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IBS is common worldwide and typically presents in early adult-
hood with symptoms including abdominal pain, bloating and 
bowel dysfunction1. Symptom intensity varies over time and 

between individuals but IBS has been reported, in severe cases, to 
affect quality of life as much as renal impairment or diabetes2.

IBS accounts for approximately half of all referrals to gastroen-
terology clinics3. Although of doubtful clinical value, many patients 
undergo multiple investigations, including colonoscopies, to exclude 
conditions such as Crohn’s disease or cancer. To the frustration of 
patients and clinicians alike, all tests are characteristically normal. 
The healthcare costs, combined with indirect employment costs, of 
IBS amount to at least €13 billion (£11.7 billion) annually in Europe4.

Attempts have been made to identify positive clinical diagnos-
tic features and reduce investigations. The widely used and recently 
revised Rome III criteria define IBS as unexplained abdominal pain or 
discomfort eased by defecation, with altered stool form or frequency, 
for more than six months5. Three main subtypes are recognized: 
constipation-predominant (IBS-C), diarrhea-predominant (IBS-D) 
or ‘mixed’/alternating constipation and diarrhea (IBS-M). Individuals 
with functional constipation and functional diarrhea share the disor-
dered bowel pattern with IBS but do not suffer from pain.

The commonly used IBS treatments, ranging from dietary exclu-
sion to psychoactive medications, are relatively ineffective and their 
variety reflects the uncertain etiology6. Behavioral therapies, while 

more effective (number needed to treat = 4), are not widely avail-
able7. Given the high frequency, impact and cost of IBS, there is a 
pressing need for improved pathophysiological understanding to 
enable better therapeutic approaches.

The relative importance of peripheral and gut versus central 
and psychological factors to IBS etiology is uncertain. The consen-
sus view is that IBS results from abnormal brain–gut interactions. 
Recent epidemiological data suggested that, in individuals develop-
ing both IBS and psychological features, the former preceded the 
latter in two thirds of cases and the latter preceded the former in one 
third8. IBS is associated with abnormalities of central pain process-
ing but also increased gut permeability, mast cell activation, disor-
dered motility and dysbiosis9. Up to one in ten cases are triggered 
after infection, so-called postinfectious IBS (PI-IBS)10.

IBS aggregates in families, with individuals being two to three 
times more likely to develop IBS if they have an affected relative. 
Estimates of heritability from twin studies range widely from 0 up 
to 57%11. Twin studies have indirectly investigated whether IBS 
and mental health conditions share a genetic basis but have proved 
inconclusive12. Although genetic association studies have provided 
pathogenic and therapeutic insights for many conditions13, only one 
variant (rs10512344) has previously been identified at genome-wide 
significance in IBS, with only modest replication14. Larger data-
sets are clearly required to characterize the recognized heritable 
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component of IBS; the use of large population-based cohorts had 
been proposed11,15. Broad meta-analysis of cases from different 
cohorts and case definitions is also a proven method of increasing 
power16. Between 2006 and 2010, UK Biobank (UKB) recruited half 
a million people aged 40–69 years. Participants underwent base-
line assessment and consented to long-term follow-up, including 
questionnaires, and linkage to routinely collected health data. All 
participants underwent genome-wide SNP genotyping. Therefore, 
UKB provides a powerful epidemiological resource for exploring 
risk factors for health outcomes17,18.

The main aim of the current study was to identify genetic risk 
factors for IBS through an analysis involving over 250,000 affected 
individuals. We report robustly validated genetic susceptibility loci 
for IBS and provide evidence of its shared genetic etiology with 
mood and anxiety disorders.

Results
Epidemiology. We designed a digestive health questionnaire 
(DHQ) for the UKB website, with a link e-mailed to 332,793 UKB 
participants with valid e-mail addresses. A total of 171,061 (51.4%) 
responses were received and analyzed (Supplementary Fig. 1). The 
DHQ included validated instruments for IBS diagnosis (Rome 
III symptom criteria), the IBS symptom severity score (IBS-SSS, 
measured using the IBS Severity Scoring System)19 and the Patient 
Health Questionnaire 12 Somatic Symptom score (PHQ-12)20. It 
also asked about previous IBS diagnosis, environmental exposures 
and associated conditions (including anxiety or depression, based 
on treatment sought or offered).

After sample exclusions and quality control, we identified a total 
of 40,548 UKB participants of European ancestry (Fig. 1a) who met 
the diagnostic criteria for IBS (based on DHQ Rome III symptom 
data, self-report of previous medical IBS diagnosis or electronic 
medical records; see Methods and Supplementary Tables 1 and 2). 
The demographics of the DHQ respondents are presented in Table 1. 
Females were affected by IBS more commonly than males (72.1%). 
IBS-M, with hard and loose stools present at least ‘sometimes’ (alter-
nating), was the most common subtype in patients defined accord-
ing to the Rome III criteria (55.0%).

A total of 24,845 respondents reported current abdominal symp-
toms meeting standard diagnostic criteria (DHQ Rome III, Fig. 
1) at the time of the survey, providing a point prevalence of IBS 
of 14.5%. Of these, only 8,836 (35.6%) had a hospital-documented 
IBS diagnosis, via an IBS ICD-10 code (International Statistical 
Classification of Diseases and Related Health Problems, 10th revi-
sion), or reported having been diagnosed with IBS by a doctor 
(DHQ self-report and/or unprompted self-report). They reported 
greater gastrointestinal symptom severity (quantified via IBS-SSS) 
than those not medically diagnosed (odds ratio (OR) and 95% con-
fidence interval (CI) = 1.07 (1.07–1.08) per IBS-SSS unit); Fig. 1b 
and Supplementary Table 3).

Risk factors and associated conditions. As reported previously, a 
family history of IBS was more common in cases than controls (24.0 
versus 9.5%, OR and 95% CI = 3.73 (3.60–3.88)). However, birth by 
Cesarean section was not (2.6 versus 2.5%, OR and 95% CI = 1.02 
(0.94–1.11); Table 1). A significantly higher proportion of cases 
with IBS recalled receiving long-term or recurrent antibiotics dur-
ing childhood compared with controls (20.0 versus 9.6%, OR and 
95% CI = 2.22 (2.13–2.30)). The severity of current IBS symptoms 
correlated positively with recalled childhood antibiotic exposure 
(OR and 95% CI = 1.04 (1.04–1.04) per IBS-SSS unit) and family 
history (OR and 95% CI = 1.05 (1.05–1.06)). Participants with anxi-
ety also reported increased antibiotics use in childhood (18.4%, OR 
and 95% CI = 1.64 (1.59–1.70); Supplementary Table 4).

Regarding comorbidities, as documented previously, the rates 
of appendicectomy, cholecystectomy and hysterectomy were all 

increased in IBS (Supplementary Table 5), as were the rates of atopic 
disease (Table 1). Anxiety and depression were each approximately 
twice as common (Table 1 and Supplementary Table 4); 34.3% of 
cases reported treatment for anxiety compared with 16.1% of con-
trols. This effect was more prominent in individuals medically diag-
nosed with IBS.

The median PHQ-12 score was 4 (interquartile range (IQR) = 2–6) 
in controls and 6 (IQR = 4–9) in pooled cases (7 in all four con-
stituent subgroups, Supplementary Table 6; see also ‘Median scores 
among pooled and individual diagnoses’ in the Supplementary 
Note). The PHQ-12 score correlated with IBS symptom severity 
(Pearson’s correlation = 0.40 (95% CI = 0.39–0.41) among 31,402 
IBS cases completing all PHQ-12 and IBS-SSS questions), with back 
pain, limb pain and tiredness driving this association (Fig. 1c and 
Supplementary Figs. 2 and 3). Among UKB participants with pre-
vious generalized anxiety disorder-7 (GAD-7) scores (n = 79,430; 
Supplementary Table 7) or Patient Health Questionnaire-9 (PHQ-
9) depression scores (n = 79,087, Supplementary Table 8; see 
Supplementary Note for definitions), these scores were consistently 
higher in cases with IBS than controls (OR and 95% CI = 1.14 (1.14–
1.15) per GAD-7 unit and 1.15 (1.15–1.16) per PHQ-9 unit) and 
correlated with IBS-SSS (Pearson’s correlations and 95% CIs among 
cases = 0.24 (0.22–0.25) and 0.27 (0.25–0.28), respectively; Fig. 1d 
and Supplementary Fig. 4).

The respective prevalence for functional constipation and func-
tional diarrhea (that is, bowel disturbance without abdominal pain 
or discomfort; see ‘Definitions of IBS cases’ in the Supplementary 
Note) were 6.4% and 11.7% (Table 1). Somatic symptoms (PHQ-
12) and treatment for anxiety or depression were less strongly asso-
ciated with functional diarrhea than with IBS-D (excess OR and 
95% CI = 1.24 (1.22–1.26) per PHQ-12 unit and 1.58 (1.46–1.72), 
respectively), with similar effects for functional constipation and 
IBS-C (Table 1).

Genetics. We identified six independent IBS susceptibility loci at 
genome-wide significance (P < 5 × 10−8) in a discovery cohort total-
ing 53,400 cases and 433,201 controls (Fig. 2a and Supplementary 
Fig. 5). This resulted from pooling IBS cases across all case defi-
nitions to maximize power, in a meta-analysis of data from UKB 
(40,548 cases and 293,220 controls; Supplementary Tables 1 
and 2) and the international collaborative Bellygenes initiative 
(12,852 cases and 139,981 controls; Methods and Supplementary 
Table 9). Using data from an independent panel from 23andMe 
(Supplementary Note), all six loci were replicated at Bonferroni sig-
nificance (P < 0.0083) with the same direction of effect (Table 2). 
All were found on autosomal chromosomes (none on the X chro-
mosome) and conferred modest ORs < 1.05. Three out of six loci 
also had reported associations with mood and anxiety disorders 
and related phenotypes21–25.

We undertook genetic fine-mapping to establish plausible causal 
variants (Supplementary Fig. 5) and used several techniques to 
identify candidate causal genes within IBS risk loci (Supplementary 
Table 10; see ‘Gene mapping’ in the Supplementary Note). Among 
the genes implicated (Table 2) were two encoding neural adhe-
sion molecules: neural cell adhesion molecule 1 (NCAM1) and 
cell adhesion molecule 2 (CADM2). Ranking tissues according to 
enrichment for risk gene expression (Supplementary Fig. 6), the 
brain came top of the list (LDSC applied to specifically expressed 
genes26 coefficient = 8.32 × 10−10, s.e.m. = 4.5 × 10−10, P = 0.03). 
However, this result was not statistically significant after correcting 
for multiple testing, which may in part reflect lack of power due 
to low SNP heritability. Using expression colocalization analysis as 
a separate method to implicate specific gene–tissue combinations, 
we found evidence that the six IBS-associated variants regulate gene 
expression across a number of tissues, with many genes particularly 
expressed in the brain (Fig. 2b).
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One association mapped to the major histocompatibility com-
plex (MHC) class 3 region close to BAG cochaperone 6 (BAG6). The 
signal is not driven by human leukocyte antigen (HLA) alleles and 
is independent of known MHC associations with ulcerative coli-
tis, celiac disease or microscopic colitis (Supplementary Fig. 7 and 
Supplementary Tables 11 and 12) (refs. 27–30). It is also independent 
of lead variants for neuroticism at this locus (highest r2 = 0.51)23.

Eight additional loci showed genome-wide significant asso-
ciation with various IBS definitions (Methods) but not the whole 
discovery cohort, of which five were replicated in the 23andMe 
data (Supplementary Fig. 8 and Supplementary Tables 13 and 
14). These require further study. The female-specific signal iden-
tified previously14 for unprompted self-reported IBS in the UKB 
was also observed in our female-specific analysis of unprompted 

self-reported data but was not detected in female-specific analy-
ses of any other case definitions from UKB or Bellygenes initiative, 
nor replicated in the 23andMe unstratified analyses of both sexes 
(Supplementary Table 15), possibly suggesting survey-specific fac-
tors playing a role. Specific candidate gene associations previously 
reviewed in the literature31,32 also did not show significant evidence 
of association after multiple testing correction (all P > 0.015).

LDSC estimated a modest but significant genome-wide SNP 
heritability for IBS of 5.77% (s.e.m. = 0.35%) in the discovery 
cohort, with no evidence of population stratification (LDSC inter-
cept = 0.9951, s.e.m.= 0.007). This was consistent across case defini-
tions within UKB (h2 range of 5.42–7.71%), with similar values seen 
in the Bellygenes (h2 = 3.14%, s.e.m. = 0.74%) and 23andMe cohorts 
(h2 = 5.39%, s.e.m.= 0.02%).
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Fig. 1 | Diagnostic modalities and comorbidities of IBS. a, Venn diagram of overlap between UKb IbS cases by different diagnostic modality, split by DHQ 
respondents and nonrespondents. The areas and numbers indicate the sample size. most participants with current symptoms (DHQ rome III, yellow) did 
not report being diagnosed with IbS either when listing medical conditions unprompted at UKb enrollment (unprompted self-report, green) or when asked 
specifically about a previous IbS diagnosis when completing the DHQ (DHQ self-report, blue). Conversely, many participants previously diagnosed with 
IbS, even those formally recorded during a hospital admission (hospital ICD-10, red), did not have symptoms sufficient for rome III criteria IbS diagnosis 
at the time of their DHQ response. b, Among individuals experiencing IbS symptoms (DHQ rome III positive), those previously diagnosed by a clinician 
had greater symptom severity, with an increase in the number of IbS diagnostic modalities (connected dots, middle; top: sample size is shown) being 
associated with an increase in symptom severity score (IbS-SSS, bottom). Distributions are colored by the number of diagnoses and the groups shown 
are mutually exclusive. For post-hoc statistics, see Supplementary Table 3. c, Severity of different somatic symptoms in the past three months among 
digestively healthy controls and IbS cases (classified as mild, moderate and severe based on IbS-SSS). mean scores for PHQ-12 items ranked from 0 (not 
bothered at all) to 2 (bothered a lot) are shown. Pooled refers to all UKb cases in the discovery cohort. d, As above, for symptoms of anxiety in the last two 
weeks, measured using average scores for GAD-7 items ranked from 0 (never bothered) to 3 (bothered nearly every day).
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IBS-C showed weak genetic correlation with functional consti-
pation, as did IBS-D with functional diarrhea (Supplementary Fig. 
9). IBS-C and IBS-D correlated with each other but there were no 
cross-correlations, that is, IBS-C did not correlate with functional 
diarrhea. Heritability for the IBS subtypes was comparable with IBS 
overall; IBS subtypes showed similar genetic correlation with men-
tal health and personality traits (Supplementary Table 16).

We compared the overlap between susceptibility with IBS and 
751 other traits and diseases listed in the LD Hub33. The stron-
gest correlations in genome-wide risk were with mood and anxi-
ety disorders and related phenotypes, including anxiety (rg = 0.58, 
s.e.m. = 0.10), neuroticism (rg = 0.54, s.e.m. = 0.04), depression 
(rg = 0.53, s.e.m. = 0.05) and insomnia (rg = 0.42, s.e.m. = 0.05)33. 
Across the genome, the same alleles that predisposed to IBS also 
predisposed to mood and anxiety disorders. The correlations were 
consistent regardless of the mode of diagnosis of anxiety or depres-
sion (Supplementary Fig. 10) (refs. 34,35). We calculated phenotypic 
correlations for these traits on a comparable liability scale (Fig. 3 
and Supplementary Table 16). Mostly, the phenotypic and genotypic 
correlations mirrored each other, although genetic correlations 
were often larger. Notably, other digestive diseases presenting with 
similar symptoms, including celiac disease (rg = 0.03, s.e.m. = 0.08, 

P = 0.69) and Crohn’s disease (rg = 0.08, s.e.m. = 0.04, P = 0.06), were 
not genetically correlated with IBS.

We also ran higher-specificity (IBS cases meeting at least 2 of 
the 4 UKB case definitions, 11,201 cases and 293,220 controls) and 
high-severity (IBS-SSS > 300, 4,296 cases and 72,356 controls) anal-
yses in UKB. The former produced no new associations. The latter, 
while being more heritable (liability scale h2 = 0.42, s.e.m. = 0.05, 
Cochran’s Q = 51.7, P = 6.31 × 10−13 compared with the discovery 
cohort IBS), produced one association (rs9947289, P = 2.80 × 10−8) 
that did not replicate (P = 0.57 in the 23andMe data; Supplementary 
Table 13). Both of these phenotypes recapitulated the same genetic 
correlation with mood and anxiety disorders as found in the discov-
ery cohort (Supplementary Fig. 11).

To explore the role of shared genetic risk versus direct pheno-
typic overlap, we compared the genome-wide association study 
(GWAS) results for IBS having removed participants with anxiety 
to the GWAS results for anxiety having removed participants with 
IBS (for anxiety definitions, see Supplementary Tables 17 and 18). 
The genetic correlation between IBS and anxiety attenuated but 
remained strong (rg = 0.31, s.e.m. = 0.06; Supplementary Fig. 12). 
We next used bidirectional Mendelian randomization36 with an 
independent anxiety GWAS37, as well as genome-wide latent vari-

Table 1 | Demographics, symptom severity, family history and associated conditions for IBS patients diagnosed via different 
modalities and with different IBS subtypes

Scores among DHQ 
participants completing 
the relevant sections

Among DHQ participants (%) Atopy 
(%)

Group n Male 
(%)

Female 
(%)

Age 
(years)

Age 
(s.d.)

Mean 
IBS-SSS

Mean 
PHQ-12

Mean 
GAD-7

Family 
history 
of IBS

Childhood 
antibiotic 
exposure

Born by 
Cesarean 
section

Treatment 
for anxiety 
offered or 
sought

Treatment 
for 
depression 
offered or 
sought

Pooled 
asthma/
hay 
fever/
eczema

Controls (DHQ 
respondents)

72,356 50.3 49.7 65.3 7.5 33 4.0 1.5 9.5 9.6 2.5 16.1 18.0 18.1

Hospital ICD-10 4,237 23.4 76.6 65.9 7.9 202* 7.4* 3.6* 31.8* 24.0* 2.5 43.0* 43.6* 29.3*

Unprompted 
self-report

9,309 25.7 74.3 65.2 8.0 196* 7.1* 3.3* 30.7* 19.8* 2.3 41.1* 40.0* 29.6*

DHQ, rome III 
criteria

24,845 27.9 72.1 63.9 7.7 194* 7.1* 3.3* 24.3* 20.4* 2.6 33.7* 35.1* 24.0*

DHQ, self-report 16,289 26.2 73.8 64.0 7.7 177* 6.9* 3.1* 29.0* 21.6* 2.7 39.7* 39.3* 25.9*

Pooled (any 
of the four 
definitions 
above)

40,548 27.9 72.1 64.3 7.8 173* 6.8* 3.1* 24.0* 20.0* 2.6 34.3* 35.2* 24.8*

DHQ, rome III 
criteria, type C

3,989 16.9 83.1 64.5 7.8 190* 6.8* 3.2* 22.2* 19.2* 2.2 32.3* 34.1* 21.4*

DHQ, rome III 
criteria, type D

6,506 33.2 66.8 63.8 7.7 185* 6.5* 3.0* 23.8* 19.1* 2.8 32.1* 33.0* 24.0*

DHQ, rome III 
criteria, type m

13,666 28.5 71.5 63.8 7.8 204* 7.5* 3.6* 25.6* 21.5* 2.6 35.2* 36.9* 24.8*

DHQ, rome III 
criteria, type U

672 31.0 69.0 65.6 7.5 124* 5.6* 2.4* 16.7* 17.7* 2.8 27.5* 24.9* 23.8*

DHQ, 
postinfectious

860 24.2 75.8 62.2 7.8 196* 7.4* 3.6* 30.3* 27.7* 3.5 42.0* 42.4* 26.6*

DHQ, functional 
constipation

3,502 33.9 66.1 67.1 7.4 64* 4.7* 1.8* 12.5* 11.0 2.5 23.1* 25.4* 19.0

DHQ, functional 
diarrhea

5,386 61.0 39.0 65.1 7.5 49* 4.3* 1.8* 11.0* 10.7* 2.6 20.3* 22.0* 20.5*

Digestively healthy controls and functional constipation as well as diarrhea groups are shown for reference. Gastrointestinal symptoms are captured by the IbS-SSS (range 0–500), while somatic symptoms 
are captured by the (modified) PHQ-12 (range 0–22). The GAD-7 score captures symptoms of anxiety (range 0–21). The single asterisk marks significant differences from the control group after adjusting 
for age, sex, DHQ participation and (bonferroni) multiple testing at P < 0.05/108 (two-sided logistic regression test). Age and sex differences were not tested.
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able Mendelian randomization38, to explore directionality. Multiple 
models could explain our data (Supplementary Table 19) but they 
were best explained by shared genetic risk pathways rather than 
causal effects between the two traits. Similar complex causal rela-
tionships were evident between IBS and mental health and person-
ality traits other than anxiety (Supplementary Table 19).

Discussion
The importance of this study lies in its scale and therefore the 
robustness of its genetic results. We have identified replicable 
genetic associations for IBS, providing new biological insights, 
while demonstrating that overall its heritability is modest. Two 

observations are particularly striking: the genetic overlap between 
IBS and mood and anxiety disorders and the lack of signals impli-
cating genes expressed specifically in the gut or overlapping other 
intestinal disorders. Our findings suggest that, with respect to the 
genetically determined risk for IBS, neuronal pathways play a domi-
nant role.

Increasing abdominal symptom severity correlated with increas-
ing PHQ-12 somatic symptom scores, particularly for the domains 
of tiredness, back pain, limb pain and headache (Fig. 1). Multifocal 
pain suggests either poor coping skills, perhaps relating to psycho-
logical comorbidity, or visceral hypersensitivity from aberrant anti-
nociceptive mechanisms39. By contrast, the painless bowel disorders, 
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Fig. 2 | Genome-wide association results for IBS. a, manhattan plot showing the distribution of IbS-associated SNPs across the genome. The dashed 
line indicates the genome-wide significance threshold at P = 5 × 10−8. P values are from a two-sided test, after inverse variance-weighted fixed-effects 
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functional constipation and functional diarrhea, were less strongly 
associated with raised PHQ-12 scores or psychological comorbidity.

IBS showed the strongest genome-wide overlap with psychologi-
cal traits: anxiety, neuroticism, depression and schizophrenia (Fig. 
3). GAD-7 anxiety scores correlated with IBS severity (Fig. 1) and 
34.3% of cases with IBS had sought or had been treated for anxiety 
versus 16.1% of controls (Table 1). Although the phenotypic cor-
relation was strong, the genetic correlation appeared quantitatively 
even greater (Fig. 3). Furthermore, this genetic correlation between 
IBS and anxiety persisted even after eliminating data from indi-
viduals with phenotypic overlap (that is, between GWAS for ‘IBS 
excluding anxiety’ and ‘anxiety excluding IBS’; Supplementary Fig. 
12). Thus, their co-occurrence probably reflects shared etiologic 
pathways between IBS and anxiety rather than one condition simply 
causing the other. This conclusion was supported by the Mendelian 
randomization analysis.

Four out of six of the confirmed IBS loci implicated genes influ-
encing mood or anxiety disorders, genes expressed in the nervous 
system or both. These include NCAM1 (also associated with neu-
roticism, anxiety, mood disorders and anorexia nervosa)23,25,40, 
CADM2 (also associated with neuroticism, anxiety and cannabis 
use)21,22, PHD finger protein 2 (PHF2)/family with sequence simi-
larity 120A (FAM120A) (also associated with neuroticism, depres-
sion and autism)23,24 and dedicator of cytokinesis 9 (DOCK9). 
Brain expression of NCAM1 and CADM2 was implicated in our 
colocalization analysis (Fig. 2b and Supplementary Table 10): both 
regulate neural circuit formation and influence changes in white 
matter microstructure found in both mood disorders and IBS25,41,42. 
PHF2 and DOCK9 also play key roles in brain development43,44. Of 
note, NCAM1, PHF2 and DOCK9 are also expressed in the rich 
network of nerve fibers and ganglia of the gut, while CADM2 is 
not45. Predominant brain expression, combined with the coassocia-
tion of IBS with several psychological traits, perhaps most strongly 
implicates the central nervous system as the site where these gene 
variants exert their action. However, the genetic variants may also 
be acting peripherally for the subset expressed in the enteric ner-
vous system, which shares many neurotransmitters, signaling path-
ways and anatomical properties as well as rich communication with 
the brain.

The MHC signal is independent of known HLA associations 
with ulcerative colitis and celiac disease; in fact, it localizes to BAG6 
(Supplementary Fig. 7 and Supplementary Tables 10–12). BAG6 is 
known to chaperone misfolded proteins, regulate membrane pro-
tein dynamics and affect diverse processes from apoptosis to anti-
gen presentation46,47. Functional exploration of BAG6 may yield new 
IBS pathophysiological insights unconnected to the nervous system.

IBS genome-wide SNP heritability was just 5.8% (s.e.m. < 0.01) in 
the European ancestry population in this study and the effect sizes of 
our susceptibility loci were modest (OR < 1.05). Earlier genetic stud-
ies of IBS were underpowered to detect such small effects. By com-
parison, SNP heritability estimates for Crohn’s disease, ulcerative 
colitis and anxiety are 41%, 23% and 26%, respectively48,49. Previous 
IBS heritability estimates, from family and twin studies, varied widely 
at 0–57% (ref. 11). Our results indicate that the genetic contribution 
to IBS heritability is modest and imply that additional environmen-
tal factors, including dysbiosis, diet, stress and learned behaviors, all 
potentially shared within families, play a more prominent role.

Regarding dysbiosis, we noted increased childhood exposure to 
antibiotics among IBS cases (20.0%) versus controls (9.6%). While 
there are clearly biases inherent to recall of events from childhood, 
this result is corroborated by previous studies specifically set up to 
address this question50. Interestingly, we saw the same association 
with anxiety (18.4%). Among possible explanations, childhood 
antibiotics might increase the risk of IBS (and perhaps anxiety) 
by embedding a dysbiotic gut flora and disturbing the balance of 
short-chain fatty acid metabolites known to influence microg-
lial development and mood50,51. Equally, anxiety in late adulthood 
might influence recall of childhood antibiotic exposure, and famil-
ial anxiety might lead parents to take their offspring to the doctor 
repeatedly for minor ailments, resulting in recurrent antibiotic 
exposure. While enteric infection can alter the baseline gut micro-
biota and trigger PI-IBS, in the UKB PI-IBS closely mirrored ‘con-
ventional’ IBS in terms of symptom severity, frequency of family 
history and association with psychological traits, suggesting that the 
infectious ‘seed’ falls on fertile ground to trigger IBS in predisposed 
individuals.

One question is whether the neuronal emphasis of our results 
derives from our strategy of combining multiple IBS definitions 

Table 2 | Variants associated with IBS, their effect measured in the discovery cohort and P values for association in the discovery 
cohort, the replication cohort and the meta-analysis of these two

Variant Effect 
(discovery)

P values Annotation

SNP Chromosome 
number

Position Alleles Frequency OR 95% CI Discovery Replication Meta- 
analysis

Mapped 
gene

Previously implicated 
in

rs1248825 3 84,993,411 C/A 0.33 1.05 1.03–1.07 1.20 × 10−9 4.90 × 10−8 7.48 × 10−15 CADM2 Personality traits 
(risk-taking, 
neuroticism, anxiety)21, 
cannabis use22

rs2736155 6 31,605,199 G/C 0.48 1.05 1.02–1.07 3.88 × 10−10 8.28 × 10−6 3.19 × 10−12 BAG6

rs10156602 9 96,345,328 G/A 0.63 1.04 1.02–1.06 4.36 × 10−9 1.18 × 10−8 3.04 × 10−15 PHF2, 
FAM120AOS

Neuroticism23, 
depression23, autism24

rs7106434 11 112,860,579 C/T 0.41 1.04 1.02–1.06 3.19 × 10−8 2.27 × 10−5 9.17 × 10−11 NCAM1 Neuroticism23, 
depression25, cannabis 
use22, anorexia 
nervosa40

rs5803650 13 53,939,598 CT/C 0.48 1.05 1.03–1.07 2.97 × 10−8 2.25 × 10−8 6.31 × 10−14 CKAP2, 
TPTE2P3

rs9513519 13 99,610,146 G/A 0.62 1.04 1.02–1.06 3.09 × 10−8 4.20 × 10−5 2.31 × 10−10 DOCK9

The reported frequencies and effects are those of the second allele. The second allele is defined such that it increases IbS risk. Allele frequencies are taken from UKb. Previous associations were obtained 
from the literature and GWAS Catalog (Supplementary Note).
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to increase statistical power, including pooling ‘opposite’ subtypes 
(for example, IBS-C and IBS-D), that is, whether gut-specific effects 
might be lost in the pooling such that the brain remains the com-
mon link between these. However, the heritability of IBS subtypes is 
comparable with IBS overall; IBS-C and IBS-D share approximately 
50% of their genetic susceptibility and each of the subgroups also 
individually genetically correlates with mental health and per-
sonality traits (Supplementary Table 16). Furthermore, subtype 
GWAS identified only one significant signal in IBS-C and none in 
IBS-D, suggesting an absence of strong subtype-specific, possibly 
gut-focused genetic effects.

Aside from the pooling strategy, justified by our LDSC analysis 
(Methods), other potential weaknesses include the use of Rome III 
criteria instead of the more restricted Rome IV criteria, since the 
former were the standard at the time of study design52, the fact the 
IBS diagnosis was made based on Rome III symptoms reported via 
the DHQ rather than by medical review for nearly half of cases in 
the UKB cohort and the limited age range and ancestry of UKB. 
However, we believe that the fact that all of the loci identified at 
genome-wide significance thresholds in the discovery panel repli-
cated in the independent 23andMe panel validates both the findings 
and the approach taken.

Our GWAS and the results of our polygenic analyses provide 
important new insights. Individual loci identified by the GWAS 
implicate new target genes within previously under-researched 
pathways (for example, neuronal adhesion). Mendelian random-
ization and genome-wide correlation analyses demonstrate shared 
genetic risk pathways between anxiety and IBS that are independent 
of the comorbidity between these two traits. This may point toward 
a mechanistic rationale for the efficacy of psychoactive medications 
and behavioral therapies and suggest that more attention should be 
paid to identifying new therapeutics that target neuronal function. 
We anticipate that future research will build on our discoveries, 

both by investigating the target genes identified and exploring the 
shared genetic risk across traits to improve our understanding of the 
disordered brain–gut interactions that characterize IBS.
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Methods
For details of the cohorts, descriptive statistics, association analysis methodologies 
and functional interpretation of associations, see the Supplementary Note.

Ethics oversight. The UKB DHQ was approved as a substantial amendment to the 
UKB protocol by the North West – Haydock Research Ethics Committee, reference 
no. 11/NW/038e. The Bellygenes initiative study received ethical approval from the 
Stockholm Ethics Examination Authority (EPN ID 2016/1620-31/2) and Monash 
University Human Research Ethics Committee (MUHREC ID 20326). Written 
informed consent was obtained from all participants. This study did not award 
compensation to any participant.

Data and study participants. Our discovery cohort combined cases of IBS 
identified in UKB with cases from the Bellygenes initiative. Replication was 
sought in an independent panel from 23andMe. Cases ascertained in UKB met 
at least one of the following four conditions (the DHQ is viewable online – UKB 
resource 595): (1) DHQ Rome III: met Rome III symptom criteria for IBS 
diagnosis without other diagnostic explanations for these symptoms; (2) DHQ 
‘self-report’: answered ‘yes’ to the question ‘Have you ever been diagnosed with 
IBS?’; (3) Unprompted ‘self-report’: self-reported IBS diagnosis in response 
to question ‘Has a doctor ever told you that you have any … serious medical 
conditions?’; (4) hospital ICD-10: linked hospital episode statistics indicating 
inpatient or day-case admission with clinician diagnosis of IBS entered as main or 
secondary ICD-10 diagnosis.

Participants with conditions such as celiac disease, inflammatory bowel disease 
or previous intestinal resectional surgery that could result in IBS-like symptoms 
were excluded from both cases and digestively healthy controls to avoid signal 
contamination. For detailed case and control inclusion and exclusion criteria, see 
Supplementary Tables 1 and 2, respectively. To maximize sample size, cases from 
the 4 UKB groups were pooled (n = 40,548). This approach was supported by 
demonstrating high genetic correlations between them using LDSC48 following a 
separate GWAS on each (minimum pairwise rg = 0.70, s.e.m. = 0.06; Supplementary 
Fig. 13) and by previous literature on the consistency of genetic results obtained 
from different diagnostic definitions in UKB16.

We then meta-analyzed IBS GWAS data from UKB (40,548 cases) and 
Bellygenes initiative (12,852 cases and 139,981 controls; Supplementary Table 
9), an international collaboration studying IBS genetics based on electronic 
medical records, specialist diagnoses form tertiary clinics and questionnaire data 
(including Rome III criteria) across multiple cohorts, having again demonstrated 
high genetic correlation between them (rg = 0.998, s.e.m. = 0.129). This produced a 
total discovery cohort of 53,400 cases and 433,201 controls. Evidence of replication 
was sought in a large 23andMe dataset (Supplementary Note). 23andMe cases 
(n = 205,252) self-reported being diagnosed or treated for IBS while controls 
(n = 1,384,055) did not.

Analyses of IBS subtypes were conducted solely using UKB DHQ data based 
on standard definitions of IBS-C, IBS-D, IBS-M and IBS-U according to the 
frequency of hard or lumpy stools versus loose, mushy or watery stools. Functional 
constipation and functional diarrhea cases were identified similarly, and with the 
same exclusions per IBS cases, but (in contrast to the Rome III definition of IBS) 
needed to have responded ‘never’ when asked about the frequency of abdominal 
pain in the last three months. Likewise, analyses of IBS severity (using the IBS-SSS) 
and associated somatic symptoms (using the PHQ-12) were restricted to DHQ 
respondents. Anxiety and depression were identified among UKB participants 
based on previously surveyed responses to GAD-7 anxiety and PHQ-9 depression 
questionnaires, self-report of diagnosis with depression or anxiety/panic attack, 
diagnostic codes for major depression and phobic or generalized anxiety disorder 
in electronic healthcare records or reporting of treatment being sought or offered 
for these conditions in our DHQ (Supplementary Note).

Statistical analysis. Association between IBS and nongenetic risk factors, including 
risk factors assayed by recall from the DHQ, was tested using logistic regression 
conditioning on age and sex (Supplementary Note, ‘Nongenetic associations’).

Standard genetic quality control was carried out to remove samples with poor 
genotype quality and variants with poor genotyping or imputation performance. 
Only participants of European ancestry were included in the discovery dataset 
due to the limited number of non-European ancestry participants. GWAS were 
conducted using a linear mixed model (BOLT-LMM v.2.3.2)53 to control for 
population stratification and relatedness. Meta-analysis of GWAS summary 
statistics was carried out using METAL (March 2011 release)54. The UKB 
GWAS was stratified into DHQ respondents and nonrespondents, with results 
meta-analyzed to avoid genetic confounding with questionnaire response 
(Supplementary Fig. 14).

We assigned loci to candidate genes using annotations from FUMA v.1.3.455, 
as well as from a colocalization analysis using Coloc v.3.2-156 on multi-tissue 
expression data from the Genotype-Tissue Expression (GTEx) consortium56,57. 
We calculated SNP heritability and coheritability (rg, genetic correlation) using 
univariate and bivariate LDSC48 against a range of traits via the LD Hub website33. 
Other statistical analyses were carried out using R v.3.6.1; any P values were 
obtained from two-sided tests unless otherwise specified.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genome-wide summary statistics have been deposited to the European 
Bioinformatics Institute GWAS Catalog (https://www.ebi.ac.uk/gwas/) under 
accession no. GCST90016564. Individual-level data on the DHQ responses, along 
with matching genotype, electronic health record and survey data, are available 
via an application to the UK Biobank Access Management System (https://bbams.
ndph.ox.ac.uk/ams/). Individual-level data for 23andMe were not shared as part 
of this project to protect the privacy of 23andMe participants. Data used for the 
analyses pertinent to the Bellygenes initiative include both individual-level and 
aggregate data. Individual-level data from the following sources can be obtained 
via applications to the respective biobanks and cohorts: TWINGENE (https://ki.se/
en/research/swedish-twin-registry-for-researchers); HUNT (https://www.ntnu.
edu/hunt/data); Michigan Genomics Initiative (https://precisionhealth.umich.
edu/our-research/michigangenomics/); Estonian Genome Center of the University 
of Tartu (https://genomics.ut.ee/en/biobank.ee/data-access); Lifelines (https://
www.lifelines.nl/researcher/how-to-apply); Gene-Environment and Gene-Gene 
Interaction Research Application (dbGaP Study accession no. phs000674.v2.p2, 
now superseded by phs000674.v3.p3). Data from IBS patients from tertiary centers 
can be requested from Mauro D’Amato at mdamato@cicbiogune.es and may be 
made available depending on specific material and data transfer agreements with 
principal investigators at respective collaborating institutions.

Code availability
All software used is publicly available at the URLs or references cited. The R code 
for additional analyses is available at https://doi.org/10.5281/zenodo.5048820.
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