Ariza-Nieto et al., 2007). A recent review (Colombo 
et al., 2020) has discussed how the accumulation of phytate 
in the vacuole is associated with members of the MRP/ABC 
[Multidrug Resistance-associated Protein (MRP) ATP-
binding cassette (ABC)] transporter subfamily in a wide 
variety of plant species, including Arabidopsis, rice, soy-
bean and common bean (Cominelli et al., 2018). However, 
these are not the only transporters and enzymes associated 
with phytate accumulation (Cominelli et al., 2020b, 2020c).

Ferritin proteins (Fer) are found mainly in plastids, but 
also in the mitochondria (Chiou & Connor,  2018). They 
are comprised of a polymeric shell that is usually com-
posed of 24 identical polypeptides surrounding an Fe core 
(Zielinska-Dawidziak,  2015). Fer–Fe complexes are an 
excellent bioavailable source of Fe because the proteins 
are denatured at the high temperatures obtained during 
cooking to release free Fe (Hoppler et al.,  2008; Moore 
et al.,  2018). In one study, up to 90% of Fe was reported 
to be ferritin-bound in soybean seeds (Ambe et al., 1987). 
However, other reports suggest lower levels of ferritin-Fe in 
pulse legumes which ranged from 18% to 49% in soybeans, 
52%–62% in dry peas, 69% in lentils and 15%–29% in com-
mon beans (Hoppler et al.,  2008, 2009; Lonnerdal,  2009). 

Although soybean ferritin has been the target of many 
studies on seed Fe accumulation, it has not been evaluated 
in other legumes (Sperotto et al., 2018), although the FER 
genes have been a target for genetic engineering to increase 
bioavailable Fe in common bean seeds (Table S1; Sperotto 
& Ricachenevsky,  2017). However, not all FER genes are 
expressed in the seeds (Ravet et al.,  2009) and some are 
responsible for the control of Fe-induced oxidative stress 
and regulation of Fe homeostasis in other tissues (Parveen 
et al.,  2016; Reyt et al.,  2015). More detailed studies are 
therefore required to determine which FER genes are the 
best targets for manipulation in common bean seeds. Other 
studies have indicated that while high concentrations of 
Fe (up to 0.5  mg/kg) accumulate around the provascular 
tissues in P. vulgaris, ferritin is mainly accumulated in the 
amyloplasts of the embryonic cells (Cvitanich et al., 2010).

9   |   TRANSCRIPTIONAL 
REGULATION OF IRON AND ZINC 
HOMEOSTASIS

Although Fe and Zn homeostasis are controlled at multiple 
levels, much emphasis has been placed on the regulation 
of gene expression (Gao & Dubos,  2021; Velez-Bermudez 
& Schmidt,  2021). The expression of the IRT1 and FRO2 
genes is regulated by the bHLH29-like transcription factor 
(TFs) called FER-LIKE IRON DEFICIENCY INDUCED 
TRANSCRIPTION FACTOR (FIT). FIT activity is controlled 
by the interaction of many other bHLH TFs (bHLH38, 
bHLH39, bHLH100 and bHLH101, bHLH18, bHLH19, 
bHLH20 and bHLH25). A second layer of positive regula-
tion involves bHLH105, bHLH34, bHLH104 and bHLH115. 
There are a range of negative regulators such as the bHLH47, 
bHLH11 and bHLH121. Three bHLH TFs have been char-
acterised in soybean with respect to Fe and Zn homeostasis 
(Li et al., 2018; Xu et al., 2017). Two of these exhibit tissue-
specific expression patterns in the root and nodule where 
their expression is primarily controlled by Fe availability (Li 
et al.,  2018). While transcriptomic approaches have been 
previously used to identify the transcriptional regulators of 
Fe and Zn uptake and transport in common beans, reports 
were limited to biological activities (Santos et al.,  2013) 
or the information on transcriptional regulators is scarce 
(Astudillo-Reyes et al., 2015). Homologs of some of the po-
tential regulators can be identified through a BLAST search 
of the Phytozome database (Table S1). As discussed previ-
ously, the transcriptional control of Fe uptake is partially 
regulated by the E3 ligase activity of BRUTUS/HRZ-like 
proteins, which target some of the bHLH TFs for degrada-
tion (Hindt et al., 2017; Kobayashi et al., 2013).

Three putative BRUTUS/HRZ-like proteins were iden-
tified in common bean (Sperotto & Ricachenevsky, 2017) 
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but only two appear to be true BRUTUS/HRZ-like pro-
teins (Table  S1). This regulatory mechanism is complex 
because BRUTUS can interact with small peptides such as 
IMA/FEP [IRON MAN (IMA)/FE UPTAKE-INDUCING 
PEPTIDE (FEP)]. FEP is considered to be an important 
positive regulator of Fe acquisition, acting as a phloem-
mobile signal (Grillet et al., 2018; Hirayama et al., 2018; 
Kobayashi et al., 2021) that maintains Fe homeostasis in 
Arabidopsis (Li et al.,  2021). The IMA/PEP peptides se-
quester BTS and thus activate the Fe deficiency response 
by protecting bHLH105/bHLH115 from degradation (Li 
et al.,  2021). To date, IMA/FEPs have been identified in 
several different species, including soybean (Kobayashi 
et al., 2021). While none of these peptides are expressed 
in seeds, the overexpression of IMA/FEPS results in in-
creased Arabidopsis and rice seed Fe contents (Grillet 
et al., 2018; Hirayama et al., 2018; Kobayashi et al., 2021).

A genome-wide association study recently identified 
a further ubiquitin-protein E3 ligase associated with seed 
Zn contents. The Phvul.001G233500 gene encodes an 
SDIR1-like protein that is involved in the regulation of 
abscisic acid signalling (Caproni et al., 2020). In addition 
to the bHLH TFs, several bZIP TFs are induced by Zn de-
ficiency and are involved in the control of the expression 
of ZIP transporters (Castro et al., 2017; Lilay et al., 2020; 
Sinclair & Kramer,  2012). They have also recently been 
described as Zn sensors (Lilay et al.,  2021). Three com-
mon bean bZIP TFs (Table S1) are differentially expressed 
in response to mineral deficiency. PvbZIP1 is highly ex-
pressed in leaves and pods while the other two (PvbZIP2 
and 3) are associated with QTLs for seed Zn accumulation 
(Astudillo et al., 2013). However, no differences were re-
ported in the expression of these TFs in comparisons of 
pods from two bean genotypes with contrasting seed Zn 
content (Astudillo-Reyes et al., 2015).

The Arabidopsis INO (INNER NO OUTER) is a mem-
ber of the YABBY TF family. INO negatively regulates 
NRAMP expression by targeting the promoter region to 
regulate seed Fe loading. Four INO TFs are present in 
the common bean genome (Table  S1). Tissue-specific 
regulation of the expression of these genes during em-
bryogenesis and seed development could have great bio-
technological potential (Sun et al., 2021). Other regulators 
such as nitric oxide (NO) may be involved in the control of 
the expression of the enzymes and proteins modulating Fe 
homeostasis (Tewari et al., 2021).

10   |   BIOAVAILABILITY OF FE 
AND ZN

Biofortified legumes and other crops have so far not 
clearly demonstrated the relationship between enhanced 

dry seed content of Fe and Zn and increased bioavailabil-
ity of target elements. Whilst there are successes with Fe 
and Zn biofortified legumes (Tako et al.,  2011, 2015), it 
has not always been possible to demonstrate differences 
in bioaccessibility (fraction of micronutrients available 
for absorption by the intestinal mucosa) or bioavailabil-
ity (fraction of micronutrients that crosses the intestinal 
barriers and is available to the body) between biofortified 
and non-biofortified legumes (Vaz-Tostes et al.,  2016). 
Glahn and Noh (2021) highlighted the lack of evidence to 
support the assumption of a positive association between 
higher bean seed Fe and increased Fe absorption, and the 
need to focus on bioavailability traits.

The bioaccessibility/bioavailability of Fe and Zn can 
be determined by different approaches, including ani-
mal models, human studies and in vitro methods (Dias 
et al.,  2018; Etcheverry et al.,  2012). For common bean, 
techniques such as in vitro digestion and absorption/
transport to Caco-2 cells (Ariza-Nieto et al., 2007) or ca-
pacity to cross a low molecular cut off dialysis membrane 
(Coelho et al.,  2021; Huertas et al.,  2022) have been ad-
opted as proxies for bioavailability. However, solubility 
and dialysability methods have a tendency to overestimate 
bioavailable Fe but have the advantage of also quantify-
ing bioavailable Zn (Dias et al., 2018). All current methods 
suffer from a lack of standard procedures. Hence a combi-
nation of in vitro digestion (e.g. standardised INFOGEST 
protocol (Brodkorb et al., 2019) and the Caco-2 absorption 
model is often recommended (Bohn et al., 2018) although 
not always available to non-specialist labs that lack the ca-
pacity to maintain human cell lines.

The bioavailability of Fe (and to a lesser extent of Zn) 
is strongly influenced by inhibitors and enhancers. The 
main inhibiting factors are phytic acid (PA), tannins, di-
etary fibre and calcium. PA is the main storage form of 
phosphate in cereal and legume grains. It forms insoluble 
complexes with Fe, especially under pH conditions (pH 
6–7) found in the small intestine (Ferruzzi et al., 2020). In 
contrast, ascorbic acid exerts a positive effect on bioavail-
ability because it reduces Fe3+ to Fe2+, the soluble and ab-
sorbable form of Fe. Zn bioavailability is also dependent 
on components present in the intestinal lumen. PA and 
nucleic acids decrease Zn absorption, while animal pro-
teins such as from beef, eggs and cheese exert a positive 
effect on Zn absorption possibly via chelation. Although 
Fe has been reported to inhibit Zn absorption, this is only 
evident in the absence of a food matrix and with high Fe to 
Zn ratios that is of 25:1 (Etcheverry et al., 2012).

Given the strong inhibitory influence of PA on Fe bio-
availability, reduction of PA in seeds (Petry et al.,  2013, 
2014), and dephytinisation strategies that involve the ac-
tivation of endogenous phytase enzymes or the addition 
of exogenous phytase may have positive effects on mineral 

 20483694, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fes3.406 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [05/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  13 of 27Huertas et al.

bioavailability (Nielsen et al., 2013). However, it would be 
necessary to maintain a balance between phytase activity 
and the amount of PA to avoid the adverse gastrointestinal 
symptoms associated presumably to increased stability of 
lectin phytohemagglutinin L (PHA-L) in the low-PA beans 
(Cominelli et al., 2020a; Petry et al., 2016).

Soaking, germination or fermentation of cereal/
legume-based foods removes about 50% the PA (Gibson 
et al., 2010) and it is assumed that such a reduction will 
lead to an improvement in mineral absorption in high 
phytate containing foods. However, the magnitude of any 
increase in absorption may be difficult to predict due to 
the presence of other antinutrients. For example, some 
polyphenols have been reported to promote Fe release 
and absorption (e.g. kaempferol, catechin, kaempferol 
3-glucoside and 3,4-dihydroxybenzoic acid), while others 
inhibit (e.g. quercetin, myricetin, quercetin 3-glucoside 
and myricetin 3-glucoside) these processes (Cárdenas-
Castro et al.,  2020; de Figueiredo et al.,  2017; Hart 
et al.,  2017; Laparra et al.,  2008). Many classes of poly-
phenol have been isolated from beans (Yang et al., 2018), 
but the key regulatory genes involved in the production 
of these specialised secondary metabolites in the seed are 
largely unknown.

Cooking is very important to increase bioavailability. 
Heat-treated beans have reduced effects of toxic and anti-
nutritional substances, and at the same time increased 
protein digestibility and general palatability (de Oliveira 
et al., 2018). However, it remains difficult to predict how 
specific food processing methods and cooking time will af-
fect mineral quantity and bioavailability (Cárdenas-Castro 
et al., 2020; Chinedum et al., 2018; Rousseau et al., 2020; 
Wiesinger et al., 2018).

Ferritin has received considerable attention as poten-
tial target for increasing Fe bioavailability in beans as 
the ferritin content of pulses is higher than that of cereal 
grains. The ferritin-bound Fe differs between varieties in 
common bean ranging from approximately 15% to 30% 
(Hoppler et al., 2008; Hoppler et al., 2009). Ferritin is not 
fully stable in the low pH environment of the digestive 
tract, leading to the release of free Fe from the ferritin 
protein (Kalgaonkar & Lonnerdal, 2008). Similarly, cook-
ing, particularly boiling, of legume grains destroys ferritin 
which is no longer detectable after 50 min of processing 
(Hoppler et al., 2008). However, different ferritin subunits 
have different stability profiles with the H-2 subunit more 
stable and less susceptible to proteolysis than the H-1 
subunit (Masuda et al., 2001). Ferritin subunit composi-
tion is species specific; for example, pea ferritin contains 
more H-2 subunits than soybean ferritin and therefore 
may be less prone to degradation. Similarly, the ferritin 
subunit composition is different in black bean and soy-
bean, which have ratios of H1:H2 subunits of 2:1 versus 

1:1, respectively (Deng et al., 2010). In addition, the bind-
ing of anthocyanins to soybean ferritin increased the sta-
bility of the protein in stimulated intestinal fluid studies 
(Deng et al., 2011). Ferritin is taken up by endocytosis into 
the enterocytes of the intestines. Therefore, uptake does 
not involve transport systems for ferrous Fe or haem Fe 
(Pereira et al.,  2013; San Martin et al.,  2008). Protecting 
ferritin from digestion in the low gastric pH conditions 
of the intestines has been suggested as strategy for the 
treatment of Fe deficiency (Perfecto et al., 2018) and the 
observation that different species tolerate widely differing 
ferritin subunit distribution suggests that breeding for op-
timal ferritin subunit distribution could improve Fe bio-
availability in beans without impairing the physiological 
function of ferritin in planta.

11   |   GENETIC RESOURCES AND 
BIOFORTIFICATION STRATEGIES 
FOR COMMON BEAN

The genetic variation in seed Fe and Zn accumulation 
found in the seeds of different common bean genotypes 
provides a basis for the selection of improved varieties 
with enhanced biofortification characteristics. Several 
studies have been performed using bean germplasm 
from the Andean and Mesoamerican gene pools (Kwak & 
Gepts, 2009; Schmutz et al., 2014). Although many QTL 
have been associated to these traits (Izquierdo et al., 2018; 
Jha & Warkentin, 2020; Losa et al., 2022; Philipo et al., 2021 
and references therein), relatively few genetic markers 
or candidate genes have been identified (Refs across this 
review).

The first chromosome-scale bean reference genome 
was provided by the Department of Energy's Joint 
Genome Institute (Schmutz et al., 2014). Recent advances 
in bean genomics, such as the Illumina BARCBean6K_1 
BeadChip with >5000 single nucleotide polymorphisms 
(SNPs; Song et al., 2015), and genotyping-by-sequencing 
dense SNP genetic maps (Schröder et al., 2016) have fa-
cilitated allelic screening using germplasm collections 
worldwide (Table  S2). Genome-wide association studies 
(GWAS), which are considered to be the next step after 
QTL mapping, have already combined SNP markers and 
phenotyping to uncover the genetic basis of mineral (in-
cluding Fe and Zn) accumulation (Table S2 and references 
therein). The P. vulgaris Gene Expression Atlas (PvGEA) 
provides information on gene expression patterns in dif-
ferent tissues (O'Rourke et al., 2014). However, PvGEA is 
based on a single bean genotype, that is cv. Negro Jamapa 
(Mesoamerican genotype) and further datasets from the 
diversity of germplasm grown globally will significantly 
enhance the value of this resource. An example of efforts 
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to enrich PvGEA include the assembly of RNA-Seq and 
GWAS to narrow identify target genes associated to pod 
and seed traits in common bean (Di Vittori et al.,  2021; 
McClean et al., 2018).

Genetic engineering and gene editing approaches 
offer rapid alternatives to standard plant breeding meth-
ods. However, such approaches require the identification 
of precise genetic targets that control bottlenecks in Fe/
Zn allocation and accumulation in seeds, as well as bio-
availability. Such strategies will need to identify genes and 
mechanisms associated with the transport of Zn and Fe 
from the soil to the beans. Many of the genes highlighted 
in the above discussion and summarised in Table S1, have 
the potential to have direct or indirect effects on seed Fe/Zn 
accumulation. A knowledge of the tissue-specific expres-
sion of target genes that regulate uptake, allocation or sys-
temic responses is required to modify whole-plant metal 
homeostasis and deliver seed Fe and Zn accumulation.

Our current knowledge of the genes and processes in-
volved in Fe and Zn uptake and storage in different plant 
species has identified potential targets for marker-assisted 
selection and genetic improvement. Genetic manipulation 
studies have already led to some successes in increasing 
the Fe and Zn contents of key crops. For example, in field 
trials, cassava lines co-expressing a mutated Arabidopsis 
Fe transporter (IRT1) and ferritin (FER1) were shown 
to accumulate more Fe (7–18 times higher) and Zn (3–
10 times higher) than controls. These IRT1 + FER1 lines 
could provide 40%–50% of the estimated average require-
ment (EAR) for Fe and between 60% and 70% of the EAR 
for Zn in 1- to 6-year-old children and nonlactating, non-
pregnant West African women (Narayanan et al., 2019).

Several studies have focused on decreasing phytate 
concentrations (Cominelli et al.,  2020b and references 
therein). Other studies have sought to increase ferri-
tin-Fe accumulation (Sperotto et al., 2018 and references 
therein). The latter approach appears to have given the 
most promising results. Furthermore, like pea seeds 
(Moore et al.,  2018), common bean seeds accumulate 
ferritin in different intracellular compartments to those 
that accumulate phytate (Cvitanich et al.,  2010), so the 
two approaches are compatible. A recent analysis of VTL 
transporters has shown that they could play an important 
role in ensuring the optimal compartmentalisation of Fe 
(Eroglu et al., 2019).

Transformation protocols have been standardised for 
several legumes (Bhowmik et al., 2021; Table S1). However, 
common bean is a recalcitrant crop for transformation and 
the low capacity for in vitro regeneration is a particular 
barrier to success (Hnatuszko-Konka et al., 2014). Stable 
transformation of common bean has been achieved using 
biolistic-mediated transformation of meristematic tissues 
but with very low frequencies (<1%; Aragão et al., 1998; 

Bonfim et al., 2007; Kim & Minamikawa, 1996; Ramirez 
Rivera et al.,  2016). The transformation frequency is a 
cultivar-dependent trait (Mukeshimana et al.,  2013). 
Agrobacterium-mediated transformation and shoot re-
generation through somatic embryogenesis has been 
successfully implemented recently but with low transfor-
mation frequencies (0.5%–2.5%) indicating that this tech-
nology is far from routine (Solís-Ramos et al., 2019; Song 
et al., 2020).

12   |   CONCLUSIONS AND 
PERSPECTIVES

While dietary supplements and food fortification can be 
effective solutions to Fe and Zn deficiencies, such strate-
gies fail to reach target populations including the urban 
poor and those in rural areas, are not sustainable econom-
ically in the long term, especially in low-income countries. 
Interest in using beneficial soil microbes as an agronomic 
strategy to improve mineral uptake and accumulation in 
dietary food grains and legumes has increased in recent 
years. However, its potential is still to be explored across 
crops, ecologies and farming systems (Roriz et al., 2020; 
Singh & Prasanna, 2020). An alternative strategy to which 
the plant science and breeding sectors can make a sig-
nificant contribution is the development of biofortified 
cultivars that accumulate essential mineral nutrients. 
While genome editing techniques allow precise modifica-
tion of plant genomes (Menz et al., 2020) and biofortifi-
cation through the genetic improvement of crops can be 
effective, plant breeding for improved nutritional trains 
remains a relatively slow process and must, if it is to suc-
ceed, encompass the bioaccessibility and bioavailability 
aspects of Fe and Zn as part of the phenotyping process.

Efforts to increase Fe and Zn in cereals using bio-
technological approaches have achieved some success 
(Majumder et al.,  2019; Table  1; Stanton et al.,  2022; 
Table  S1). Gene-editing approaches, mainly using 
Clustered Regularly Interspaced Short Palindromic re-
peats/CRISPR-Associated Protein 9 (CRISPR/Cas9)-
mediated targeted modifications have proved to be useful 
(Achary & Reddy,  2021; Che et al.,  2019, 2021; Ibrahim 
et al.,  2021). While common bean is an important tar-
get for biofortification using such approaches, it is not 
readily accessible to current biotechnological methods. 
Hence, classical breading approaches are likely to be the 
most successful in the short term, especially in developing 
countries.

Our knowledge of the mechanisms by which Fe and Zn 
accumulate in the grains of legumes remains incomplete. 
The genes encoding proteins involved in mineral trans-
location and accumulation exist in large gene families. 
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Hence, the identification of specific function on the basis 
of sequence homology alone remains a significant chal-
lenge. Well-designed transcriptional profiling experiments 
that take advantage of diverse germplasm will provide a 
valuable resource in the elucidation of important genes in 
legumes. However, a step change in fundamental knowl-
edge concerning the kinetics of grain mineral accumu-
lation and the integration of these processes with other 
developmental processes, is required to drive significant 
advances in biofortification. Limitations in methodology, 
particularly for common bean and other legume species 
must be overcome. While technical advances are frequent, 
the applicability of techniques such as gene editing to 
common bean and other species and genotypes remains 
problematic (Bhowmik et al., 2021).

At a global level the interplay between agriculture, cli-
mate change, GHG emissions, food security and nutrition 
are the topic of considerable debates such as conventional 
versus regenerative agriculture, circular versus linear pro-
duction chains and livestock versus plant-based foods. 
Within this context, the potential for plant-based foods 
in minimising the environmental impact of agriculture 
and providing a comparatively inexpensive source of ap-
propriate nutrition, cannot be understated. Especially for 
developing countries, beans and other legumes provide an 
attractive alternative protein source for livestock, which 
are responsible for almost 15% of total anthropogenic 
GHSs (Grossi et al.,  2019). Furthermore, global legume-
rhizobial symbioses are estimated to fix 21Mt of nitrogen 
annually, representing approximately one tenth of the am-
monia applied annually synthesised by the Haber-Bosch 
process (Foyer et al., 2016). As estimated CO2 emissions 
for ammonia production are 7.2 kg/kg (Chai et al., 2019), 
this represents an equivalent CO2 saving of over 150 Mt 
per annum equivalent to approximately half of the annual 
agricultural GHG emissions of East Africa (Tongwane & 
Moeletsi, 2018). There is therefore an urgent need to im-
prove key traits in grain legumes not only for populations 
that rely heavily on them as food sources and where min-
eral deficiencies are widespread but also for other popula-
tions that seek to move away from meat-dependent diets 
to reduce environmental impacts of agriculture and where 
specific groups in particular have significant mineral de-
ficiencies. Within this context, we have discussed current 
knowledge with a particular focus on common bean and 
highlighted the significant global efforts to develop im-
proved grain legumes with enhanced Fe and Zn contents. 
Increases in the levels of Fe and Zn of up to approximately 
130 and 60 mg/kg have been achieved in biofortified crops 
(Kimani & Warsame, 2019). These levels compare favour-
ably with those found in animal products (15–110 mg/kg 
Fe, 23–170 mg/kg Zn dry weight basis; Gerber et al., 2009). 
Bioavailability differs significantly dependent on dietary 

source. For example, Fe bioavailability in a meat-based 
diet is estimated at 15%–18% and high levels of ascor-
bate additionally aid absorption, on the contrary Fe in a 
tuber/cereal-based diet is much lower at 5% (Hurrell & 
Egli,  2010). This is further increased because dry grains 
contain little or no ascorbate (De Tullio & Arrigoni, 2007). 
The intensity of current research effort is therefore likely 
to ensure the success of current bean biofortification 
programmes.
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