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Abstract

In this paper, we begin to consider the problem of computing p-adic peri-
ods of certain genus 2 curves with totally split reduction, using techniques of the
arithmetic-geometric mean. For this, we synthesise work of Henniart and Mestre on
a p-adic arithmetic-geometric mean in genus 1 with work of Bost and Mestre on a
real arithmetic-geometric mean in genus 2 (via the so-called Richelot isogeny). We
prove that, for a certain class of p-adic genus 2 curves, the Richelot isogeny plays
the same role in the genus 2 theory as the maps appearing in Henniart-Mestre,
in that the Richelot isogeny squares the p-adic periods, and leads to a quadrati-
cally converging sequence of genus 2 curves. This suggests that this may provide a
quadratically convergent method to compute p-adic periods for these curves, once
we have a suitably explicit p-adic Tate uniformisation in genus 2.
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1 Introduction

Given two numbers a ≥ b > 0, we set a0 = a, b0 = b, and define an+1 = (an + bn)/2 and
bn+1 =

√
anbn. The two sequences (an) and (bn) converge quadratically to a common limit

M = M(a, b), known as the arithmetic-geometric mean (AGM). The elementary theory
is beautifully presented in the article of Cox [6]. If we define

I(a, b) =

π/2∫

0

dθ√
a2 cos2 θ + b2 sin2 θ

there is a (fairly complicated) change of variable, known to Gauss, which shows that
I(a, b) = I(a+b

2
,
√
ab). It follows that

I(a, b) = I(a0, b0) = I(a1, b1) = · · · = I(M,M) =
π

2M
.

Thus we have a quick way to compute the elliptic integrals I(a, b), at least numerically.
A change of variable leads to these integrals appearing as

∫
dx√
P (x)

, where P is a quartic

polynomial, and where the limits are roots of P . Writing y2 = P (x), we see that we can
evaluate numerically quickly the period integrals for this elliptic curve.

If we write P for the quartic coming from the integral I(a, b) and P ′ for that coming
from I(a1, b1), then it turns out that there is a 2-isogeny between the elliptic curves
y2 = P (x) and y2 = P ′(x), which we refer to as the AGM isogeny. If the complex
uniformisation of y2 = P (x) is given by C/Z + Zτ , then y2 = P ′(x) has a complex
uniformisation isomorphic to C/Z+Z.(2τ) – i.e., there is a doubling of the period. Indeed,
if we use the usual theta functions to embed the elliptic curves into projective space:

θ3(q) =
∑

n∈Z

qn
2

, θ4(q) =
∑

n∈Z

(−1)nqn
2

(q = eπiτ ),

then

θ23(q
2) =

θ23(q) + θ24(q)

2
, θ24(q

2) = θ3(q)θ4(q),

so that the AGM process takes q into q2, which corresponds to a doubling of the period τ .

Gauss understood the behaviour of the algorithm when a and b are not necessarily
positive real numbers (issues arise because the square root is no longer well-defined),
and Cremona and Thongjunthug [7] explained how to adapt the algorithm for computing
periods of real elliptic curves to the complex case.

There is also a p-adic version of the algorithm, due to Henniart and Mestre [11]. It
is easy to see that this will not converge unless the two p-adic integers a and b are in the
same p-adic disc. This leads to an algorithm for computing the p-adic periods of elliptic
curves with split multiplicative reduction defined over non-archimedean complete fields, so
that there exists a p-adic uniformisation (they also require that the residue characteristic
differs from 2). We will review this below.

Bost and Mestre [3] define a version of the AGM suitable for computing periods of
curves of genus 2. This depends on the Richelot isogeny between two curves of genus 2.
If we are given a genus 2 curve in the form y2 = f(x) where f(x) is a sextic, a quadratic
splitting is a factorisation of f as a product f = P1P2P3 of three quadratics. Correspond-
ing to this factorisation is the Richelot isogeny, a (2, 2)-isogeny between Jacobians, which
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we will discuss further below; the algorithm as given by Bost and Mestre computes the
periods when the three quadratics are all real. Again, there are issues when the quadratics
are complex.

There is also some literature on p-adic periods of curves of genus 2. Given a genus 2
curve X , there is a p-adic uniformisation of the curve (due to Mumford [19]) when X
has totally split reduction. Abelian varieties also have p-adic uniformisation (again due
to Mumford [20]); the link between the uniformisations of the curves and their Jaco-
bians was explained by Manin and Drinfeld [14]. Teitelbaum used these ideas in his thesis
(see [26]) to compute some p-adic periods for some totally split curves over genus 2; subse-
quently, Kadziela [13] did something similar in his thesis. Neither exploits the arithmetic-
geometric mean, and we hope to explain in this article how this might work, thereby
giving a quadratically convergent algorithm. However, some details, especially an explicit
description of the Mumford uniformisation, remain to be completed, and we intend to
consider this further in future work.

Acknowledgements We thank Tobias Berger, John Cremona, Victor Flynn,
David Grant, Haluk Şengün and Michael Stoll for their interest in this project, and
Jordi Pujolàs for useful discussions relating to section 6 (and in particular, for providing
an early draft of [16]). We also thank the anonymous referee for providing a number of
useful suggestions which have improved the exposition of the paper.

2 A p-adic AGM in genus 1

The material in this section follows Henniart-Mestre [11] closely; more details can be
found there. We let K denote a non-archimedean complete field of residue characteristic
p > 2. If we are given a0 and b0 in K× such that a/b ≡ 1 (mod 8p), where p|p denotes
the maximal ideal in OK , then the formulae we gave above for the arithmetic-geometric
mean converge quadratically in K× (so that the p-adic precision of the agreement of an
and bn doubles at each iteration).

We recall Tate’s work on p-adic uniformisation. We let E/K denote an elliptic curve
with split multiplicative reduction, and suppose it to be of the form y2 = x(x+a)(x+a−b).
Then the j-invariant of E is not an integer of K, and there is a value q ∈ p characterised
by j = q−1+744+ · · · . There is then a p-adic uniformisation φ : K×/qZ

∼−→E. Further, if
dx/y is the canonical differential on E, and t is the coordinate onK×, we have φ∗(dx/2y) =
u dt/t; the AGM can be used to compute the value of u; an extension allows us to compute
q from a Weierstrass equation for E.

Indeed, as remarked above, the AGM gives a 2-isogeny between E and a curve E ′

given by y2 = x(x+ a′)(x+ a′ − b′), where a′ and b′ denote (slightly modified versions of)
the arithmetic and geometric means of a and b. If E has a p-adic uniformisation, so does
E ′. We have a diagram

K×/q2Z K×/qZ

E ′ E.

f

≀ ≀

g

The bottom map here is the AGM isogeny, and the vertical maps come from the p-adic
uniformisation. There are p-adic theta functions which satisfy the same duplication rules
as over C, so that the p-adic period q doubles. The top map is therefore induced by the
identity map on K×.
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This leads to a simple way to determine q using the AGM process. After choosing
the models for E ′ and E above, there is an explicit description of the isogeny g, and
(0, 0) is the non-trivial element of the kernel. The non-trivial element in the kernel of f
is clearly given by q (mod q2Z).

This leads to the following method. Start with the elliptic curve E = E0 in Weier-
strass form for which one wishes to compute the p-adic period q.

Applying the AGM isogeny repeatedly, and p-adic uniformisation, gives a commu-
tative diagram

· · · K×/q4Z K×/q2Z K×/qZ

· · · E2 E1 E0

f2 f1

φ2 ≀

f0

φ1 ≀ φ0 ≀

g2 g1 g0

in which the maps fn are induced by the identity on K×, and the bottom maps are explicit
isogenies between elliptic curves with explicitly given Weierstrass equations, En : y2 =
x(x+ an)(x+ an − bn). The vertical maps coming from Tate’s p-adic uniformisation are a
little more mysterious. However, were we to extend the diagram infinitely far to the left,
we can see that the top sequence would have projective limit K×, while the bottom one
would have a limit curve E∞ with an explicit equation y2 = x2(x +M), where M is the
arithmetic-geometric mean M = M(a1, b1). The vertical maps are given by a formula of
Tate (see, for example, [25], p.323). These are complicated series, but they degenerate in
the limit into a very simple map. Tate’s vertical map for a point w ∈ K× and period q
involves the p-adic theta series

ϑ(w, q) = (1− w)
∞∏

n=1

(1− qnw)(1− qnw−1)(1− qn) =
∑

n∈Z

(−1)nq
n
2
−n

2 wn,

the equality being the Jacobi triple product, and as q → 0, we see that this approaches
1 − w. This leads to a simple explicit map at infinity, φ∞ : K× −→ E∞, and at each
finite stage, the vertical map φn can be regarded as an approximation of φ∞ agreeing up
to precision of order q2

n

.

So one can take P1 = (0, 0) on E1, explicitly pull it back to P2 on E2, then to P3 on
E3 etc., up to desired precision; then apply φ−1

∞
to get something in K×, and this should

be the value q. Explicit details and formulae are given in [11]; from the formulae, it is
clear that there is a natural right choice of pull back Pn+1 of Pn which is in the same
p-adic disc.

More generally, one can start with any point P0 on E0 and carry out this procedure.
This gives a p-adic Landen transformation in this setting.

Before moving on to genus 2, we remark that this also allows one to compute
tiny Coleman elliptic integrals. So let E/Qp be an elliptic curve with an explicit model
y2 = (x− e1)(x− e2)(x− e3) such that e2 − e1 ≡ e3 − e1 (mod pZp). Suppose that P and
Q are points on E(Qp) inside the same residue disc. Then recall that φ : Q×

p /q
Z −→ E

has φ∗(dx/2y) = u dt/t. Properties of Coleman integration now imply that

Q∫

P

dx

2y
=

φ−1(Q)∫

φ−1(P )

φ∗

(
dx

2y

)
=

φ−1(Q)∫

φ−1(P )

u
dt

t
= uLog

(
φ−1(Q)

φ−1(P )

)
,

where Log denotes a branch of the p-adic logarithm.

We record this as an algorithm:
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Algorithm 2.1 Let E/Qp be an elliptic curve, and P , Q ∈ E(Qp) in the same residue
disc.

1. Let α = e2 − e1, β = e3 − e1.

2. Compute the quantity u2 ∈ Qp using the AGM, as in [11].

3. Apply the Landen transformation to both P and Q to get φ−1(P ) and φ−1(Q).

4. Then
Q∫

P

dx

2y
= uLog

(
φ−1(Q)

φ−1(P )

)
.

When programmed in Sage, this converges quadratically, and gives the same result as
existing algorithms of Balakrishnan and others, which have linear convergence. (However,
we note that our method only applies to those curves with split multiplicative reduction,
whereas those already in Sage apply more generally.)

However, the main aim of this paper is to begin to try to extend the algorithm of
Henniart and Mestre to curves of genus 2.

3 The Richelot isogeny and periods of curves of genus 2

Richelot ([22]), in 1836, gave a construction for genus 2 curves which has some resem-
blances to the AGM isogeny for curves of genus 1. In particular, it allows the numerical
computation of period integrals of the form

b∫

a

lx+m√
|P (x)|

dx,

where P is a polyomial of degree 6 with real roots, and a and b are consecutive real roots
of P . It resembles Gauss’s work on elliptic integrals, but is significantly more complicated.
The method was subsequently refined by Königsberger and Humbert, and was given a
modern treatment by Bost and Mestre [3], which we follow in this paper.

Let X denote a curve over C of genus 2. It therefore has a model y2 = f(x), for
some sextic f . Then X has a Jacobian, J = Pic0(X), the degree 0 divisors on X , up to
linear equivalence.

We shall explain how to construct a new curve X ′, with Jacobian J ′, such that there
is a (2, 2)-isogeny J ′ −→ J , which shares some of the properties of the AGM isogeny for
elliptic curves.

Definition 3.1 A quadratic splitting of f(x) is simply a factorisation of f as a product
P1P2P3 of three quadratics.

For curves of genus 2 over R, there is a natural quadratic splitting, coming from
taking pairs of consecutive roots. We shall see below that there is similarly a canonical
choice of quadratic splitting for certain totally split genus 2 curves over p-adic fields.
However, one of the main obstacles to a nice general theory over the complexes is that
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there are 15 choices of quadratic splitting over C, and none is necessarily the correct one.
The first author partially considers this issue in his thesis [5].

We fix a splitting, f = P1P2P3, where Pi(x) = pi2x
2 + pi1x+ pi0. Then we define

Q1 = [P2, P3] = P ′

2P3 − P2P
′

3

Q2 = [P3, P1] = P ′

3P1 − P3P
′

1

Q3 = [P1, P2] = P ′

1P2 − P1P
′

2

(with the bracket notation intended to remind the reader of the Lie bracket). If Pi and Pj

are quadratics, the derivatives P ′

i and P ′

j are linear, but the leading terms in the brackets
cancel, so that each Qk is again quadratic.

If we write ∆ = det(pij), let X
′ be defined by the twist

∆y2 = Q1Q2Q3.

There is a correspondence Z ⊂ X × X ′. Indeed, if we label the coordinates of X ′

so that they are given by ∆y′2 = Q1(x
′)Q2(x

′)Q3(x
′), we let Z be given by

{
(x, y, x′, y′)

∣∣∣∣
y2 = P1(x)P2(x)P3(x), ∆y′2 = Q1(x

′)Q2(x
′)Q3(x

′),
P1(x)Q1(x

′) + P2(x)Q2(x
′) = 0, P1(x)Q1(x

′)(x− x′) = yy′

}
.

That is, Z is defined as the subset of X ×X ′ by the extra two equations

P1(x)Q1(x
′) + P2(x)Q2(x

′) = 0,

P1(x)Q1(x
′)(x− x′) = yy′.

Write π1 : Z −→ X , and π2 : Z −→ X ′ for the projections. Then the correspondence Z
induces a map δZ : Ω1(X ′) −→ Ω1(X) given by composition π1∗ ◦ π∗

2 of the inverse image
π∗

2 : Ω1(X ′) −→ Ω1(Z) and of the trace π1∗ : Ω
1(Z) −→ Ω1(X). With the extra factor of

∆ we added, it turns out (see [3]) that there is an identity

δZ

(
(lx′ +m)

dx′

y′

)
= (lx+m)

dx

y
.

So if we had used the same labels for both X and X ′, we would get

δZ

(
dx

y

)
=

dx

y
, δZ

(
x dx

y

)
=

x dx

y
,

which explains how the differentials on the curves behave under the correspondence.

The correspondence Z also defines a map Div(X ′) −→ Div(X) on divisors by the
formula

∑
nip

′

i 7→
∑

niπ1π
−1
2 p′i for points p

′

i on X ′, and this gives a map g : J ′ −→ J on
degree 0 divisor classes, g([

∑
nip

′

i]) = [
∑

niπ1π
−1
2 p′i]. In the same way, Z induces a map

g′ : J −→ J ′ by g′([
∑

nipi]) = [
∑

niπ1π
−1
2 pi]. We will refer to g as the Richelot isogeny;

then g′ is the dual isogeny, in the sense that g′g = [2]J ′, multiplication by 2 on J ′, and
g′g = [2]J .

We remark that the correspondence Z depends on the choice of ordering of the
three quadratics within the splitting, but that all choices give the same isogeny on divisor
classes (see [24], section 8.4) so give the same map on Jacobians.

The kernel of g is a (2, 2)-subgroup, whose three nonzero elements are the divisor
classes [(qi, 0)− (q′i, 0)], where qi and q′i are the two roots of Qi, for each of the quadratics
Q1, Q2 and Q3.
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Thus we have a map in genus 2 with analogous properties to the AGM isogeny in
genus 1. Before moving to the p-adic theory, we briefly explain that this can likewise
be viewed as a period doubling map. This is already explained in [3] in the case of real
sextics, using integration. We will explain another approach, which will be more useful
when we come to consider the p-adic setting.

We first recall the definition of a theta function. Take a and b to be column vectors
in Q2, and Ω in the Siegel upper-half space H2 of all 2 × 2-symmetric complex matrices

with positive definite imaginary part. For a pair z =

(
z1
z2

)
of complex numbers, we define

the theta function with characteristic

[
a
b

]
as

θ

[
a
b

]
(z; Ω) =

∑

n∈Z2

eπi
t(n+a)Ω(n+a)+2πit(n+a)(z+b).

These theta functions are analytic in z and satisfy a transformation law. Of particular
importance are the functions with a, b ∈ 1

2
Z2/Z2. Often formulae just involve the theta

constants, where z = 0, and then there are 6 pairs (a, b) for which these vanish; the
remaining 10 theta functions are:

θ0(Ω) = θ

[
0 0
0 0

]
(Ω), θ1(Ω) = θ

[
0 0
0 1

2

]
(Ω),

θ2(Ω) = θ

[
0 0
1
2

0

]
(Ω), θ3(Ω) = θ

[
0 0
1
2

1
2

]
(Ω),

θ4(Ω) = θ

[
1
2

1
2

1
2

1
2

]
(Ω), θ5(Ω) = θ

[
1
2

1
2

0 0

]
(Ω),

θ6(Ω) = θ

[
1
2

0
0 1

2

]
(Ω), θ7(Ω) = θ

[
1
2

0
0 0

]
(Ω),

θ8(Ω) = θ

[
0 1

2
1
2

0

]
(Ω), θ9(Ω) = θ

[
0 1

2

0 0

]
(Ω).

(Note that the numbering of these is not standardised in the literature, and our numbering
is arbitrary.)

Given an equation y2 = f(x), where f is a sextic, there is some linear transformation
taking three given roots to 0, 1 and ∞ respectively. This turns the original sextic into a
quintic, giving an equation in Rosenhain form

y2 = x(x− 1)(x− λ)(x− µ)(x− ν).

The classical Thomae formulae allow us to write λ, µ and ν in terms of the 10 genus 2
theta constants {θ0(Ω), . . . , θ9(Ω)}, where Ω is the period matrix of the Jacobian. We
now consider the quadratic splitting

P1(x) = x(x− λ), P2(x) = (x− 1)(x− µ), P3 = x− ν.

It turns out that when we apply the Richelot isogeny corresponding to this splitting
(making appropriate choices for the square roots in the formulae), we get a sextic defining
X ′; when we move three roots back to 0, 1 and ∞, we get an equation

y2 = x(x− 1)(x− λ′)(x− µ′)(x− ν ′),
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and we find that the remaining three roots are exactly given by the same functions defining
λ, µ and ν as for X , but evaluated at 2Ω rather than Ω (see [5] for more details of the
argument, e.g., which roots one moves to 0, 1 and ∞, and which square roots one should
take). The proof involves a lengthy calculation with theta function duplication formulae,
and simplification via Maple. We should remark that the quadratic splitting here is chosen
for compatibility with the p-adic situation below.

Thus the Richelot isogeny is a period-doubling map in the same way as the AGM
isogeny in genus 1.

Thus all the ingredients are in place to try to extend the Henniart-Mestre algorithm
for finding p-adic periods of elliptic curves to genus 2, except for the p-adic uniformisation
theory, which we recall now.

4 p-adic uniformisation for genus 2 curves and their

Jacobians

Our main reference here is Teitelbaum’s paper [26], together with that of Kadziela [13]. We
restrict ourselves to the parts of the theory which will be useful for us; see these references
for background on rigid analysis and in particular the structure of p-adic domains in terms
of the tree for PGL2. We will assume that the residue characteristic of our field is odd, so
that we can write genus 2 curves with a model of the form y2 = f(x), where f is a sextic.

Just as not every elliptic curve has a p-adic uniformisation, so the same is true in
genus 2. Those curves which do have such a uniformisation are the totally split curves;
these are also known as Mumford curves. Essentially, these have special fibres with
components of genus 0 intersecting at ordinary double points. Whether or not a curve
is a Mumford curve can be read off from the equation (see [26], Proposition 9); there
are three kinds of curve whose reduction is just bad enough to be totally split, which
Teitelbaum calls Types A, B and C. Modulo the maximal ideal p of OK , the equation
must reduce to

y2 = k(x− α)2(x− β)2(x− γ)(x− δ)

with α, β and γ in different residue classes.

• Type A refers to the case where δ is different from α, β and γ;

• Type B refers to the case where δ ≡ γ, so that the equation reduces to y2 =
k(x− α)2(x− β)2(x− γ)2 modulo p;

• Type C refers to the case where δ ≡ α, so that the equation reduces to y2 =
k(x− α)3(x− β)2(x− γ) modulo p.

Our work, like Teitelbaum’s, focuses on Type B; his motivation is that genus 2 modular
curves are of this form, since their reduction is known to have ordinary double points,
but it is also very useful for us, since the pairing of the roots by residue classes gives us
a canonical p-adic quadratic splitting of the sextic.

Indeed, we shall restrict to the case of Type B from now on. (Further, we suspect
that the arguments we give in this paper will not extend to the other cases, but this may
be a topic for future investigation.)
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Thus the Weierstrass points of the curve are canonically partitioned into three
pairs, S1, S2 and S3, where these consist of pairs of points whose x-coordinates in the
same residue class.

Given a totally split curve X over a complete p-adic field K, Mumford ([19]) ex-
plained that there is a p-adic uniformisation for X . There is a Schottky group Γ ⊂
PGL2(K), i.e., a group all of whose non-identity elements are hyperbolic in the p-adic
sense that their eigenvalues have different valuations, and a rigid analytic isomorphism
Ω/Γ −→ X , where Ω = P1

K − L, with L being the set of limit points of Γ. Ihara showed
that Schottky groups are free; Mumford showed that the number of generators of Γ is
equal to the genus of X .

We are interested in the case of a curve of genus 2, so our Schottky group is a free
group on two generators γ1 and γ2.

Mumford ([20]) also explained how to uniformise abelian varieties; the link between
the uniformisation of the curve and its Jacobian was given by Manin and Drinfeld [14].
There is a pairing Γ×Γ −→ K×, given in terms of p-adic theta functions, which allows us
to regard Γ as contained in CΓ = Hom(Γ, K×). Then the quotient CΓ/Γ is a uniformisation
of the Jacobian J .

The map is fairly explicit. If Ω is as above, then an automorphic form on Γ is a
meromorphic function f on Ω such that f(ω) = χ(α)f(αω) for all α ∈ Γ. The constant
χ(α) ∈ K× is the automorphy factor. It is easy to see that χ is a homomorphism
Γ −→ K×.

Automorphic forms are generated by p-adic theta functions, and these are the most
important ingredient in the theory. Given a, b ∈ Ω, we define

Θ(a, b; z) =
∏

γ∈Γ

z − γ(a)

z − γ(b)
.

This product converges to give a meromorphic function on Ω; if a and b are in the same
orbit under Γ, there are no poles or zeros, but otherwise there are simple zeros on Γa and
simple poles on Γb. We set

uα(z) = Θ(a, α(a); z),

which are independent of the choice of a, and satisfies uαβ(z) = uα(z)uβ(z) for all α, β ∈ Γ.
It turns out that uα(z) is constant if α ∈ [Γ,Γ]. The automorphy factor of Θ(a, b; z) is

χa,b(α) =
uα(a)

uα(b)
=

Θ(a, α(a); z)

Θ(b, α(b); z)
.

If we are given a homomorphism χ ∈ Hom(Γ, K×), then there is a unique automor-
phic form fχ on Ω whose automorphy factor is χ. Then the map CΓ/Γ −→ J is given by
χ 7→ [(fχ)], the class of the divisor of fχ.

The pairing Γ × Γ −→ K× is also easy to describe. If α and β are in Γ, then the
value of the pairing is

〈α, β〉 = uα(z)

uα(βz)
.

Then this is a symmetric pairing on Γ, valued in K×.

Let’s fix generators γ1 and γ2 for our Schottky group Γ. Since the pairing factors
through Γ × Γ −→ K×, where Γ = Γ/[Γ,Γ], every element can be written α ≡ γm1

1 γm2

2 ,
β ≡ γn1

1 γn2

2 , and the bilinearity and symmetricity give

〈α, β〉 = 〈γ1, γ1〉m1n1〈γ1, γ2〉m1n2+m2n1〈γ2, γ2〉m2n2

9



In particular, the pairing is determined by the effects on the two generators.

We recall that for genus 2 Mumford curves of Type B, the Weierstrass points were
canonically partitioned into three pairs S1, S2 and S3. We label these pairs arbitrarily,
following [26], as Si = {P+

i , P−

i }. Teitelbaum ([26], 2.1) writes down specific generators
γ1 and γ2, defines γ3 so that γ1γ2γ3 = 1, and defines p-adic periods by

q1 = 〈γ2, γ3〉−1, q2 = 〈γ3, γ1〉−1, q3 = 〈γ1, γ2〉−1.

Clearly these three periods determine the pairing.

Teitelbaum defines “half-periods” by

p1 = χP+

1
,P+

2
(γ2), p2 = χP+

2
,P+

3
(γ3), p3 = χP+

3
,P+

1
(γ1),

and shows that p2i = q−1
i . These half-periods are used to construct particular theta

functions on the Jacobian.

Once generators are fixed for the free group Γ, there is a natural isomorphism
Hom(Γ, K×)

∼−→(K×)2, given by χ 7→ (χ(γ1), χ(γ2)). The pairing Γ × Γ −→ K× gives
a map Γ →֒ Hom(Γ, K×), which we might write γ 7→ χγ. The image of Γ under the
isomorphism is generated by

(χγ1(γ1), χγ1(γ2)) = (〈γ1, γ1〉, 〈γ1, γ2〉) = (q2q3, q
−1
3 )

and
(χγ2(γ1), χγ2(γ2)) = (〈γ2, γ1〉, 〈γ2, γ2〉) = (q−1

3 , q1q3).

Thus the image of Γ is the subgroup

HΓ = {(qa2qa−b
3 , qb1q

b−a
3 ) | a, b ∈ Z}.

We conclude that there is an isomorphism

CΓ/Γ
∼−→(K×)2/HΓ.

Our strategy should now be clear. Given a curve X0 = X of genus 2, we consider its
Jacobian J0, and uniformisations of both, by a Schottky group Γ0. We use the Bost-Mestre
algorithm to find a Richelot-isogenous curve X1, inducing a map on Jacobians J1 −→ J0

whose kernel is a (2, 2)-group, which we know. We pick an element in the kernel, and
lift it by a sequence of Richelot isogenies Jn −→ Jn−1 −→ · · · −→ J1 to some desired
precision, then map this up to the uniformisation CΓn

/Γn, and then to (K×)2/HΓn
, to

recover the periods qi (or equivalently the half-periods pi).

5 A p-adic study of the Richelot isogeny

Teitelbaum gives a (linearly) convergent algorithm for computing the half-periods of a
genus 2 curve. Essentially, this involves finding a p-adic version of the Thomae formulae,
and expressing the coefficients in terms of certain p-adic theta series related to those given
in the previous section. The theta series have “q-expansions” which are power series in
the three half-periods p1, p2 and p3; these are then explicitly inverted to compute the
half-periods. (Note that Guitart-Masdeu [10] remark that a Newton scheme method is a
better approach to this inversion than the one given in [26].)

Let us record the following:

10



Lemma 5.1 If X is a Type B genus 2 curve, and if X ′ −→ X is a Richelot isogeny, then
X ′ also has Type B.

Proof. The simplest way to prove this is simply to observe that if Pi(x) ≡ (x − αi)
2,

then (x − αi) is a factor of P ′

i (x) over the residue field. Then Q1 = P ′

2P3 − P2P
′

3 has a
factor over the residue field of x− α2 as this is a factor of both P2 and P ′

2, and similarly
of x−α3 as this is a factor of both P3 and P ′

3. As Q1 is a quadratic, we see that over the
residue field,

Q1 ≡ c1(x− α2)(x− α3).

Similarly,

Q2 ≡ c2(x− α3)(x− α1),

Q3 ≡ c3(x− α1)(x− α2),

so that X ′, given by ∆y2 = Q1Q2Q3 again has three pairs of repeated roots over the
residue field. �

Teitelbaum gives an example of a curve, X0(23), of genus 2, with the appropri-
ate reduction type (with p = 23), and computes the p-adic half-periods. As already
noted, there is a canonical choice of quadratic splitting, and therefore a canonical Riche-
lot isogeny to/from a curve X ′

0(23), which is easily computed also to have Type B. The
first author ([5]) computed this Richelot isogenous curve for Teitelbaum’s example, used
Teitelbaum’s method to compute the half-periods, and observed that if p1, p2 and p3
were the half-periods of the original curve, then p21, p

2
2 and p23 were the half-periods of

the isogenous curve up to fairly high p-adic precision, so the p-adic periods seem to be
squared under the isogeny, just as in the case of a real quadratic splitting. We can prove
this using the same methods as indicated above. We sketch this (see [5] for more complete
details).

Theorem 5.2 If X ′ −→ X is a Richelot isogeny between two Type B genus 2 curves,
then the half-periods of X ′ are the squares of the half-periods of X.

Proof. Essentially we use the argument above, writing our curve in Rosenhain form,
applying the Richelot isogeny with a suitable quadratic splitting, and using Thomae
formulae to identify coefficients with theta functions. In the p-adic case, Teitelbaum
constructs p-adic theta functions (he only gives explicitly four of them – see (25) of [26];
Guitart-Masdeu [10] give ϑ1, . . . , ϑ9 below), and gives a p-adic version of the Thomae
formulae.

There are 10 p-adic theta functions, which are power series in the half-periods p1,
p2 and p3:

ϑ0 =
∑

i,j∈Z p
j2

1 pi
2

2 p
(i−j)2

3 ϑ1 =
∑

i,j∈Z(−1)jpj
2

1 pi
2

2 p
(i−j)2

3

ϑ2 =
∑

i,j∈Z(−1)ipj
2

1 pi
2

2 p
(i−j)2

3 ϑ3 =
∑

i,j∈Z(−1)i+jpj
2

1 pi
2

2 p
(i−j)2

3

ϑ4 =
∑

i,j∈Z(−1)i+jpj
2
−j

1 pi
2
−i

2 p
(i−j)2

3 ϑ5 =
∑

i,j∈Z p
j2−j
1 pi

2
−i

2 p
(i−j)2

3

ϑ6 =
∑

i,j∈Z(−1)jpj
2

1 pi
2+i
2 p

(i−j)2+(i−j)
3 ϑ7 =

∑
i,j∈Z p

j2

1 pi
2+i
2 p

(i−j)2+(i−j)
3

ϑ8 =
∑

i,j∈Z(−1)ipj
2+j
1 pi

2

2 p
(i−j)2−(i−j)
3 ϑ9 =

∑
i,j∈Z p

j2+j
1 pi

2

2 p
(i−j)2−(i−j)
3

If we make a formal substitution Ω =
1

πi

(
log p2p3 − log p3
− log p3 log p1p3

)
into the classical complex

theta functions, then in fact, we recover (almost) exactly these p-adic expressions. Indeed,
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an easy calculation gives:

θ0(Ω) = ϑ0, θ1(Ω) = ϑ1,
θ2(Ω) = ϑ2, θ3(Ω) = ϑ3,

θ4(Ω) = (p1p2)
1

4ϑ4, θ5(Ω) = (p1p2)
1

4ϑ5,

θ6(Ω) = (p2p3)
1

4ϑ6, θ7(Ω) = (p2p3)
1

4ϑ7,

θ8(Ω) = (p1p3)
1

4ϑ8, θ9(Ω) = (p1p3)
1

4ϑ9.

Thus every complex theta function identity has a p-adic counterpart. Since it was exactly
these identities which are used to prove the doubling of the period matrix above, the same
calculations work (with very minor modifications owing to the additional factors such as

the (pipj)
1

4 above) to give the result that the Richelot isogeny corresponds to squaring
the half-periods p1, p2 and p3. �

This means that there is a commutative diagram like that of section 2:

(K×)2/H ′ (K×)2/H

J ′ J

f

≀ ≀

g

in which g is induced by the Richelot isogeny.

Conjecture 5.3 f is given by the identity map on (K×)2.

We state this as a conjecture because we do not yet have a good description of the
Mumford uniformisation maps. The corresponding result over C is fairly easy to prove.
We begin by noting (see [4], p.2, or section 6 below) that elements of the Jacobian are
essentially parametrised by pairs of points on the curve. Let P1 = (x1, y1) and P2 = (x2, y2)
be points on a genus 2 curve. Recall also that ω1 = dx

y
and ω2 = x dx

y
are a basis for the

differentials on a curve of genus 2. The Abel-Jacobi map, which identifies the Jacobian
with a quotient of C2 by a lattice is given by mapping (P1, P2) to

(z1, z2) =

P1∫

∞

+

P2∫

∞

(ω1, ω2)

where the integral is defined modulo the lattice of periods. This equality implies that

dz1 =
dx1

y1
+

dx2

y2
, dz2 =

x1 dx1

y1
+

x2 dx2

y2
.

(See also [1], p.36.) Finally, the equality δZ

(
(lx+m)dx

y

)
= (lx+m)dx

y
under the Richelot

isogeny of section 3 shows that dzi is mapped to dzi under f
∗, so that f is the identity.

In the p-adic case, we expect the same to hold, but need a better description of the
vertical maps; however, the correspondence between complex and p-adic theta functions
suggests that the result should continue to hold. We assume the conjecture in what
follows.

As in section 2, we want to iterate this procedure to get a commutative diagram:

· · · (K×)2/H2 (K×)2/H1 (K×)2/H0

· · · J2 J1 J0

f2 f1

φ2 ≀

f0

φ1 ≀ φ0 ≀

g2 g1 g0
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where Hn = {(q2na2 q
2n(a−b)
3 , q2

nb
1 q

2n(b−a)
3 ) | a, b ∈ Z}.

Next, we wish to iterate a sequence of Richelot isogenies. To fix notation, suppose
that X0 = X is given by y2 = f0, which reduces modulo p to y2 = (x−α)2(x−β)2(x−γ)2.
Write y2 = P1P2P3 for the corresponding quadratic splitting; i.e., P1 = (x− α1)(x− α2),
where α1 and α2 are the two roots of f0 which are congruent to α modulo p, so that
P1 ≡ (x−α)2, and similarly for P2 and P3. As above, when we work out Q1 = P ′

2P3−P2P
′

3,
we find that Q1 ≡ (x− β)(x− γ) etc., up to constant factors. But in fact, we get p-adic
convergence, and at a quadratic rate. For this, we write α = (α1 + α2)/2, so that
α1 = α + ǫα and α2 = α − ǫα, and assume that ǫα ∈ pvα , with ǫβ , vβ, ǫγ and vγ defined
analogously. Write v = min{vα, vβ, vγ). Then a simple manipulation of the quadratic
formula shows that the roots of Q1 are β + ǫ′β and γ + ǫ′γ , where ǫ′β ∈ p2v and ǫ′γ ∈ p2v.
Thus an application of the Richelot process leads to pairs of roots which are in a p-adic
disc of the square of the radius of the original pairs.

After one iteration, we get a curve X1 = X ′ given by ∆y2 = Q1Q2Q3. If we used
these quadratics for the next step, we would return to the original curve. Instead, we
redistribute the roots, and write the equation of X1 as t21y

2 = P
(1)
1 P

(1)
2 P

(1)
3 , where P

(1)
1

denotes the quadratic whose roots are the roots of Q2 and Q3 congruent to α, and so on.
Then we can repeat the process with these new quadratics to find a curve X2, and the
above argument shows that the curves X0 = X , X1, X2, . . . converge quadratically to a
limit T 2y2 = (x − a)2(x − b)2(x − c)2. That is, if we write tky

2 = fk for the curve Xk,
where fk is monic, we see that if the pairs of roots of f0 are congruent mod p, then the
pairs of roots of fk are congruent mod p2

k

.

Let us record this result:

Proposition 5.4 The sequence of equations for X1, X2, X3, . . . converges quadratically.

We know that the kernel of f is generated by (q2q3, q
−1
3 ) and (q−1

3 , q1q3), and that
the kernel of g by the divisors corresponding to differences of Weierstrass points in the
same factor of the quadratic splitting.

We will lift divisors D1 in the kernel of g0 using the Richelot isogeny to divisors D2,
D3, etc., as far as some Dn, which we expect to give the result to our desired precision; at
this precision, the curve and divisor will not change further, so we can assume we are at
X∞, and then lift via φ∞ to (K×)2, enabling us to recover information about the periods.

We expect that the divisors can be chosen to converge p-adically also, and this
appears to be the case in examples we have calculated. However, as we will explain
below, our method for pulling back the Richelot isogeny is very indirect, and we do not
yet have a proof.

6 Practical implementation: Lifting via the Richelot

isogeny

In order to make this into a practical algorithm, we need to be able to lift a divisor
through the Richelot isogeny, and then invert a vertical map. So, given a divisor D on a
genus 2 curve X , and a Richelot isogeny g : X ′ −→ X , we need to work out the divisor
g−1(D). Further, we want to be able to see that if X ′ and X are congruent to some p-adic
precision, so are the divisors g−1(D) and D.

We now explain how to make the formula for g explicit.
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We take a curve of the form y2 = P1P2P3, with Weierstrass points P+
1 , P−

1 , P+
2 , P−

2 ,
and P+

3 , P−

3 , corresponding to the three quadratics. Then we will be applying our algo-
rithm to the divisor D1 = (P+

1 )− (P−

1 ) (and repeating it for the other pairs).

The formula in section 3 for lifting divisors applies here; since it is a 2-to-1 map,
each point will lift to a pair of points, so that we would expect our divisor to be supported
at 4 points. However, it is well known, and explained in [4] (pp.2–3), for example, that
any divisor is linearly equivalent to one supported at 2 points. For this, we note that if
(x, y) is any point on X , O = (x, y) + (x,−y) represents the canonical class in Pic2(X)
(note that any two divisors of this form are linearly equivalent). There is an isomorphism
Pic0(X)

∼−→Pic2(X) given by sending a divisor D to D+O. The Riemann-Roch theorem
tells us that in any divisor class other than O, there is exactly one effective divisor, i.e., a
divisor of the form (P )+ (Q). The group law on the Jacobian in these terms is beautiful:
given one divisor class represented by (P ) + (Q), and another represented by (P ′) + (Q′),
then (generically, at least) there is a unique cubic y = m(x) passing through each of the
points P , Q, P ′ and Q′. The cubic y = m(x) meets X at two further points, P ′′ and Q′′,
and the group law states that

((P ) + (Q)) + ((P ′) + (Q′)) + ((P ′′) + (Q′′)) = 3O

in Pic6(X). The inverse of a divisor (P ) + (Q) is (P ) + (Q), where, if P = (x, y) lies on
the curve, P = (x,−y). We will call a divisor reduced if it is of the form (P ) + (Q).

The dual ĝ of the Richelot isogeny is, as noted above, given by exactly the same
correspondence (see [24], Proposition 8.4.12 and Corollary 8.4.14), and ĝ ◦ g = [2], mul-
tiplication by 2. The strategy is to halve the given divisor D on J , and then apply the
dual isogeny ĝ. This gives the preimages under the Richelot isogeny. In practice, one
needs to find only one halving D2 with [2]D2 = D; we apply the dual Richelot map to get
g−1(D) = ĝ(D2), and to get the other preimages, we add the divisors in the kernel of g,
whose structure we mentioned earlier.

The problem of halving a divisor is called bisection, and has been previously studied
in various papers on cryptography, in the context of halving divisors for hyperelliptic
curves over finite fields. For the particular models which we need, this was essentially
done by Miret, Pujolàs and Thériault in [17] (see also the recent preprint of Miret, Pujolàs
and Rio [16]). It works well for general curves of genus 2 with sextic models (much of the
literature used quintic models). We again write D = (x1, y1) + (x2, y2) for the original
divisor, and D2 = (u1, v1) + (u2, v2) for the bisection. There should be 16 bisections D2.
We write S = u1 + u2 and P = u1u2, so that again

x2 − Sx+ P = (x− u1)(x− u2).

Unravelling the explicit group law on the Jacobian means that the bisection process is
equivalent to solving

f −m2 = c(x2 − sx+ p)(x2 − Sx+ P )2,

where m(x) is a cubic, c is a constant, and S and P are the sum and product of u1 and
u2, the x-coordinates of the points in the support of D2.

It is explained in [17] how to solve this. The cubic m is constrained to be of the
form

(k1x+ k0)(x
2 − sx+ p)− (γx+ δ),

where y = γx+ δ is the line joining (x1, y1) and (x2, y2).
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By comparing coefficients, [17] explain that one can eliminate S and P , and also c,
and get 2 equations relating k0 and k1 coming from the equality above in the bottom 2
degrees. After clearing denominators, the resultant of these two equations with respect
to k0 is a degree 32 polynomial in k1, but there are some trivial factors (coming from the
clearing of the denominators) which can be removed, leaving a degree 16 equation for k1.
This degree 16 equation is explicit, but complicated.

We find a bisection for D by solving this degree 16 equation p-adically to get k1 up
to the desired precision, finding k0 by substituting it into the two equations given, and
then recovering S and P . This indirect method works successfully, although one expects
as above that there should be a better way. Once the first bisection is identified by this
method which gives the preimage g−1(D) congruent to D, since the subsequent curves are
increasingly p-adically congruent, one can simply Hensel-lift each solution in turn to get
subsequent ones.

Remark 6.1 We hope that in the case where y2 = f = P1P2P3, then the degree 16
equation should somehow be expressible as a quartic function of a quartic, reflecting the
decomposition of [2] as the product of ĝ ◦ g. Miret, Pujolàs and Rio ([16]) show at least
that the degree 16 equation can naturally be written as the product of four quartics, at
least in the case where f is a monic quintic.

At the end of this process, we have a divisor Dn on Xn, which arises by successive
pull-backs of a divisor D1 on X1 in the kernel of g0 : J1 −→ J0. Assuming our precision is
at the desired level, we know that it won’t change with further iterations, and can assume
that it is D∞ on X∞, up to the desired precision. We then need to lift it to (K×)2.

7 X0(23)

In order to begin to test our method, we compared the results with those given in Teitel-
baum [26]. Teitelbaum uses the explicit equations for X0(23), X0(29) and X0(31) (com-
puted by Fricke), all of genus 2, and all with Type B reduction. Since most details are
given for X0(23), we have used this curve as our main test.

In section 3.3 of [26], we find the equation for X = X0(23)/Q23
as

y2 = x6 − 14x5 + 57x4 − 106x3 + 90x2 − 16x− 19.

We find that
y2 ≡ (x+ 2)2(x+ 5)2(x+ 9)2 (mod 23),

confirming that X has Type B reduction. The Weierstrass points of X are rational over
Q23(π), where π2 = −23. There are three pairs of roots; Teitelbaum arbitrarily chooses
one from each pair, and moves them to 0, 1 and ∞. This converts the curve into one in
Rosenhain form:

y2 = x(x− 1)(x− λ)(x− µ)(x− ν).

We can suppose π|λ, π|µ − 1 and π|ν−1 (as we have Type B reduction). Teitelbaum
works out an explicit model for a genus 2 curve in Rosenhain form in terms of p-adic
theta functions depending only on the half-periods; these resemble the function in the
previous section, except that they are really the theta constants, where w1 = w2 = 1.
Teitelbaum uses 4 of the theta functions listed above (the four functions appearing in
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(25) of [26] are ϑ1, ϑ5, ϑ2 and ϑ4 respectively in our numbering) and is able to write
down the coefficients λ, µ and ν in terms of these theta functions. Equating the equation
for X0(23) in Rosenhain form with Teitelbaum’s explicit model, one can invert the theta
functions to work out the half-periods, which Teitelbaum does up to π10. Some formulae
are given in [26], and these seem to become complicated quickly. We hope that our
method, assuming it can be completed, is more likely to be computationally feasible for
larger degree, and will, after a certain point, be faster to implement.

We pulled a divisor in the kernel of X1 −→ X0 up to X2 and X3, and it certainly
appeared to converge quadratically.

Let us give some numerical results. All computations will be modulo π20. We first
give the roots of the quadratic in Q23(π); Hensel’s Lemma (or Magma) gives their values
as:

a0 = 779959976562 + 33733491857π ,

a′0 = 779959976562− 33733491857π .

b0 = 241232708350,

b′0 = 41266787476103,

c0 = 26196575459988 + 649618143166π,

c′0 = 26196575459988− 649618143166π.

We now compute the chain of isogenous curves Xi obtained as above:

X1 : y
2 = 14509968966141x6 + 13535473244274x5 − 4366138213591x4 − 383149059076x3

+ 4532268917237x2 + 10611945668949x+ 11501225120914

with roots
a1 = 29969023457189, a′1 = 36816510168425,
b1 = 2703407962350, b′1 = 41130794360331,
c1 = 37949541236172, c′1 = 6221753140751.

We already know that all the curves Xi’s are totally split and their roots lie in the same
p-adic discs as those of X0; indeed one checks that

a1 ≡ a′1 ≡ 18 mod π, b1 ≡ b′1 ≡ 21 mod π, c1 ≡ c′1 ≡ 14 mod π.

Here is the equation for X2 and its roots:

X2 : y
2 = 15963560922167x6 + 8915045081136x5 + 5655951820305x4 + 7187214907216x3

+ 9290858991658x2 + 18116669010963x− 9470171526445 ,

a2 = 15634233532478, a′2 = 38514512500429,
b2 = 41230679116716, b′2 = 37806965241739,
c2 = 18164834403771, c′2 = 30030908259387.

Finally, the equation for X3 and its roots:

X3 : y
2 = 13413380228472x6 + 9889873468227x5 + 11869333871359x4 + 19069176773695x3

− 9637185255233x2 + 2318445679270x− 6104023778492 ,

a3 = 6361117409629, a′3 = 6361117409629,
b3 = 1577149810583, b′3 = 36895404172314,
c3 = 23050359306739, c′3 = 15552288918781.
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In fact,
a0 ≡ a′0 (mod π3), b0 ≡ b′0 (mod π2), c0 ≡ c′0 (mod π),
a1 ≡ a′1 (mod π6), b1 ≡ b′1 (mod π4), c1 ≡ c′1 (mod π2),
a2 ≡ a′2 (mod π12), b2 ≡ b′2 (mod π8), c2 ≡ c′2 (mod π4),
a3 ≡ a′3 (mod π24), b3 ≡ b′3 (mod π16), c3 ≡ c′3 (mod π8),

an even stronger form of doubling of π-adic precision than proven above.

Next, let D0 ∈ J0 be the zero divisor, and we lift it along the chain of Jacobians.
(Note that we will switch between Mumford representations and actual divisors whenever
suitable.)

There are three nonzero divisors on J1 in the kernel of J1 −→ J0:

Du1 = [(u0, 0) + (u′

0, 0)] =
[
x2 + 3772686830795x+ 4779300317558, 0

]
,

Dv1 = [(v0, 0) + (v′0, 0)] =
[
x2 + 5235734615709x− 20478600731137, 0

]
,

Dw1 = [(w0, 0) + (w′

0, 0)] =
[
x2 + 1906593082874x+ 1490035220585, 0

]
.

To lift these further onto J2, we use the bisection method as previously described. That
is, we wish to compute

Du1 −→
1

2
Du1 −→ Du2,

and write ĝ1 for the second map in this composition.

This gives the bisection as

1

2
Du1 = [P1 + P2] =

[
x2 + 3772686830795x+ 4779300317558, 0

]
,

where

P1 = (20843997281321 + 37869416972530π, 20700417432520+ 17537234561531π),

P2 = (24338480333321 + 40747895489590π, 13552216979968+ 12473332310983π).

Before mapping P1 and P2 to J2, one first has to scale by the square root of the x6

coefficient of X1 so that it lies on the curve y2 = P1Q1R1 (instead of T0y
2 = U0V0W0

as it currently does). Now mapping the scaled points via the Richelot isogeny, and then
rescaling it back gives

ĝ1(P1) = [Q1 +Q′

1] ,

where

Q1 = (15588142880255 + 13614777038871π, 2026443975492+ 31565145522315π),

Q′

1 = (3503913201810 + 37211337310263π, 1634554359251+ 10681002910033π).

Similarly
ĝ1(P2) = [Q2 +Q′

2] ,

where

Q2 = (12952102174602 + 17872156829551π, 39129102600005+ 23905673565742π),

Q′

2 = (34057150363331 + 36281579638141π, 36203107768550+ 25761328056179π).

Combining everything, we have lifted Du1 to

ĝ1(Du1) = [Q1 +Q′

1 +Q2 +Q′

2]

=
[
x2 + 36833651358680x+ 5787826917764, 3303842326834x+ 16005171221467

]
.
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Note that there are four preimages of Du1, but only one has the property that the support
of the divisors are in the same p-adic discs as for Du1:

Du2 =
[
x2 + 570508136719x+ 38814447073528, 39947032033123x+ 23933496908852

]
.

Similarly, the lifts of Dv1 and Dw1 are given by

Dv2 =
[
x2 + 28747176982521x+ 15742432005809, 23856327829181x+ 21330178054941

]
,

Dw2 =
[
x2 + 14257352574105x+ 16172605252402, 41179889101919x+ 9512547229701

]
.

One checks that all the numbers defining the Mumford representation of Du2 are congru-
ent to those defining the Mumford representation of Du1 modulo π2, so that the divisors
are the same modulo 23. Similar results hold for Dv2 and Dv1, and Dw2 and Dw1.

Without a complete theory for the p-adic uniformisation maps, we are not yet able
to compute the periods to compare with Teitelbaum’s results. If we had such a theory,
this lift should already be sufficient to compute the periods modulo π8; we hope that this
method might eventually prove more efficient than existing methods for genus 2 curves
with Type B reduction.
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