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Supplementary Discussion 1. Device properties

and measurement setup

The sample consists of a GaAs cavity containing
a single 15nm In0.05Ga0.95As quantum well (QW) at
the electric field antinode and embedded between two
Al0.1Ga0.9As/Al0.95Ga0.05As Bragg mirrors. This config-
uration allows for strong coupling between QW excitons
and photons confined by the distributed Bragg mirrors.
The planar cavity was etched into an array of pillars of
various sizes using inductively coupled plasma etching.
Supplementary Figure 1 shows scanning electron micro-
scope images of micropillar devices on the sample used
in the experiment. The Bragg mirrors, along the pillar
long axis, confine light within a wavelength-size cavity so
that the optical wavevector is primarily in the longitudi-
nal direction. Then, weaker confinement on micrometer
scales in the transverse direction occurs through total
internal reflection. The confinement in all three dimen-
sions results in discrete optical modes. Supplementary
Figure 1a shows pillars of the same shape and size (up-
permost pillar) as pillars A and B used for the phase shift
measurements (see main text). Supplementary Figure 1b
shows several arrays of pillars. Each array contains pil-
lars of different sizes. The arrays at different positions
have different exciton-photon detuning allowing selection
of different excitonic fraction of the polaritons.
Supplementary Figure 2 illustrates the experimental

setup for making the phase measurements. The signal
and control beams are combined on a beam-splitter and
focused onto the micropillar using a 50x microscope ob-
jective. The transmitted light is collected by a second mi-
croscope objective. The control beam light is filtered out
by a spectrometer. The signal beam polarisation com-
ponent intensities are measured using avalanche photo-
diodes connected to a time-correlated photo-counting
(TCSPC) system. The TCSPC is synchronised to the
signal laser repetition using a photodiode so that signal
counts appear as a peak at a well defined time whereas
other counts appear as a constant background offset
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Supplementary Figure 1. Scanning electron microscope
images of the sample at two different zoom levels.

which can be removed. The TCSPC routing also keeps
track of the control beam state (on or off). See Supple-
mentary Discussion 3 for further details of the TCSPC
data collection and processing.



2

Signal 
Beam

Control 
Beam

Substrate

Micropillar

Signal 
out

Spectro-
meter

APDۧ|𝐴
HWP

PBS
APDۧ|𝐷

TCSPC 
Router

Control On/Off Signal

TCSPC

Synchronisation 
from signal laser 

photodiode

Polarisation 
Component

Control 
Beam

Memory 
Channelۧ|𝐷 On 1ۧ|𝐴 On 2ۧ|𝐷 Off 3ۧ|𝐴 Off 4

Supplementary Figure 2. Schematic of phase measure-
ment apparatus. HWP and PBS are a half wave plate and
polarising beam-splitter used to rotate the linear polarisation
state and select the diagonal (|D〉) / anti-diagonal (|A〉) ba-
sis. APDs are avalanche photodiodes. TCSPC is the time-
correlated single photon counting card used to measure the
rate of photons arriving at the APDs.

Supplementary Discussion 2. Nonlinear

polarisation rotation

Since we deal with small nonlinear changes in the ex-
citon and polariton frequencies compared to all other en-
ergy scales in the system (of which the smallest is the
linewidth) we can solve the problem with nonlinear terms
set to zero and then include the nonlinearity as a first or-
der perturbation. We then note that the signal beam
pulse lengths > 100 ps are long compared to the polari-
ton decay rate so that the optical field in the pillar can
be approximated as simply following the temporal enve-
lope of the incident pulses. Next we note that the energy
separation between the control and signal states is suffi-
ciently large compared to the laser and state linewidths
that there will be negligible coupling of the signal laser to
the control states. Furthermore, the signal laser has flat
phase in the x direction but its phase changes sign in the
y direction. Thus, it has the same symmetry as the E12

doublet and can excite it efficiently, but it cannot excite
the E21 doublet since the phase flip causes its overlap
with those states to cancel out. Thus, the only states
relevant to the signal are the two orthogonal polarisation
components comprising the E12 doublet. The evolution

of these can then be written as given in Eqn. (S1).
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Here, ux and uy are the complex field amplitudes of the
lower polariton branch states in two orthogonal linear
polarisations. We choose a linear polarisation basis since
the E12 doublet has finite momentum in the y direction
which will cause a TE-TM frequency splitting between
linear polarisations parallel and perpendicular to the the
momentum. We excite with a signal beam linearly po-
larised parallel to this momentum. ωs is the size of the
linear polarisation splitting. Experimentally, this split-
ting could not be resolved in the spectra indicating that
it is less than the linewidth. γ is the polariton FWHM
linewidth. ∆p is the signal laser detuning from the av-
erage frequency of the two polarisation-split states. Px

and Py are the complex amplitudes describing the in-
cident signal beam polarisation. Since our signal beam
is linearly polarised they could be written Px = cos θp,
Py = sin θp where θp between 0 and 90 degrees is the an-
gle of the pump beam from the +ve x-axis (see diagram
in Fig. 1a of the main text) towards the +ve y-axis. The
nonlinearity enters through a rigid frequency blueshift
ωBS of all states and a frequency splitting ωZ between
circularly polarised polaritons. This latter corresponds
to a nonlinear effective magnetic field. The size of these
energy shifts in terms of the number of circular polarised
control polaritons, n+ and n−, is given in Eqns. (S2).

ωBS = 2 |X11|2 |X12|2
(g1 + g2)

2Aeff
(n+ + n−) , (S2a)

ωZ = 2 |X11|2 |X12|2
(g1 − g2)

Aeff
(n+ − n−) , (S2b)

1

Aeff
=

∫∫∞

−∞
I11I12 · dxdy

∫∫∞

−∞
I11 · dxdy ·

∫∫∞

−∞
I12 · dxdy

. (S2c)

Here |X11|2 and |X12|2 are the fractions of exciton in
the makeup of the control and signal polaritons (the
square moduli of the relevant Hopfield coefficients). Aeff

is the effective nonlinear area which is an average over the
transverse spatial distribution of the frequency blueshift
(which has the spatial distribution of the control state)
weighted by the intensity of the mode being perturbed
(which has the spatial distribution of the signal state).
I11 and I12 are the intensities of the E11 and E12 modes as
a function of x and y. Note also the leading factor of 2 in
the energy shifts which arises because cross-modulations
between modes of different frequency and wavenumber
are twice as strong as self-modulations1. We ignore the
nonlinear contribution of the signal beam since the lin-
early polarised signal polaritons do not change ωZ and
only add a diagonal matrix to the Hamiltonian that is
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present whether the control beam is on or off. Thus any
signal-beam nonlinear term just acts like an additional
detuning.
Equations (S1) can be solved using matrix diagonalisa-

tion and integrating factors to give the field in Eqn. (S3).

ux =
Px (ωBS −∆p − iγ/2− ωs/2) + iPyωZ/2

(ω1 −∆p) (ω2 −∆p)
(S3a)

uy =
Py (ωBS −∆p − iγ/2 + ωs/2)− iPxωZ/2

(ω1 −∆p) (ω2 −∆p)
(S3b)

ω1 = ωBS − iγ/2 +

√

(ωs/2)
2
+ (ωZ/2)

2
(S3c)

ω2 = ωBS − iγ/2−
√

(ωs/2)
2
+ (ωZ/2)

2
(S3d)

Here ω1 and ω2 are the eigenvalues of the Hamiltonian
H, which are the frequencies of the two polarisation split
modes. It can be seen that in general the nonlinearity
changes the output polarisation in two ways. It changes
the frequencies of the two states relative to the signal
laser and it changes the eigenvectors of H from linear po-
larisation states to slightly elliptical, thus changing their
relative overlaps with the signal laser.
The light escaping from the pillar toward the de-

tection apparatus has the same coherence and po-
larisation as the internal micropillar polariton field.

Thus the vector (ux, uy)
T

is also a Jones vector de-
scribing the transmitted light. Writing the vector as

(|ux| exp (iφx) , |uy| exp (iφy))
T
we can obtain the Stokes

parameters given in Eqn. (S4), where we have S0 = 1
since we deal with fully coherent light derived from a
laser,

S1 =
ρ− 1

ρ+ 1
(S4a)

S2 =
2
√
ρ cos (φx − φy)

ρ+ 1
(S4b)

S3 =
−2

√
ρ sin (φx − φy)

ρ+ 1
(S4c)

ρ = |ux|2 / |uy|2 (S4d)

Now that we have a Jones vector describing the output
polarisation state from the pillar we can use standard
Jones calculus to obtain the intensities at the two APDs.
Since the signal beam is polarised along the y direction,
parallel to the momentum of the E12 mode we can write
Px = 0. We set the detection half wave plate in the
apparatus to balance the APDs e.g. for our vertically
polarised laser the APDs are measuring the diagonal and
anti-diagonal components. Thus we are measuring S2

given by

S2 =
|uD|2 − |uA|2

|uD|2 + |uA|2
. (S5)

Inserting the solution Eqn. (S3) into Eqn. (S4) we now
have an expression for the experimentally measured po-
larisation degree in terms of the state of the polariton

system.

Sexpt =
2 (ωZ/2) (γ/2)

(ωBS −∆p + ωS/2)
2
+ (γ/2)

2
+ (ωZ/2)

2 (S6)

If the field is expressed in a basis of circular polarised
components some algebra reveals that the relative phase
φ between amplitudes of the right and left polarised com-
ponents is given by tan (φ) = −S2/S1. Using Eqn. (S4)
we obtain

tan (φ) =
2 (ωZ/2) (γ/2)

(ωBS −∆p + ωS/2)
2
+ (γ/2)

2 − (ωZ/2)
2 .

(S7)
Writing the numbers of controls polaritons as n+ =
n (1 + cos 2θc) /2 and n− = n (1− cos 2θc) /2 for
(0 ≤ θc ≤ π/2), expanding Eqns. (S6) and (S7) to first
order in the total number of control polaritons n, and
making a small angle approximation for φ we obtain

∆φ ≈ Sexpt ≈ Smaxf (∆p, θc) (S8a)

Smax =
2 |X11|2 |X12|2 (g1 − g2)n

Aeff (γ/2)
(S8b)

f (∆p, θc) =
(γ/2)

2

∆2
eff + (γ/2)

2 cos 2θc (S8c)

∆eff = ∆p − ωS/2. (S8d)

We finally obtain that the nonlinear phase ∆φ accu-
mulated between circular components is a Lorentzian
function of signal laser detuning from resonance and
has maximum value Smax. This maximum value is the
value quoted for the expected phase shift in the main
manuscript. It is proportional to the blueshift of one cir-
cularly polarised component of the signal state due to
the circularly polarised control beam e.g. to the effective
nonlinear Zeeman splitting induced by the control. The
phase shift leads to a Faraday-like rotation of the linear
polarisation angle, which is detected through the change
in diagonal-antidiagonal polarisation degree S2.
Physically, θc represents the angle of a quarter wave

plate used to set the control beam polarisation. In Fig.
2 in the main text we measure the case with θc = 0 so
that n+ = n and n0 = 0, e.g. a fully circularly po-
larised control beam. As the control beam is switched to
linear polarisation (θc = π/4) the expected phase shift
and polarisation rotation vanish. When the control beam
reaches the opposite circular polarisation (θc = π/2) the
phase shift will have opposite sign to that at θc = 0. This
is shown experimentally in Fig. 3 in the main text.
While Eqn. (S8) is a first order approximation we can

also calculate the nonlinear phase and change in polari-
sation degree exactly by using Eqns. (S3) and (S4). Sup-
plementary Figure 3 shows the change in polarisation
degree (solid coloured curves) and phase (dotted black
curves) between the cases with n = 1 and n = 0. We
consider four different TE-TM splittings ωS. The polari-
sation degree and phase agree with each other and have a
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Supplementary Figure 3. Exact nonlinear phase and

change in polarisation degree. Solid coloured curves show
sensitivity [Sexpt(n = 1)− Sexpt(n = 0)] /Smax. Dotted black
curves show nonlinear phase [φ(n = 1)− φ(n = 0)] /Smax.
Dashed colored curves show total transmitted power |ux|

2 +
|uy|

2 normalised to the peak. The four panels show the re-
sults for four different linear polarisation splittings ωS. The
parameters used in this calculation closely match the exper-
imental ones and are θc = 0, Py = 1, Px = 0, g2 = −0.1g1,
γ = 83 µeV, ωZ(n = 1)/ (γ/2) = 3.7× 10−3.

peak at Smax exactly as predicted by the approximation.
We will henceforth refer to the change in polarisation de-
gree divided by Smax as the sensitivity. The figure also
shows the power transmission (normalised to the peak)
of the system as dashed lines. For zero TE-TM split-
ting the sensitivity and transmission lie on top of each
other so that a maximum transmission implies maximum
sensitivity. As the TE-TM splitting increases from one
panel to another we see that the sensitivity peak and the
transmission peak move in opposite directions. At large
TE-TM splitting compared to the linewidth the sensitiv-
ity at peak transmission is very small. In our experiment
the TE-TM splitting was smaller than the linewidth, as
can be seen from the spectrum in Fig. 1b in the main
text, and we tuned the laser frequency to maximise trans-
mission. Thus we should observe a phase rotation close
to Smax. Nevertheless, changes in laser detuning on the
order of the linewidth can lead to a reduction in the ob-
served nonlinear phase shift.

In the experiment small errors in setting the half-wave-
plate in the detection path sometimes occurred and only
became apparent after collecting enough data to have
good statistics. Using our model we have checked the
effect of such deviations and found that they do not
strongly affect results. For example, even if the diago-
nal or anti-diagonal component had twice the intensity of
the other our measurement of polarisation degree would
underestimate the actual phase by only ∼5%.

Finally, for completeness we show the single photon
nonlinear changes in all the Stokes parameters as a func-
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Supplementary Figure 4. Nonlinear change of all

Stokes parameters and total transmission. The changes
∆S1, ∆S2, ∆S3 in the Stokes parameters (see legend in panel
e) between the cases with 0 and 1 control polaritons are plot-
ted as a function of signal beam detuning ∆p for various signal
and control beam polarisations and two values of the linear
polarisation splitting ωS in the signal state manifold. The
change in transmission ∆T normalised to the peak transmis-
sion with zero polaritons T (0) is also plotted. See text in each
panel for parameters. Curves are calculated from Eqns. (S3)
and (S4) using the measured parameters of pillar B.

tion of signal detuning ∆p and for different signal and
control polarisations and linear polarisation splitting ωS.
The Stokes parameters are calculated from Eqns. (S4)
using the experimentally measured parameters of pillar
B. As we have shown in Fig. 3 the main text, this model
closely explains the dependence of the measured phase
shift on control polarisation. As discussed in the main
text it also explains the magnitude of the phase shift
when using literature values for the interaction strength.
We can therefore be confident that this model will also
give accurate values of the other Stokes parameters.

Supplementary Fig. 4 (a) shows the case with signal
polarisation along y so that the incident light has Stokes
parameters S1 = −1, S2 = S3 = 0, as in the experiments.
The graph shows the difference in the three Stokes pa-
rameters between the 0 and 1 control polariton cases. It
also shows the change in total transmission normalised to
the peak transmission at zero control power (see legend in
panel (e)). At zero detuning (on the horizontal axis) the
circularly polarised single polariton control beam causes
a change of 3×10−3 in S2 and a change of 4.5×10−6 in
S1. The total S2

1 + S2
2 + S2

3 = 1 is maintained. These
changes correspond to a rotation of the linear polarisa-
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tion angle while the polarisation remains purely linear.
At a detuning of about half a linewidth the change in S2

is accompanied by an increase in the magnitude of S3.
This indicates that at such detunings the control beam
makes the signal polarisation slightly elliptical while at
the same time the axis of the ellipse also rotates. It is
clear that detecting S2, as we did in the experiment, pro-
vides the greatest sensitivity to the nonlinear effects. It
is also favorable to measure in this basis since the sign of
the change in S2 does not depend on detuning.

Also of interest is the small change in total transmis-
sion by approximately ∼×10−3, being the same order of
magnitude as the phase shift, which has peaks around
|∆p| ∼ 0.3γ. The change in transmission can have the
same or opposite sign to that in S2 depending on the
precise detuning. The change in transmission occurs be-
cause, as well as the splitting ωZ between polariton circu-
lar polarisation components, their average frequency also
blueshifts by ωBS resulting in the states shifting toward
or away from resonance with the incident signal laser,
depending on the initial detuning.

Supplementary Fig. 4 (b) shows the case for the same
parameters as in (a) except with a finite linear polarisa-
tion splitting of the signal state manifold, ωS = γ/2. The
results are qualitatively the same as in (a) apart from a
shift along the horizontal axis. Supplementary Fig. 4 (c)
shows the case where the incident signal light is diago-
nally polarised (equally excites both polarisation states
of the signal manifold in phase) so that the incident light
Stokes parameters are S2 = 1, S1 = S3 = 0. In this case
the maximum nonlinear change is seen in S1. The results
are the same as for (a) except the roles of S1 and S2 are
reversed. In practice this can be adjusted out simply by
setting the detection half-wave-plate appropriately. In
our experiment we always set this waveplate to balance
the intensity on the two detectors and so measure in the
basis with maximum sensitivity to the phase shift. Sup-
plementary Fig. 4 (d) is as (c) but with finite polarisation
splitting. Here, although the nonlinear blueshift of the
polariton lines is the same, the change in the Stokes pa-
rameters is less, corresponding to a moderate reduction
in sensitivity by about 1/2.2. We therefore conclude it
is better to dominantly excite one polarisation state in
the signal manifold (as we did in the experiment) rather
than both equally. In Supplementary Fig. 4 (e) and (f)
we consider the case of a linearly polarised control beam.
For panel (e), with zero polarisation splitting, there is
no nonlinear change in any Stokes parameter, although
there is a still a change in total transmission. For panel
(f) nonlinear changes in all Stokes parameters are ob-
servable, although the sensitivity reduces to 1/2.6 times
the optimum. We finally note that in the case of lin-
early polarised control and signal parallel to x or y there
is never any nonlinear change in any Stokes paramater,
only a change in total transmission as for panel (e). This
is in agreement with the experimental results in Fig. 3
in the main text, where the measured phase shift went to
zero for linearly polarised control. Overall, these results

show that the sensitivity to the single photon phase shifts
can be maximised by proper selection of the incident sig-
nal beam polarisation and detuning, and proper setting
of the waveplate used to select the detection polarisation
basis. The detuning should be set within half a linewidth
of the optimum but quite large departures of the incident
polarisation from the optimum can be tolerated with only
a moderate decrease in sensitivity. Finally, there can be
a small change in total transmission on the same order of
magnitude as the phase shift, of either positive or nega-
tive sign, depending on the signal beam detuning.

Supplementary Discussion 3. Data analysis

In this section we will give further details of the pro-
cess by which we convert the raw photon counting traces
into signal beam polarisation degrees with the control
beam on and off, from which we obtain the nonlinear
phase shift. As described in the main text, intensities are
measured by avalanche photodiodes (APDs) connected to
a time-correlated-single-photon-counting (TCSPC) card
(Becker and Hickl SPC-630 with HRT-82 router)2. Sin-
gle photon events from the APDs are sorted into time
bins depending on their delay relative to a repetitive
synchronisation signal to build up a histogram of arrival
times. They are also sorted into one 4 curves depending
on which of the two APDs caused the event (each APD
measures one polarisation component) and whether the
control beam was on or off.
An example of the 4 curves is shown in Fig. 1f in the

main text. The TCSPC system was synchronised to the
pulses coming from the mode-locked Ti:Sapphire laser
producing the ∼100 ps signal pulses. The laser repeti-
tion rate was 80 MHz, synchronisation was performed by
directing a portion of the signal laser pulses onto a fast
photodiode, and the TCSPC card operated in reverse
start-stop configuration2. Since the synchronisation is
derived from the signal pulses, the signal photons always
appear in a fixed range of time bins in the TCSPC curves.
This leads to the peaks seen in Fig. 1f in the main text.
By contrast, photons arising from any processes which
are not correlated with the 80 MHz repetition of the sig-
nal laser pulses are distributed equally across all time
bins and appear as a CW background.

A. Background removal

Contributions to the CW background include APD
dark and after-pulsing counts2, leakage of laboratory
lighting through the detection optical path (although we
measured with the main room lights off to minimise this
effect) and scattered control beam light which is not com-
pletely excluded by the spectrometer owing to its diffuse
nature. Most of the background is eliminated by tak-
ing a mean background level using points well separated
from the peaks in the TCSPC trace and subtracting this
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background level from the curves. The CW background
count rate is typically a few×104 compared to ∼ 106 for
the signal. Additionally we only select a window of 2-3 ns
width in the TCSPC traces over which to integrate signal
counts, whereas the background counts are spread over
the whole 12.5 ns period of the synchronisation signal.

To check that the background does not affect the final
results we extracted the nonlinear phase both with and
without background subtraction and checked the differ-
ence. Supplementary Fig. 5 shows the extracted phase as
a function of the width of the integration window around
the peak of signal pulses. The solid curves show the ac-
tual extracted phase while the dashed curves show the
phase which would have been extracted without back-
ground subtraction. The vertical dotted lines gives the
window width used for the final values given in the pa-
per. For small window widths the accumulated counts
are low, resulting in larger uncertainty in the extracted
phase. A larger window width accumulates more of the
CW background counts. Without background subtrac-
tion this increasing background contribution leads the
dashed curves to increase. By contrast, the solid curves
are relatively independent of the window width which
shows the background has been reduced to a negligible
amount. The data we show here is for the higher control
beam powers and the effect of the background is lower
for lower powers.

B. Signal counting statistics

Overall we collected Nphoton = (1 − 3) × 109 signal
photons (sum of all four channels), depending on the col-
lection time. We collected photons for longer at the lower
control powers to obtain better statistics. We found that
there was good agreement between the measured error
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Supplementary Figure 5. Effect of integration window size
on the extracted value of phase with (solid curves) and with-
out (dashed curves) background subtraction. Vertical dotted
lines give the window width used for the points in the main
text.

bar sizes 2σ for the phase and those expected for the
Poissonian counting statistics of the signal laser beam
σ = 2/

√

Nphoton. Here σ is the standard deviation in
the phase shift φ. This indicates that the main source of
uncertainty within each data point is the counting statis-
tics.

C. Counting rate and system dead times

The APDs were typically operated at a photon de-
tection rate of less than 2×106 counts per second each,
equivalent to a combined 0.05 photons per period of the
80 MHz synchronisation signal. There is therefore only a
very small probability of multiple photons arriving within
one detection cycle. After a photon triggers an APD
that APD is blind for the dead time td = 77 ns. If a
second photon arrives during this dead time it is lost.
The higher the rate of arrival of photons at the APD the
higher the counting loss. The counting loss effect is well
understood2 and the count rate which would occur in the
absence of dead time photon loss, Ract, can be obtained
from the measured count rate Rmeas using the formula
Ract = Rmeas/ (1− tdRmeas). With our photon detection
rate we operate several times below the maximum use-
ful counting rate of 1/2td = 6.5×106 and only lose about
15% of the photons through counting loss. To ensure that
this did not affect the results we applied the counting
loss correction formula to the measured intensities. We
found that the phase shifts always increased, typically by
an amount of order 10%. In the data presented in the
paper we do not apply this dead time correction in order
to avoid over-analysing the data. As well as the APD
dead time there is also a dead time in the TCSPC card
while detected photons are processed by the electronics.
However, since the signal from both APDs are combined
by the router before being sent to the TCSPC card this
dead time affects both APD channels equally. Since we
calculate a polarisation degree, this overall attenuation
of both polarisation components cancels out.

Supplementary Discussion 4. Experimental

measurement of transmitted power

The power transmitted through the sample was mea-
sured using the integrated counts accumulated on a CCD
camera. We calibrated the CCD by transmitting a laser
through the etched portion of the sample, which con-
sists of the GaAs substrate and an anti-reflection coating
without any pillar or cavity present (e.g. one of the re-
gions between pillars in Supplementary Fig. 1). Using
a high laser power ∼100µW and a commercial power
meter we confirmed that the power transmitted through
this substrate was 68%, matching the expected Fresnel
power transmission through the air/GaAs interface. The
laser was then attenuated by a known fraction using com-
mercial neutral density filters, which were pre-calibrated
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using the laser at the same wavelength and a commercial
power meter. The attenuated laser was sent to the CCD
camera and the intensity recorded, thus establishing a
calibration between CCD count rate and laser power.
The laser was then optimally coupled to the micropil-
lar cavity and the intensity of the micropillar transmis-
sion recorded. This allowed the pillar transmission to be
compared to the known substrate transmission, result-
ing in the micropillar control state transmission values of
40% and 45% for pillars A and B respectively. The laser
travels along exactly the same path to the CCD when
transmitted through either the substrate or the pillar.
With the well-calibrated transmission we then obtain the
transmitted power from the incident power, and finally
the number of polaritons in the cavity, following the ar-
gument in supplementary discussion 5.

Supplementary Discussion 5. Determining

number of polaritons from transmitted power

In this section we will show that for a cavity with
parameters in a range consistent with our experimen-
tal measurements the energy (number of particles) in the
cavity can be deduced from the transmitted power with
high accuracy from a simple formula (Eqn. (S11)). We
initially consider the case of a cavity without losses and
derive Eqn. (S11) with a very simple argument. We will
then present an exact numerical solution of Maxwell’s
equations including losses and materials dispersion and
show that Eqn. (S11) is a highly accurate approximation
for a simulated cavity with parameters in a wide range
around those measured for our cavity.

A. Simplified model

We initially consider energy Ecav circulating in a cav-
ity containing a lossless medium between two partially
transparent mirrors as described in Ref. 3. We will de-
note the top mirror, where the pump beam is incident, as
DBR1 and the bottom mirror, through which the light is
transmitted towards the detectors, as DBR2. The cavity
is pumped continuously by a monochromatic light source
so that it reaches a steady state and contains a constant
amount of energy. On each round trip of the energy in
the cavity the mirrors reflect fractions RDBR1 and RDBR2

back into the cavity while a fraction TDBR2 is transmit-
ted through DBR2 to be detected. A fraction TDBR1 is
also transmitted in the reverse direction and interferes
(typically destructively) with the direct reflection of the
pump beam from mirror 1 to produce the overall reflec-
tion. The steady state condition is such that the energy
Ecav and round-trip transmitted fraction TDBR2 lead to
the expected overall cavity power transmission3.
With energy EcavTDBR2 transmitted on each round

trip, the time-averaged transmitted power is then Pout =
EcavTDBR2/trt where trt is the round trip time. Mean-

while, the finite cavity linewidth arises from the losses
through both mirrors and can be written as γDBR =
− ln (RDBR1RDBR2) /trt ∼ (TDBR1 + TDBR2) /trt. Elim-
inating trt from these expression results in Eqn. (S9).

Ecav = ~ωNpol =
Pout

η · γDBR
(S9a)

η =
−TDBR2

ln (RDBR1RDBR2)
∼ TDBR2

TDBR1 + TDBR2
(S9b)

Here Npol is the number of photons in the cavity and η is
a mirror asymmetry factor which characterises the trans-
mission through the mirror on the detection side com-
pared to the total cavity losses due to non-unity reflec-
tion of the mirrors. Furthermore, γDBR is the linewidth
(FWHM) of the cavity in the absence of loss and in the
photon-only limit (no coupling to excitons) so that it
characterises the rate of outcoupling through the mirrors
alone.
If we now imagine adding an exciton resonance so that

the system enters the strong photon-exciton coupling
regime then we must account for the fact that only a
fraction |C|2 of the cavity energy circulates as photons in
order to be coupled out. Assuming for the moment that
the excitonic losses and nonlinearity are negligible, the
main effect of adding the exciton resonance is to reduce
the average energy transport velocity in the cavity by a
factor of the photon fraction |C|2 causing an increase in
round trip time and hence a reduction in both the cavity
linewidth and the output power for a given cavity energy.
The energy and transmitted power will then be related
by Eqn. (S10) where γd = γDBR |C|2 and γDBR is the
cavity linewidth without strong coupling. We note that
this effect occurs for any change in the dispersive prop-
erties of the cavity, not just strong coupling, though in
those cases γd will take a different form.

Ecav =
Pout

ηγd
(S10)

In principle Eqn. (S10) could be used with the mea-
sured polariton linewidth γ at the frequency of interest
substituted in for γd. However, additional contributions
to the linewidth due to exciton dephasing4 make this
problematic. It is not possible in the experiment to parti-
tion the polariton linewidth into the contributions from
tunneling through the mirrors (transmission) and from
exciton-related effects. For this reason it is more accu-
rate to work with an experimentally determined value
γDBR and scale by the photon fraction. A caveat here is
that in a real experiment, where the quantum well cannot
be added and removed, γDBR will usually have to be mea-
sured at a frequency lower than the one of interest, where
the exciton contribution is negligible. If the refractive in-
dexes n and dispersion ∂n/∂ω of the underlying cavity
materials (AlGaAs in our case) change significantly be-
tween the operating frequency and that at which γDBR is
measured then it can introduce a systematic error. For-
tunately, the GaAs refractive index varies much more
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slowly with frequency than the quantum well resonance
so the difference is small over the detunings which must
be used in practice. The relation Eqn. (S11) may then
be used to obtain the cavity energy from the transmitted
power in the strongly coupled case. Here γT = η · γDBR

may be interpreted as the fraction of the total cavity ra-
diative linewidth associated with transmission through
DBR2 towards the detector.

Ecav = ~ωNpol =
Pout

γT |C|2
(S11)

For accurate results γDBR should be obtained experi-
mentally and not through simulation alone. This is be-
cause it is sensitive to differences in the material com-
positions and layer thicknesses between the nominal val-
ues and the ones in the actual sample. We measured
γDBR at large negative detuning on the planar microcav-
ity before it was etched into pillars. We measured a value
γDBR = 20 − 30µeV. Values from transfer matrix simu-
lations of the cavity (see below) are in good agreement,
giving values of 18.9µeV or 30.7µeV depending on the
values used for the AlGaAs refractive indexes (respec-
tively, the model values from Ref. 5, or the experimen-
tal values from Ref. 6 shifted in energy by the bandgap
shift of GaAs to account for the different temperature).
We take γDBR = 25 ± 5µeV as the value used in the
main text. As we confirm later, the parameter η can
safely be obtained from the simulations since it depends
only on the ratio of mirror transmissions, which is only
weakly sensitive to the refractive indexes and is deter-
mined largely by the number of repeats in the DBRs.
The experimental accessibility of the important param-
eters is the reason for using Eqn. (S9). We now go on
to show that it provides an accurate approximation to
the actual ratio of transmitted power and cavity energy
determined from solution of Maxwell’s equations.

B. Exact electromagnetic model

We use a transfer matrix7 approach to exactly solve
Maxwell’s equations for a planar cavity structure. We
consider a planar structure since exact results are easily
available and the energy storage and power transmission
are determined by the layered mirror/cavity structure in
the longitudinal direction. In the etched micropillar sys-
tem there is also the question of mode-matching of the
incident laser beam to the transverse mode profiles of
the square pillar structure. However, poor mode match-
ing only changes the excitation efficiency in the same
way as a frequency detuning of the excitation laser away
from resonance. As we will show below, such detunings
from resonance do not change the ratio of the output
power to the energy in the cavity. Since we experimen-
tally measure the power coming out from the cavity the
mode-matching at the input does not matter.

0 1 2 N-1 N N+1

f+(z)

f−(z)

z

x

Supplementary Figure 6. Schematic of a layer structure
and the notation used for transfer matrix calculations.

We consider a planar multilayer structure with inter-
faces perpendicular to the z direction and surrounded on
either side by semi-infinite media as depicted in Fig. 6.
The material permittivities are isotropic, homogeneous
within each layer and frequency dependent. The materi-
als are non-magnetic and passive (no gain) but may be
lossy so that they can have complex permittivity with a
positive imaginary part. Since the structure is planar and
has translational symmetry in the x and y direction the
electromagnetic normal modes are plane waves with elec-
tric field

[

E(z) exp
(

ik|| · r|| − iωt
)

+ c.c.
]

/2, and simi-
lar for the magnetic field, where c.c. denotes the complex
conjugate of the preceding term. Here k|| = kxx̂ + kyŷ,
r|| = x+ y where the in-plane wavenumber components
kx and ky are the same in every layer. x̂ and ŷ are
unit vectors in the x and y directions. The z compo-

nent of wavenumber is given by kz(z) =
√

(k0n(z))
2 − k2||

where k0 = ω/c0, c0 is the speed of light in vacuum, and

k|| =
∣

∣k||

∣

∣ =
√

k|| · k∗
|| is the magnitude of k||. The re-

fractive index n(z) is different in each layer and so is a
piecewise function of z. Thus kz(z) is also a piecewise
function of z. In general there is a forward and a back-
ward propagating wave in each layer. In what follows
we designate the symbol kz as the solution of the square
root with positive real and imaginary part, which is the
wavevector component of the forward propagating wave.
The backward propagating wave then has momentum z-
component equal to −kz.

Since the structure is planar and the material proper-
ties are piecewise continuous Maxwell’s equations can be
solved in each layer as if it were a continuous medium
and the solutions matched between layers using bound-
ary conditions (also derived from Maxwell’s equations).
The translational symmetry also means that the solutions
can be fully described by two decoupled polarisations de-
noted TE and TM. We introduce the per-polarisation
scalar complex amplitudes f+(z) and f−(z) describing
the forward and backward propagating waves. Without
loss of generality we define the coordinate system so that
the plane waves have wavevector in the x-z plane. For
the TE polarisation the electric and magnetic field com-
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ponents are then given by Eqns S12.

Ey(z) = f+(z) + f−(z) (S12a)

Hz(z) = [f+(z) + f−(z)] sin θ(z)/η(z) (S12b)

Hx(z) = − [f+(z)− f−(z)] cos θ(z)/η(z) (S12c)

Hy = Ex = Ez = 0 (S12d)

For the TM polarisation the field components are given
by Eqns S13.

Hy(z) = [f+(z) + f−(z)] /η(z) (S13a)

Ez(z) = − [f+(z) + f−(z)] sin θ(z) (S13b)

Ex(z) = [f+(z)− f−(z)] cos θ(z) (S13c)

Ey = Hx = Hz = 0 (S13d)

Here, sin θ = k||/ (k0n(z)), cos θ = kz(z)/ (k0n(z)),
and the impedance η = η0ηr(z) where η0 is the impedance
of free space and the relative impedance ηr(z) = 1/n(z)
(remembering that we work with non-magnetic materi-
als so that the relative magnetic permeability is unity).
These are all piecewise continuous functions of z. Writing
the functions f+(z) and f−(z) as a two-component vec-
tor, their values within a layer can be calculated using
Eqn. (S14) in compact matrix notation.

(

f+(z)
f−(z)

)

=

(

eiφ 0
0 e−iφ

)(

f+(zR)
f−(zR)

)

(S14a)

φ = kz (z − zR) (S14b)

Here, zR is the z-coordinate of the right hand edge of

the layer and (f+(zR), f−(zR))
T
are the amplitudes at the

right hand edge of the layer. The amplitudes at the left
hand edge of the layer are obtained simply by inserting
z = zL in Eqn. (S14) where zL is the z-coordinate of the
left hand edge.
The relation between the amplitudes in adjacent lay-

ers is given by Eqn. (S15), which are obtained from the
Maxwell boundary conditions.





f
(m)
+

f
(m)
−



 =





ρ+ρz/ρ
2

ρ−ρz/ρ
2

ρ−ρz/ρ
2

ρ+ρz/ρ
2









f
(m+1)
+

f
(m+1)
−



 (S15a)

ρz = k(m+1)
z /k(m)

z (S15b)

ρTM = n(m+1)/n(m) (S15c)

ρTE = 1 (S15d)

Here,
(

f
(m)
+ , f

(m)
−

)T

are the amplitudes at the right

hand edge of layer m and
(

f
(m+1)
+ , f

(m+1)
−

)T

are the am-

plitudes at the left hand edge of layer m + 1. k
(m)
z and

n(m) are the values of kz and n in layer m, and similar for

layer m + 1. The value of ρ is different for TE and TM
polarisations and is given by ρTE and ρTM respectively.
The simulations were performed in the following way.

For a given frequency ω we calculated the refractive in-
dexes of the materials at that frequency. We initialised
the amplitudes on the left hand side of layer N + 1 (the

right hand semi-infinite medium) to (1, 0)
T
. We then

applied Eqns. (S14) and (S15) repeatedly to calculate

(f+(z), f−(z))
T

for all positions z, finishing in the left
hand semi-infinite medium, layer 0.
Having obtained the fields as a function of z we may

then obtain the time-averaged Poynting vector given in
Eqn. (S16).

S(z) = Re [E(z)×H∗(z)] /2 (S16)

Here the symbol Re denotes taking the real part. This
gives the net energy flux density at any given point in
the structure. The output power from the structure can
then be written Pout = |S| for S in the right hand semi-
infinite medium. Using the Poynting vector in layer 0
with f− set to zero we obtain the incident intensity and

divided the amplitudes (f+(z), f−(z))
T

through by its
square root so that the calculated fields are always those
for unit incident intensity. The Poynting vector in layer
N + 1 then gives the transmission of the structure.
For quasi-monochromatic fields occupying a narrow

frequency range, as we use in this experiment, the elec-
tric and magnetic energy densities may be written as in
Eqn. (S17) with the total stored electromagnetic energy
density being W (z) = WE(z) +WH(z).

WE(z) =
1

4
ǫ0ǫe.d. |E(z)|2 (S17a)

WH(z) =
1

4
µ0 |H(z)|2 (S17b)

ǫe.d. = 1 +

∣

∣

∣

∣

∂ [ω (ǫr − 1)]

∂ω

∣

∣

∣

∣

(S17c)

Here, ǫ0 and µ0 are the permittivity and permeability of
free space respectively and ǫr is the (possibly complex)
relative permittivity. The factor ǫe.d. accounts for the
contribution of dispersion and loss to the electric energy
density. We have used the form from Ref. 8 which, in the
limit of zero loss, reduces to the well known expression
for dispersive non-lossy materials9 ∂ [ωRe (ǫ)] /∂ω while
also reproducing the analytical results due to Loudon10,11

for Lorentzian oscillators with strong loss and dispersion.
The latter are often used to represent the excitonic op-
tical resonance in simulations of polariton systems. The
total energy stored in the cavity can then be determined
by integrating the energy density in the multilayer. We
do not include any energy in the semi-infinite regions out-
side the multilayer since this can never be reflected back
inside the cavity in order to contribute to the nonlinear
response.
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Supplementary Figure 7. Power transmission through and
energy density in a DBR cavity. (a) Electromagnetic energy
density per unit incident intensity as a function of distance
into the structure from the first interface on the incident side.
Colour scale indicates the real part of the material refractive
index. The in-plane incidence angle is zero and the frequency
of the wave is exactly on resonance with the cavity mode.
c0 is the speed of light in free space. (b) Calculated power
transmission (solid black) and Lorentzian fit (dashed red) as a
function of the frequency of the incident wave. (c) Calculated
total energy in the multilayer (solid black) and Lorentzian fit
(dashed red) as a function of the frequency of the incident
wave.

C. Solutions of the electromagnetic model

We now go on to present calculated values of the
linewidth, transmitted power and energy stored in the
cavity for a range of parameters around those of the ac-
tual cavity used in the experiments. For these calcula-
tions the refractive indexes were obtained from the model
given in Ref. 5. The linewidths of the cavity structure
were obtained by calculating the transmission for a range
of wavelengths about resonance and fitting a Lorentzian
to the resulting peak. In this way variation of the mate-
rial refractive indexes with wavelength is automatically
taken into account. When calculating the energy den-
sity through Eqn. (S17) the wavelength dependence of
refractive indices was included explicitly by numerically
differentiating the refractive indices.

Supplementary Figure 7(a) shows the calculated en-
ergy density W (energy per unit volume) per unit in-
cident intensity Si (power per unit area) as it varies
through the structure for the exactly resonant case. In
the units of the figure the incident wave in free space has

c0W/Si = 1 where c0 is the speed of light in free space.
Thus it can be seen that the energy density in the cavity
is strongly enhanced (on the order of 104 times) over that
in free space. The energy density consists of a piecewise
factor resulting from the different material permittivi-
ties multiplied by an exponentially decaying envelope.
When we integrate W over z to obtain the total energy
E the contributions from spatial regions away from the
center of the cavity are negligible. Supplementary Fig-
ure 7(b) shows the transmission (transmitted power Sout

divided by incident power Si) vs. the frequency of the in-
cident wave. This is equivalent to an experiment where a
very narrow single mode laser is tuned through the cavity
resonance while the transmission is recorded. Since the
cavity is close to being balanced the peak transmission
is near unity. We note here that although the substrate
mirror has more pairs the substrate is coated with an
anti-reflection coating whereas the other mirror termi-
nates with a GaAs/Air interface. The additional Fresnel
reflection at this GaAs/Air interface mostly compensates
the higher number of mirror pairs in the substrate mir-
ror. The best fit Lorentzian function is plotted on top
demonstrating that the lineshape is Lorentzian to a very
high precision. Supplementary Figure 7(c) shows the to-
tal energy in the cavity divided by incident power. The
Lorentzian fit has the same linewidth and central fre-
quency as the output power to better than 2 parts in
10−7. This shows that the energy E and transmitted
power Sout have a fixed ratio independent of frequency.
We have also checked that the ratio of power and energy
is constant for varying in-plane wavenumber at fixed fre-
quency. Since the orthogonal transverse modes in a pil-
lar structure are equivalent to the in-plane wavenumber
modes of a planar structure we can be confident that
non-optimal excitation of a micro-pillar does not affect
the ratio of energy and transmitted power.

Supplementary Figure 8 shows the effect of material
loss. We introduced loss by increasing the imaginary part
of the refractive index in either the GaAs material of the
cavity layer or of the Al0.1Ga0.9As material making up
the high refractive index layers in the DBR mirror. The
GaAs is the material where absorptive loss is most likely
to arise in experiment as the light is very far from the
band edge in the higher aluminium content layers. We
simulated loss in the DBR only for completeness. Sup-
plementary Figures 8a and b show that, as expected,
the cavity mode linewidth increases and the transmit-
ted power decreases with increasing loss. Supplementary
Figure 8c shows that the energy stored in the cavity also
decreases with increasing loss. Finally, Fig. 8d compares
the stored energy and transmitted power from Fig. 8b
and c respectively and shows that the two are directly
proportional to each other. Thus we can conclude that
absorptive loss reduces both the transmitted power and
the energy in the cavity in proportion and so does not
affect the ratio.

Supplementary Figure 9 shows the effect of changing
the number of top and bottom DBR mirror pairs Ntop
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Supplementary Figure 8. Effect of loss. a Change of
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Supplementary Figure 9. Effect of mirror reflectivi-

ties. a-d show, respectively, peak transmission, 1/η, inverse
linewidth, and stored energy vs. number of DBR mirror pairs
on the top and bottom of the structure. In the experimental
structure Ntop = 26, Nbot = 30. e Transmitted power cor-
rected for tunneling rate γ and cavity asymmetry η vs. stored
energy. The solid black shows the values from the transfer ma-
trix calculations for the various numbers of top and bottom
mirror pairs while the dashed red curve is a straight line of
gradient 1 passing through the origin.

and Nbot. In Fig. 9(a) it can be seen that the peak
transmission, near to unity, is highest when the bottom
mirror has approximately 4 more pairs than the top mir-
ror. These points are where the the top and bottom
reflectivities are equal since the extra mirror pairs on
the bottom side compensate the large Fresnel reflection

at the GaAs/air interface on the top side (there is no
strong Fresnel reflection on the bottom side due to the
substrate anti-reflection coating). Fig. 9(b) illustrates
the cavity asymmetry η (see Eqn. (S9b)). For equal top
and bottom reflectivities half the cavity power is trans-
mitted to the detection side so that 1/η = 2, which co-
incides with the highest transmission points in Fig. 9(a).
Fig. 9(c) shows that the cavity lifetime 1/γ increases
with increasing numbers of mirror pairs, as expected.
Fig. 9(d) shows the energy stored in the cavity which,
in agreement with Eqn. (S11), is the product of the func-
tions shown in Fig. 9(a-c). This is shown more explicitly
in Fig. 9(e) where the two sides of Eqn. (S11) are plotted
against each other (solid black line) using the values of
T , γ, η and E obtained from the transfer matrix calcula-
tions for various Ntop and Nbot. For comparison, the red
dashed line is Eqn. (S11). From these it can be seen that
the transfer matrix outputs satisfy Eqn. (S11) to a high
degree of accuracy for a wide range of Ntop and Nbot.
Comparing the experimentally measured linewidth with
the range in Fig. 9(c) confirms that our experimental
device lies in this range where Eqn. (S11) works well.

We also varied the material compositions of the DBRs
and found that changing the composition of the high
aluminium content layer between Al0.93Ga0.07As and
Al0.97Ga0.03As changed η between 0.542 and 0.530.
Changing the low aluminum content layer between
Al0.08Ga0.92As and Al0.12Ga0.88As changed η between
0.527 and 0.545. For the nominal material parameters of
the experimental structure we obtain η = 0.536. Thus ex-
perimentally reasonable fluctuations in the MBE-grown
materials lead to only a few percent change in η, con-
firming that η can safely be obtained from simulations.

In addition to the dependencies detailed above we also
checked the effect of material dispersion, that is the fre-
quency dependence of the refractive indices of the mate-
rials making up the structure. This is important to check
since our cavity is composed of GaAs and we operate near
the band edge where the dispersion is strong. The check
was accomplished by setting the refractive index of all
materials equal to a constant (wavelength-independent)
value equal to the value at the resonant wavelength and
comparing the results to the case where the refractive in-
dexes vary with wavelength. We found that the material
dispersion changes both the energy stored in the cav-
ity and also the linewidth. Meanwhile the transmission
at the peak is unaffected since it depends only on the
refractive index values at the resonance frequency and
not on their derivatives with frequency. The linewidth
and stored energy are changed in proportion so that
Eqn. (S11) still applies independent of the amount of ma-
terial dispersion. Qualitatively, this occurs because the
averaged velocity of energy transport relates the intra-
cavity energy flux and energy density as well as deter-
mining the cavity round trip time and hence linewidth.

In conclusion we have shown using exact solution of
Maxwell’s equations that Eqn. (S11) can be used to de-
termine the ratio of energy stored in the cavity to trans-
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mitted power. When experimentally determined values
are used for the lossless cavity linewidth γDBR there is
no need for detailed knowledge of the material refractive
indexes or their dependence on wavelength as these do
not affect the ratio.

Supplementary Discussion 6. Comparison with

single photon phase shifts in other platforms

We demonstrate proof of principle experimental ob-
servations of single photon phase shifts in a solid-state
exciton-polariton based platform. We show up to 3 mrad
phase shift per photon, with potential for increase by
several orders of magnitude. Many other platforms have
been demonstrated for single photon nonlinear phase ma-
nipulation, each system with its own potential benefits
and challenges. Here we summarise some of the key ap-
proaches for comparison with our system.
A whole class of approaches are based on protocols

where an atom-like quantum emitter is used as a quan-
tum memory and two atom-photon interactions are per-
formed one after the other to obtain an effective photon-
photon interaction12. High fidelity π phase gates have
been implemented using this protocol with single atoms13

and solid state quantum dots14 coupled to optical cavi-
ties. A challenge is that the ancilliary emitter must be
prepared deterministically, for example by optical spin
pumping, for each photon-photon interaction. Typically
micro-second long initialisation and control sequences are
required, which introduces a time and energy penalty.
Atomic systems in the electromagnetically induced

transparency (EIT) regime provide very strong effective
photon-photon interactions15. They also allow avoidance
of frequency entanglement noise problems by storing the
control photon in the EIT medium while the target pho-
ton propagates through, and then retrieving the control
photon16. Based on this protocol Tiarks et. al.17 ob-
tained phase shift of 3.3 ± 0.2 radians and subsequently
implemented a CNOT quantum gate18. Their approach
is based on Rydberg blockade in an ultracold (0.5 micro-
Kelvin) atomic gas in EIT. In double-Λ systems in the
EIT regime, four-wave-mixing (FWM) assisted XPM has
been used to perform π phase shifts19, even up to room
temperature20. A typical feature of such atomic EIT ar-
rangements is that milli-Watt order ancilliary coupling
beams must be used to couple signal and target photons
to the collective excitations of the EIT medium while, ow-
ing to the spectrally narrow EIT window, pulse sequences
on the order of units or 10s of micro-seconds are needed
for coupling control and target photons and retrieving
the control. These features introduce time and energy
penalties and limit the rate at which photon-photon in-
teractions can be performed.
Atomic systems are also not trivial to integrate with

photonic chips which present a challenge to scalability.
In Ref.20 the medium is 5 cm long. In many implemen-
tations the atoms must be cooled to micro-Kelvin tem-

peratures using laser cooling and optical traps. Solid
state quantum dot systems are also challenging to scale.
The highest quality QDs, needed for quantum optics, are
formed by spontaneous nucleation during semiconductor
crystal growth and have random distributions of spatial
location and optical frequency. Forming multiple identi-
cal phase shift sites at well-defined locations on a chip in
order to scale the system is therefore difficult.

Apart from the quantum memory and atomic EIT
based approaches, phase shifts can be implemented using
passive nonlinearities where no additional control fields
or pulse sequences are needed. This potentially allows
much higher repetition rate operation and lower energy
costs. In bulk-like systems single photon XPM phase
shifts of 10−4 mrad were obtained in photonic crystal
fiber21, 3×10−4 mrad in a metastable Xenon gas cell22,
and 0.3 mrad in hollow core fibers containing rubidium
vapour23. These have the advantage of operating at room
temperature but require bulk length-scale nonlinear ele-
ments incompatible with photonic integration and give
relatively small phase shifts since the nonlinear coeffi-
cients in traditional Kerr media are small.

Atom-like single quantum emitters strongly coupled
to optical cavities offer much higher passive nonlinear
phase shifts. The strong spatial confinement leads to gi-
ant effective nonlinearity while strong coupling ensures
an efficient light-matter interface. Passive single photon
XPM at 280 mrad per particle was first demonstrated
with a single cavity-coupled atom by Turchette et al.24.
Volz and co-authors achieved π phase shifts using a single
atom coupled to a whispering gallery mode resonator25,
although only a single optical mode (plus a phase ref-
erence) was studied rather than XPM between two dis-
tinct optical modes. In on-chip photonics settings, quan-
tum dots coupled to photonic crystal cavities offer simi-
lar phase shifts of a few hundred milli-radians per parti-
cle26,27. However, these atom-like systems also face the
scalability challenges discussed above.

Our platform, based on quantum wells in solid state
semiconductors, offers unique possibilities for scalability.
Since the QW is homogeneous in a plane the properties
of the device are completely defined by the transverse
optical confinement imposed subsequent to the semicon-
ductor crystal growth, in our case by forming a micro-
pillar using lithrography and etching. Lattices containing
1000s of coupled micropillars with low photonic disor-
der have been fabricated28. Photonic cavity design can
then be used to obtain detailed control over the spatial
location and frequency of the optical modes and their
transverse confinement, which determines the interaction
strength. Essentially, the effective size of the emitter can
be tuned using photonic design allowing a balance be-
tween strong interactions and scalability. Since the sys-
tem is based on a passive nonlinear phase shift it does
not require strong ancilliary driving fields or time con-
suming control pulse sequences, which is favourable for
high repetition rate and energy efficient operation. The
4 K operating temperatures needed by our system are
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easily achievable with commercial closed-cycle liquid he-
lium cryostats which are simple to operate and do not
require large infrastructure. Thus, while the device does
not operate at room temperature, the liquid helium tem-
perature does not present an excessive obstacle to scal-
ing. Furthermore, room temperature polaritonics is a
very active area of research29,30 so that room tempera-
ture devices are likely to become available in the future.

Supplementary Discussion 7. Phase shift

estimates for a fiber cavity

In our device the phase shifts are limited by the
linewidth γ=83 µeV, exciton fractions |X11|2 × |X12|2 =
0.105, and the large transverse area of the mode in the
5 µm square pillar. To estimate the possibility of achiev-
ing larger phase shifts in other setups we consider the
system in Ref.31, where a high quality fiber microcavity
was studied.

The authors measured the minimal second-order coher-
ence function at zero delay, and observed antibunching

of g
(2)
exp(0) = 0.95. From this they deduce the ratio of

single polariton interaction energy to linewidth Upp/γ =
0.088. Using this ratio we can now estimate the phase
shifts which could be achieved in that system. We first
account for some differences between the anti-bunching
and XPM experimental approaches. We use interac-
tions between co-circularly polarised polaritons rather
than the linearly polarised polaritons used in Ref. 31.
The ratio of the nonlinear effective Zeeman splitting in-
duced by circular polarised polaritons compared to the
blueshift induced by linearly polarised polaritons is given
by ωZ,circ/ωBS,lin = 2(g1 − g2)/(g1 + g2). See Eqn. (S2).
Using the common assumption that g2 = −0.1g1

32 we
have ωZ,circ/ωBS,lin ∼ 2.44. The effective area for inter-
actions between control and signal pillar states is about
1.5 times larger than for interactions involving only the
ground state. We may use an exciton fraction 0.6 and
linewidth 60µeV for the signal state since these are
achievable in Ref.31. The control state should be lower
in energy by ∼ 1 meV to achieve spectral separation of
the control and signal beams, as in this work. Thus we
have ground state exciton fraction 0.34.

Taking all these into account [(2.44/1.5)×(0.34/0.6) =
0.92] we may then expect the same polariton interaction
energy as in Ref31. We can then expect XPM phase
shift 2Upp/ (γ/2) = 320 mrad, two orders of magnitude
larger than measured in this paper. This arises due to the
smaller modal area, higher exciton fractions and smaller
linewidths in Ref. 31.

Supplementary Discussion 8. Photon

transmission probability

The overall transmission of the device is relevant for
quantum applications since the probability of an incident
single photon leaving the micropillar and being recov-
ered should be maximised. This is especially important
if multiple phase shifters are to be cascaded. The mea-
sured transmission at the frequency of the control state is
40% (45%) for pillars A and B respectively. The theoret-
ical transmission of the planar microcavity structure is
100%. The reduction in transmission is due to a combi-
nation of imperfect mode matching of the incident laser
beams, which leads to reflection, and absorption in the
cavity itself.
In principle almost perfect mode matching can be

achieved. We calculated the relevant overlap integral
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−∞
|E2|2 · dxdy

) (S18)

for a Gaussian beam and the mode profile of a dielec-
tric rod of GaAs of the same lateral dimensions as the
micropillar. The dielectric rod modes (calculated using
Lumerical Mode Solutions) provide a good approxima-
tion of the transverse modes of the pillar. The Gaussian
beam profile was optimised in size, offset, focus and po-
larisation. We found optimum coupling of 98%. If nec-
essary, further improvements could be made by shaping
the modes using e.g. a spatial light modulator.
The two pillars were excited with the same beam and

have the same geometrical size and mode profiles, so the
mode matching should be the same for both. The similar
transmissions for the two pillars are then consistent with
the similar linewidths of 90µeV and 83µeV (for pillars
A and B respectively), suggesting that absorptive-type
losses are indeed the dominant remaining mechanism lim-
iting the transmission. For the signal state in pillar A
the measured transmission was 35%, slightly lower than
for the control state. We attribute this reduction to the
more challenging mode matching of the laser to the odd-
symmetry E12 pillar state. The mode linewidths did not
vary within measurement uncertainty over the detuning
range covered by the pillar A and B control and sig-
nal states suggesting absorptive losses, and hence trans-
missions after optimising mode matching, are the same
among all states.
The transmission can then be increased close to 100%

by making the deliberate radiative coupling through the
mirrors large compared to the non-radiative, absorptive,
losses. Absorptive losses can arise from both the photonic
and excitonic constitutents of the polaritons. The small
linewidth variation between 83-90µeV for excitonic frac-
tions between 9% (pillar A ground state) and 42% (pillar
B excited state) suggests that the photon and exciton
absorptive loss rates are very similar, around ∼ 85µeV.
This value is rather higher than typical for state of the
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art microcavities in the literature. We ascribe this to
the fact that we use a continuous flow sample-in-vacuum
cold-finger cryostat. While the temperature at the heat
exchanger (> 10 cm away from the sample) was main-
tained at 4 K it is typical for sample temperature in such
cryostats to be higher, 10 - 20 K, depending on ther-
mal radiation through the cryostat windows and thermal
coupling between sample and heat exchanger. Temper-
atures can be reduced in future experiments by using a
sample-in-vapour or sample-in-exchange-gas helium bath
cryostat.

In Ref. 33 it was shown that polariton microcavities
can exhibit lifetimes of 180 ps (corresponding to 4µeV
linewidth) for polaritons with 25% exciton fraction. Thus
photon-related absorption values can be reduced by over
an order of magnitude compared to those in our experi-
ment. Exciton related absorption can also be made very
small. As discussed in Ref. 34, scattering on quantum
well disorder is suppressed for polaritons detuned out-
side the inhomogeneous linewidth of the exciton. This
exciton linewidth can be as small as 200 µeV FWHM
compared to ∼ 3.5 meV Rabi splitting, easily allowing for
polaritons with 50% exciton fraction to be well outside
the absorption line. Meanwhile, scattering by acoustic
phonons is also suppressed for lower branch polaritons,
with linewidth contributions of order 1 µeV expected
at 10 K35,36 and 50% exciton fraction. This latter fea-
ture occurs because the half-Rabi-splitting ∼ 1.75 meV is
greater than the thermal energy kBT (0.86 meV at 10 K)
so that only other polariton states are available for scat-
tering with phonons, resulting in a very low density of
states and total scattering cross section. This is a useful
feature of quantum-well-based systems where such large
Rabi splittings are available. The presence of charged ex-
citons or free carriers36–38, may lead to additional resid-
ual loss channels31,38. Such effects can be eliminated by
controlling the semiconductor charge environment37, for
example by using electrical contacts39.

Overall, absorptive losses in quantum well polariton
systems can be reduced by over an order of magnitude
compared to those in our experiment allowing the de-
liberate radiative coupling to exceed other loss chan-
nels by a factor of ∼10. In this regime transmission
> 92% can be achieved4 while maintaining the product
|X|4/γ = 1265µeV−1 as in pillar B. At such single-site
decay rates the exp(−1) decay length is 12.5 sites, com-
patible with cascading of phase shifters. Meanwhile mode
matching can be made close to 100% so that overall prob-
ability of recovering an incident photon will be high.

We also measured the dependence of total signal beam
transmission on the control. This was obtained by adding
the intensities of both APDs. We found no systematic de-
pendence of the signal transmission on control beam po-
larisation. The signal transmission vs. control power var-
ied with gradient similar in magnitude to the phase shift
and with either positive or negative sign depending on the
data set. For the data sets corresponding to Fig. 2a-c in
the main text the rates of change of total transmission

are ∆T/T (0) = (0.4± 0.3)×10−3, (−0.07± 0.01)×10−3

and (17± 15)×10−3 per control polariton respectively.
Here ∆T is the change in transmission and T (0) is the
transmission at zero control power. These observations
are consistent with our theory. The blueshift of the states
caused by the control polaritons shifts the signal laser fur-
ther into or our of resonance depending on the initial de-
tuning. The same blueshift underpins the phase shift and
intensity change and so both are of similar magnitude, al-
though the exact ratio depends on signal detuning. The
last section of Supplementary Discussion 2 provides fur-
ther details of the expected changes in transmission and
in all Stokes parameters.
Finally, we note that in our current experiment we use

a double-sided cavity with equal mirror reflectivites in
the transmission geometry. We did this since it allows
accurate determination of the internal number of parti-
cles from the transmitted power, which is important for
proving the principle of XPM at the single photon level.
However, for implementing quantum gates it will ulti-
mately be more appropriate to use single-sided cavities
(where one mirror has much higher reflectivity than the
other, though the cavity is still high-finesse) in the reflec-
tion geometry. This is similar to the arrangement used
in Ref.13 for a single atom strongly coupled to a cavity.
In this arrangement the reflection from the cavity is al-
ways high whether the photons are on or off resonance,
while only the phase depends strongly on the frequency
difference between photons and cavity resonance. Thus
the nonlinear phase shift can be maintained but the non-
linear dependence of photon retrieval probability can be
eliminated.

Supplementary Discussion 9. Cascaded

CPHASE gate with cross-Kerr nonlinearity

We observed phase shift due to cross-Kerr effect that
corresponds to the conditional quantum operation. How-
ever, it was noted that a single cavity cross-Kerr interac-
tion can not be seen as a controlled Pauli Z (CZ) quan-
tum gate, as the interaction leads to mode entanglement
in the frequency domain, and spoils the fidelity of the
operation40–42. At the same time, it was shown that cas-
caded systems where nonlinearity is distributed between
several cavities can overcome this problem43,44. In this
section, we follow the cascaded scheme from Refs.44,45

to show that controlled phase (CPHASE) gate based on
exciton-polaritons may be arranged in a carefully engi-
neered lattice system.
We start by recalling that our system can be seen as an

effective two-mode cavity with the cross-Kerr interaction
χ, described by the effective Hamiltonian

H = H1 +H2 +Hint ≡ ∆aâ
†â+∆bb̂

†b̂+ χâ†âb̂†b̂,

(S19)

where we use the rotating frame, introducing relative de-
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tunings ∆a,b for two polaritonic modes â and b̂. For
simplicity the two can be considered equal, ∆a,b = ∆,
as non-zero detuning only introduces additional single
particle phase shift, while not changing the two-particle
quantum operation. We note that, when applied to the
polaritonic system, the strength of cross-Kerr interaction
χ is related to polariton nonlinearity as χ = 2Upp.

To harness the effects of nonlinearity in the distributed
fashion, we need to consider a lattice of polariton cavities
(i.e. micropillars) that have edge states with suppressed
backscattering46,47. This will be equivalent to having a
circulator for each mode, being an essential tool for cas-
cading. To describe the system, we use the SLH frame-
work. It can be seen as a generalized input-output the-
ory that conveniently describes various cascaded systems.
Here, S corresponds to a scattering matrix (or matrices)
of an element in the chain, that in our case is a nonlin-
ear optical resonator. It is a unitary matrix that relates
the input state |ν〉 to the output state |ω〉 as |ω〉 = S|ν〉.
L denotes the Lindblad-type dissipation term (jump op-
erator) that describes the in/out coupling for the mode.
OperatorH is for the Hamiltonian that describes the uni-
tary dynamics of the system. For more information we
refer to review in Ref.48. Using SLH framework we can
describe multi-cavity scattering, and define a CPHASE
gate fidelity from single- and two-photon scattering ma-
trices. First, a single-photon scattering matrix S1 can be
derived from using input-output relations as

S1(ωa; νa) = −Γ∗(ωa)

Γ(ωa)
δ(ωa − νa), (S20)

where νa, ωa are input and output frequencies, and we
defined an auxiliary function Γ(ω) := γ/2+i(∆−ω). Sim-
ilar expression can be derived if photon propagates as a
wavepacket with some envelope in the frequency domain
ξ(ω). One can proceed to derive two-photon scattering
matrix, getting

S2(ωa, ωb; νa, νb) = S1(ωa; νa)S1(ωb; νb)− i
χγ2

π

(

1+

(S21)

+
2iχ

Γ(ωa) + Γ(ωb)

)−1 δ(ωa + ωb − νa − νb)

Γ(ωa)Γ(ωb)Γ(νa)Γ(νb)
,

where the first term corresponds to the single photon con-
tributions, and the second term introduces the effect of
cross-Kerr interaction on the scattering. The delta func-
tion corresponds to energy conservation, and leads to en-
tanglement in frequency modes. The ideal CPHASE gate
is defined by conditions that single photon inputs remain
untouched, with Sideal

1 (ωa; νa) = δ(ωa − νa), while two
photon scattering leads to the accumulated phase shift φ
in the form Sideal

2 (ωa, ωb; νa, νb) = eiφδ(ωa−νa)δ(ωb−νb).
Thus, we search for the condition for the two-photon
state to become a product state, but adding the non-
trivial conditioned phase. We note that in general there
might be additional trivial phases added to each mode.

This is especially true as in our case ωa 6= ωb. How-
ever, this corresponds to a single photon deformation
that can be removed by performing additional individ-
ual rotations.
Having defined the necessary ingredients for the single

node we proceed to the multi-node case of connected cav-
ities. As noted before, only one-way propagation is con-
sidered, and two distinct cases arise: counter-propagating
modes and co-propagating modes45. We follow the dis-
cussion in supplemental material of Ref.44, and write the
N -site scattering matrix for counter-propagating modes
as

S1(ωa; νa)
(N) =

(

−Γ∗(ωa)

Γ(ωa)

)N

δ(ωa − νa), (S22)

and similar holds for the mode b̂. The two-photon scat-
tering matrix can be generalized as

S2(ωa, ωb; νa, νb)
(N) = S1(ωa; νa)

(N)S1(ωb; νb)
(N) (S23)

− i
χγ2

π

(

1 +
2iχ

Γ(ωa) + Γ(ωb)

)−1 δ(ωa + ωb − νa − νb)

Γ(ωa)Γ(ωb)Γ(νa)Γ(νb)
×

×





N
∑

j=1

(

Γ∗(ωa)Γ
∗(νb)

Γ(ωa)Γ(νb)

)N−j (
Γ∗(ωb)Γ

∗(νa)

Γ(ωb)Γ(νa)

)j−1


 .

Finally, the gate fidelity F of CPHASE operation can be
derived through the average over possible input states,
leading to F (φ) = (6 + 3Re{eiφO(N)} + |O(N)|2)/10.
Here we used the overlap between single and two-photon
wavepackets that reads

O(N) =

∫

dνadνbdωadωbdω
′
adω

′
bξ(ωa)ξ(ωb)ξ(ω

′
a)ξ(ω

′
b)×
(S24)

×
[

S
(N)
1 (ωa, νa)S

(N)
1 (ωb, νb)

]∗

S
(N)
2 (ω′

a, ω
′
b; νa, νb),

and is crucial for distinguishing the two-photon output
from the product state. ξ(ω;σ) ≡ ξ(ω) is a standard
Gaussian function parametrized by the frequency width
σ, and we omit for simplicity underlying parameters. The
overlap of O = −1 corresponds to the perfect phase gate.
The resulting gate fidelity can be easily calculated for
various phase shift φ.
We perform proof-of-principle calculation for counter-

propagating modes, considering different parameters and
number of nodes in the latticeN . To simplify the descrip-
tion, we consider a limiting case of N → ∞. Then, we
can write the two-photon scattering matrix as

S
(∞)
2 (ωa, ωb; νa, νb) = S

(∞)
1 (ωa, νa)S

(∞)
1 (ωb, νb)

[

1−
(S25)

− iχγ3

4

(

1 +
2iχ

Γ(ωb) + Γ(ωa)

)−1
1

|Γ(ωb)Γ(ωa)|2
]

,

and further simplification is possible if we consider pho-
tons arriving on resonance, ω ≈ ∆. From here we can
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Supplementary Figure 10. Fidelity of CPHASE gate for
different Kerr interaction strength ratio, χ/γ, plotted for dif-
ferent phase φ ∈ {π/5, π}. Results are for infinite limit of
cavities N → ∞ (in practice N > 20 gives high fidelity), and
narrow pulses σ → 0.

plot the real part of the two-photon scattering matrix,
that is equal to the product of single-photon matrices in
the limit of χ/γ ≪ 1 (overlap is equal to 1), and changes
sign for χ/γ ≫ 1, leading to overlap of −1. The inter-
play of overlap value and target conditional phase thus
determines F (φ). We plot the fidelity of the CPHASE
gate as a function of χ/γ in Supplementary Figure 10.
We observe that while full π-phase gate may be diffi-
cult to get with smaller interaction constants, we can get
high-fidelity for fractional π gates. Given that suitable
universal gate set can be formed with these gates, we
can conclude χ/γ may work in the cascaded fashion. We
can also infer the number of sites dependence for fidelity
using scaling in Ref.44. This shows that fidelity rapidly
improves with N and already at N = 10 reaches 0.99
values.

Supplementary Discussion 10. XPM for

quantum computing: the outlook

We have shown that polaritonic micropillars with
cross-Kerr interaction can be used to perform conditional
phase shift on the signal mode induced by the control.
Working with weak optical beams, the system can be
used as a quantum nondemolition detector and exploited
in sensing applications. Moreover, in the limiting case of
single photon inputs for the signal and control modes the
system enters the realm of quantum information process-
ing applications. Performing single photon operations
in the current setup is difficult, and requires improve-
ments outlined in the previous section. However, we aim
to answer another important question: Is it in principle

possible to perform quantum computing with polaritonic

pillars in the lattice geometry?
In the preceding section we showed that using the po-

laritonic lattices and cascaded geometry the high-fidelity
CPHASE gate for conditional angle φ can be realized
even in the case of weak nonlinearity χ/γ < 1. This
however favours small angle rotations φ being a frac-
tion of full π. We note that CPHASE gate for the
condition phase shift of φ corresponds to the unitary
exp[iφ(Ẑ1Ẑ2 − Ẑ1 − Ẑ2)], where Ẑ1,2 are Pauli Z ma-
trices acting on photonic modes 1 and 2 (with restricted
{0, 1} occupation)49. This unitary can be performed for
the phase ϕ = π/m (m > 1). Repeating the gatem times
we can get the π shift (CZ gate). CZ can be converted to
CNOT gate using conjugation by two Hadamard gates for
one of the modes represented by simple photonic mode
beam-splitters, ÛCNOT

12 = Ĥ1Û
CZ
12 Ĥ1

49. Together with
single qubit rotations CNOT forms a universal gate set,
and thus provides a toolbox for a universal quantum com-
putation. However, we note that concatenation leads
to the overall lower fidelity. Namely, as we chain gates
based on the finite number of micropillars, the associated
CPHASE infidelity (1−Fφ) is small but finite. Perform-
ing m gates in a row gives ∝ (1− Fm

φ ) infidelity scaling,

and correspondingly restricts (from below) the number
of cavities needed for high-fidelity operation. Thus m
cannot be large, dictating the substantial χ/γ ratio. Ul-
timately, the remaining error related to finite size requires
error correction (much like with any other quantum com-
puting architectures), and finding the requirements of po-
laritonic setup in terms of the error-correction threshold
is an important question for the future.
Finally, we suggest that the described polaritonic

CPHASE operations can be used in the radically differ-
ent way. Imagine the linear optical setup where optical
signals are operated by beam-splitters, phase shifts, de-
lays, and single qubit rotations50. This serves as a base
to the boson sampling51,52, and was shown to be #P-
hard problem. We also know that nonlinearity introduces
complexity in the quantum circuits, staying behind uni-
versal speed-ups49. We suggest that polaritonic lattices
and CPHASE gates can be used to inject entanglement
in the otherwise linear networks. This can be seen as
a resource for further computation, much like T gates
used in Google’s quantum supremacy experiment53 with
IQPs (instantaneous quantum polynomial-time circuits).
Joining high fidelity linear operation and high-fidelity
weakly nonlinear operation we can exploit the hybrid
quantum-classical workflow, where CPHASE-induced en-
tanglement is sculptured by single mode rotations with
angles defined variationally. This has shown to be the
preferred strategy for near-term quantum devices and
represents an efficient workflow for designing quantum
software54. In this case, polariton-based CPHASE gates
offer a unique deterministic way to nonlinear operations.
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