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Abstract: A hybrid energy storage system (HESS) is adopted to tackle the traction network 

voltage fluctuation problem caused by high power and large energy demand during the starting and 

braking of urban rail trains. The system is composed of on-board ultracapacitors and ground lithium 

batteries, aiming to smooth out the power fluctuation to realize "peak-shaving and valley-filling". 

Based on deep reinforcement learning (DRL) online sequence decision, a dynamic power allocation 

strategy is proposed to improve the energy-saving and voltage stabilization of DC traction networks 

as well as HESS life protection. Furthermore, to enhance the DRL’s efficiency under time-varying 

operating conditions, an annealing bias - priority experience replay twin delayed deep deterministic 

policy gradient algorithm (A-TD3) is proposed to train the replay buffer in DRL. The online learning 

and optimization strategy is implemented via the mechanism of "trial and error" and "feedback" of the 

agent. RT-LAB semi-physical real-time simulation systems are adopted to verify the effectiveness of 

the proposed strategy. Compared with the traditional rule-based control, filter-based control and DRL 

method, the results show that the proposed method converges faster and is more energy saving and 

stable while effectively protecting the HESS. 

 

Keywords: Regenerative braking energy; Hybrid energy storage system (HESS); Power dynamic 

allocation; Deep reinforcement learning; HESS protection
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1 Introduction 

In recent years, urban rail trains have become a major means of transporting people and goods in 

the urban as well as suburban areas, and as such contribute greatly to the reduction of traffic and 

environmental pollution such as CO2 emission [1-3]. With the steady progress of urbanization and the 

growth of population worldwide, currently there is a fast development of urban rail transport systems, 

which leads to high increase of energy consumption [4]. Due to the huge energy consumption and high 

operating voltage requirements of urban rail lines [5], recovering excess braking energy in the form of 

energy storage system (ESS) becomes an effective means to achieve energy savings and ensure the 

voltage safety of the traction network [6][7]. As the ESS with a single type of device cannot meet the 

dual demands of high power and large energy, a HESS is often used to suppress the sharp rise in 

traction network voltage [8][9]. In the urban rail transit, the hybrid energy storage system (HESS) 

consisting of on-board ultracapacitor/supercapacitor and ground lithium battery mainly uses the "peak-

shaving and valley-filling" strategy for the traction power network to achieve energy saving and 

voltage stabilization [10-12]. Given that the energy allocation among each ESS depends on their 

control strategies, how to improve the braking energy utilization and achieve a better voltage 

stabilization and energy saving effectiveness is one of the key technical issues in HESS management 

strategies that need to be addressed. 

In rule-based HESS energy management strategies, it is often to use the given voltage or power 

as reference, for example, rule-based PI control [13] and filter-based control [14][15]. The former has 

the advantages of being easy to implement and deal with the power constraints of the battery and 

ultracapacitor while the latter is able to readily achieve power allocation through frequency 

decomposition. However, neither of these methods takes into consideration the system optimization, 

because the main problem is traction energy-saving and network stabilization. Fuzzy control strategies 

[16][17] can design fuzzy rules to reach above requirements, where the design is not an easy task. A 

power threshold strategy with power quality index constraint is proposed in [18], which effectively 
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reduce the system-side negative sequence current and improving the average power factor, but the ESS 

protection problem [19] may need consider under frequent braking conditions. 

Another class of HESS power management strategies is optimization-based methods. A model 

predictive control (MPC) method combined neural networks, was proposed in [20]. The proposed 

method can effectively lower the requirements of prediction accuracy and step size, and at the same 

time control the ESSs (State of Charge) SOC within the desired range, but the method may have high 

real-time control requirement. In [21], a dynamic programming method was used to optimize the 

offline HESS power allocation, which can guide the online control optimization. The method requires 

to predict the state transition probability in advance, which hinders the use in practice. 

From the above discussions, it can be concluded that although the recent progress of the HESS 

management strategies, there remains some challenges in the energy-saving and voltage stabilization 

of DC traction networks of rails. The main challenge comes from the uncertainties in the system caused 

by many factors such as voltage fluctuations, the degradation of the battery, and driving patterns etc. 

The first two factors are related to the designing strategies, which can be used in real-time to minimize 

the power consumption, optimize power distribution between different power elements and prolonging 

battery/ultracapacitor life under these uncertain environments. It is worth pointing out that the driving 

patterns in urban rail transit are normally set in advance, therefore not the focus of this paper. 

Reinforcement learning (RL) method has been shown capable of guaranteeing real-time and robust 

performance in decision making [22], which has the potential to provide a robust and optimal solution 

to the power allocation problem. Furthermore, taking into consideration the randomness of the state of 

the rail transit system under studied, such as the speed and acceleration of the train, the power 

consumptions in different driving modes, the states of the charge of the ultracapacitor and battery, the 

problem in this study perfectly fits Markov Decision Process (MDP) framework, which is the basis of 

the reinforcement learning (RL). 
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In the urban rail power supply environment, the cycle characteristics of battery have great 

randomness. For example, the internal resistance of a battery can be significantly increased as the 

temperature drops or the battery degrades, resulting in an increase in the discharge current and 

discharge rate [23]. This parameters variation could significantly affect the performance of controller. 

Therefore, it is necessary to design an adaptive controller that can adapt to battery decay. 

Reinforcement learning (RL) has been presented to implement and optimize the energy management 

strategies recently. It provides a mathematical framework for discovering or learning strategies that 

map situations onto actions with the goal of maximizing a reward function [22]. In contrast to prior 

work, which requires deterministic or stochastic knowledge of underlying systems, the advantage of 

RL is that it can adapt to complex and changing environments and carry out strategy learning without 

knowing accurate system models and the state transition probability. The RL for energy management 

has been studied by some researchers [24][25]. In [24], a RL-based real time management strategy for 

electric vehicles (EV) was proposed and simulation verification of the improved RL under different 

loads was performed. Moreover, a novel approach was proposed combining a rule-based controller 

with RL to achieve an adaptive optimal solution. For hybrid electric vehicles (HEV), a RL algorithm 

was proposed to minimize the HEV fuel consumption over any driving cycle without prior knowledge 

of the cycle [25]. The results from these studies indicate that the RL-based energy management strategy 

can considerably improve fuel and battery efficiency and allow real-time implementation. Motivated 

by these RL-based studies for energy management, we aim to apply DRL techniques [26] for the HESS 

power allocation optimization in urban rail transit system in this study. 

Currently, the twin-delayed deep deterministic policy gradient (TD3) is the more popular 

algorithm in DRL [27][28], which has been successfully applied in many different areas [29-34]. Given 

the time-varying characteristics in urban rail transit systems, we propose a modified TD3 algorithm by 

introducing a priority experience sampling strategy, termed A-TD3 (Annealing bias-priority 

experience replay twin delayed deep deterministic policy gradient algorithm). The proposed method 
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is used to train the replay buffer in TD3 for the purpose of improving the training efficiency and 

accuracy. The online learning and optimization strategy will be implemented via the mechanism of 

"trial and error" and "feedback" of the agents. To the best of our knowledge, combing TD3 with 

annealing bias - priority experience replay in the power allocation strategies for urban rail HESS in 

real time taking into consideration onboard capacitor life protection has not been investigated. The 

main contributions of the paper are as follows: 

(1) To enhance the performance of the online optimization and adaptive power compensation of 

RL algorithms in urban rail power supply environment, an improved TD3 algorithm, namely A-TD3, 

is proposed, which adopts an annealing bias - priority empirical sampling strategy. Compared with the 

previous methods, it can effectively save energy, stabilize voltage, protect HESS  

(2) The proposed A-TD3 algorithm overcomes the limitations of traditional DDPG and TD3 

algorithms by determining different priority probabilities through a combination of priority experience 

replay and annealing bias - importance sampling, which can eliminate the deviation under the 

distribution change and has the advantages of fast convergence and being not easy to fall into local 

optima. 

(3) An off-line training - online optimization - online sequential decision method is designed to 

solve the stochastic control problem under initial conditions and save computing resources. The 

proposed strategy is validated on a RTLAB hardware-in-the-loop real-time simulation system and the 

experimental results verify its effectiveness. 

The rest of the paper is organized as follows: Section 2 describes in detail the metro rail power 

supply model and the proposed control strategy. In Section 3, the A-TD3 is presented. In Section 4 the 

proposed control strategy is verified by simulations and semi-physical real-time simulation 

experiments. Finally, conclusions are drawn in Section 5. 
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2 Traction power supply structure  

2.1 System components 

The structure of the main power supply system of the urban rail studied is shown in Figure 1. 

 

Figure 1 The urban rail power supply system 

The traction network is stepped down from 110kV / 220kV power system to 10kV / 35kV AC, 

and then obtains 1500V DC bus voltage by rectifier, which provides power supply in both direction of 

the trains. In order to reduce the ripple coefficient of the output voltage and the harmonic current of 

the traction power supply system, 24-pulse rectifier is used to suppress the generation of harmonics. 

The 24-pulse rectifier is operated in parallel by two sets of 12-pulse rectifier units, where the windings 

on the high voltage side of the transformer are phase-shifted by ±7.5°. The train uses the rotor magnetic 

field vector control to realize the SVPWM control of the inverter, thereby controlling the operation of 

the train. The parameters of the train are listed in Table 1. 

Table 1 Parameters of the train  

Parameters Conditions/Values 

Train formation 3M1T  

Rated load AW0: 129.9t, AW2: 204.3t, AW3: 228.3t 

Highest operation speed v 80km/h 

Average acceleration ac ≥1.0m/s2 (v~[0,40km/h])  

 ≥0.6m/s2 (v~[0,80km/h]) 
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Basic resistance per unit mass of train (N/t) r=1.1064+0.0295v+0.000248v2 

Running resistance Fm (N/t) Fm=2340.9+62.42v+0.525v2 

Rated voltage of DC traction network 1500V 

Voltage standard range 1000~1800V 

Wheel diameter (semi-wear condition) 805mm 

Transmission ratio 6.68 

The HESS, which is composed of on-board ultracapacitor pack and ground battery pack, is 

connected to the DC traction network through bi-directional DC/DC converter. When the train is 

electrically braked, the traction motor acts as a generator to deliver energy to the traction network 

while the HESS absorbs the excess braking energy; when the train starts to accelerate, the HESS 

provides the required energy for the traction motor together with the traction network. 

2.2 Energy management strategy for HESS 

The energy management strategy for the HESS is shown in Figure 2. The main sections are as 

follows: i) the coordinated control of permanent magnet traction system (PMSM) and HESS; ii) the 

dynamic power allocation strategy based on A-TD3 sequential decision optimization. The system will 

ultimately achieve optimal energy saving and voltage stabilization between the permanent magnet 

traction system and the HESS. 

 

Figure 2 Control strategy of HESS 
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In the HESS, the basic controller of on-board ultracapacitor is the filter-based traction power 

feedforward control [36][37] and the basic controller of ground battery is the rule-based voltage PI 

control. The former is mainly making use of their fast response characteristics to accomplish rapid 

acceleration of the traction system and braking energy exchange while the latter is stabilizing the DC 

traction voltage and providing the auxiliary power supply. The control of ultracapacitor will be detailed 

in section 2.3. In the battery control, the error between the given charging and discharging voltages 

threshold Uchar / Udis and the real-time feedback traction network voltage Udc will be fed into a PI 

controller and compared with the feedback battery current ibat. The duty cycle D of the driving BDC 

switch device is finally obtained through PWM control by a second PI controller, more details as 

shown in [35]. Therefore, the control rules as follows: 1) when Udc is lower than Udis, the HESS 

discharging; 2) when Udc is higher than Uchar, the HESS charging. 

2.3 Coordinated control strategy between PMSM and HESS 

The coordinated control strategy of the HESS based on traction power feedforward is shown in 

Figure 3. The output action ΔPsc_ref from A-TD3 sequential decision is used to adjust the given 

ultracapacitor power in real time, which can realize the dynamic power allocation between the HESSs. 

Finally, the given ultracapacitor power Psc_ref, the given on-board battery power Pbat_ref, and the grid 

Pdc_ref are obtained. In Figure 3, isc_ref is the current allocated to the on-board ultracapacitor. isc is the 

output current of ultracapacitor. The energy allocation of each ESS is obtained through the coordinated 

control of the actual train traction power. 

 

Figure 3 Coordinated control strategy between PMSM and HESS 
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3 Improved deep reinforcement learning (DRL) 

3.1 Reinforcement learning (RL) 

For the nonconvex nonlinear optimization model, the gradient-based optimization algorithm 

cannot guarantee the global optimal while the gradientless heuristic algorithm is slow in searching the 

solution. The goal of RL is to find an optimal strategy to maximize the expected return value [38], and 

automatically learn the global optimal decision through trial and error and feedback based on real-time 

action and environmental information feedback. 

RL does not need labelled data, and its learning control process is based on continuous-times 

Markov Decision Process (MDP) by taking into consideration both Action information (Action) and 

Environment information (Environment). The interaction between Actions and Environment leads to 

the transition of the Environment from one state to another while a Reward is given based on the new 

state of the Environment. RL can evaluate the quality of an action sequence according to the reward 

information. Because of the feedback delay of reward and the real-time change of environmental 

information, RL constantly analyzes and learns useful information from the reward sequence. 

In the actor-critic framework, which integrates a value function estimation algorithm and a policy 

search algorithm, the policy network (actor) performs network updates via deterministic policy 

gradients [38]: 

)](|),([)( )( sasQEj saaps 


                                             (1) 

Where ],|[),( asREasQ tps 



 
is the action value function, which represents the expected return 

value after action a is taken in state s under the policy  . It takes advantage of the algorithm in 

continuous action space and changes the stochastic policy into a deterministic policy, as shown in Eq. 

(2) [39]: 
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                                                                   (2) 
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3.2 Annealing bias- priority experience replay-based TD3 

TD3 is a DRL algorithm based on the actor-critic framework [28], which is developed on the basis of 

DDPG and can solve the problem of Q overestimation in actor-critic framework algorithm. In TD3, 

the experience replay mechanism can eliminate the correlation between data samples and at the same 

time improve the utilization rate of the sample. Note that the experience in the buffer is history data 

(st, at, r, st+1), which is basically sampled uniformly during learning. Some generated neighboring 

samples through the Agent experience of interaction with the environment are strongly correlated with 

the data itself. Moreover, different data’s contribution to the gradient learning may be different. All 

these will lead to low learning efficiency and even over-fitting. 

Traditional experience priority replay is based on |TD - error| method [40], which is the difference 

between the current action value function Q' and the target value function Q in sequential difference, 

as shown in Eq. (3). It can effectively improve the utilization rate of samples. Training goal is to make 

|TD - error| expectations as small as possible, therefore it often uses its value to determine the 

prioritization ranki and the priority indicator pi, as shown in Eq. (4): 
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Where ranki indicates the ranking starts from the ith experience to the smallest.  

Thus, the sampling probability is determined as: 
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
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i

p

p
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                                                              (5) 

Where α is the variable priority factor which does not alter the monotonicity priority, but rather adjusts 

the priority of |TD-error|. α=0 indicates uniform random sampling whereas α=1 indicates greedy 

strategy sampling. α∈[0,1] and k is batch quantity. 

However, this method is liable to an excessively high frequency of access to those experiences 

with a relatively high |TD-error|, which may easily cause overfitting due to lack of diversity of samples. 
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At the same time, the priority experience replay also changes the status distribution and bias is bound 

to be introduced, so in this paper bias annealing-importance sampling [40] is introduced to eliminate 

the bias and also reduce the gradient magnitude. The importance sampling weight ω is expressed as 

follows: 

 )
)(

11
(

iPN
i                                                               (6) 

In addition, the range of weight ωi is standardized for the sake of training stability, such as 

i
i

i  max/ . Finally, the sampling probability is: 
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)*( iP

iPN
iPiP
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


                                   (7) 

In the above two equations, N is the number of samples in the experience buffer, and β is the 

annealing factor, which is used to determine the influence of priority experience replay on the 

convergence results. When β=0, it represents full importance sampling; When β=1, ωi and P(i) are 

exactly canceled, which means that the influence of experience replays on the convergence results is 

completely eliminated. At this time, uniform random sampling is then used. At the beginning and end 

of the actual training, β anneals linearly from the initial value 0 to 1. α and β have an interactive effect, 

and both parameters simultaneously determine the priority. 

When initializing the network model, all samples in the replay buffer are initialized with an 

immediate reward value of 0. During training, experience samples in the replay buffer are selected 

with the probability of P(t)*. The algorithm training process and network block diagram of ATD3 are 

shown in Appendix. Table 1 and Figure 4, respectively. 
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Figure 4 The schematic diagram of the proposed A-TD3 algorithm 

3.3 PMSM power supply environment and state characterization 

In the process of A-TD3 execution, at each step after the action is applied to the environment, the 

environment will feedback the updated state to the A-TD3 Agent. The DRL interactive environment 

in the proposed method is shown in Figure 5. 

 

Figure 5 Agent-based decision making for permanent magnet traction power supply environment 

In the proposed method, the HESS energy management system is considered as an Agent for 

learning and decision-making, and the permanent magnet traction power supply system is considered 

as the environment in which the Agent is located. The Agent senses the environment and its state 

changes, performing specific action that affects the state of the environment and cause the environment 
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to generate the corresponding reward signals and adjust the policy based on the obtained feedback 

signal to maximize the cumulative reward over the time period considered. Due to the characteristics 

of instantaneous high power and short-term large energy when breaking the train, it is necessary to 

consider the life protection of the energy storage components, i.e., ultracapacitor and battery while 

realizing voltage stabilization and energy saving. Therefore, the DC traction voltage Udc, the given 

hybrid energy storage power Phess_ref, the SOCuc of the ultracapacitor, the Voltage Usc of the 

ultracapacitor, the SOCbat of the battery, the Voltage Ubat of the battery, the motor speed ω and the 

acceleration ac of the train are selected as the state of the environment that the Agent is to observe. It 

follows that the state space S of the system with n subsystems is expressed as: 

],,,,,,,

,...,,,,,,,,[

_

1111111_1

cnnbatnbatnucnucnrefnhessdcn

cbatbatucucrefhessdc

aUSOCUSOCPU

aUSOCUSOCPUS





                          (8) 

3.4 Continuous action space selection and action execution 

The redistribution action of the permanent magnet traction power selected by A-TD3 from the 

action space should be able to fully cover the feasible region of the HESS. In order to avoid the failure 

of A-TD3 to learn the global optimal decision of the HESS power allocation, the continuous action 

space should not be selected too small. However, if the selected action space is too large, the training 

efficiency of A-TD3 will deteriorate. In this study, the Agent action is selected as the given power 

adjustment value of the ultracapacitor ΔPsc_ref and the policy function   is the mapping from the state 

space S to action space A ( : S → A), that selects actions based on the observations from the 

environment. Considering the power fluctuation range of the ultracapacitor, the power demand 

adjustment is carried out in a continuous manner and the continuous action space A is obtained as 

shown in Eq. (9): 











0___

n_2_1_

||

],...,,[

refscrefhessrefsc

refscrefscrefsc

PPP

PPPA
                                             (9) 

Where Phess_ref is the given HESS power, Psc_ref0 is the initial value of the given ultracapacitor power. 
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3.5 Reward function design 

In each decision cycle, the Agent takes the action a under the state s, that is to select the proper 

given power to allocate the power for the HESS. The environment will then move to the next state. A 

reward r will be given to this action a, which represents the feedback from the environment to the 

Agent's action, and the learning goal of the Agent is to obtain the maximum cumulative reward. The 

variance of the reward value distribution should not be too large, otherwise it will increase the training 

time of A-TD3 and is easy to fall into local optima. On the other hand, if the variance of the reward 

value distribution is too small, A-TD3 may not be able to learn effectively. In order to improve the 

effect of energy saving, voltage regulation, and HESS protection, the reward r in this study is divided 

into two parts: 

(1) Energy saving and voltage regulation part: r1 is selected as the weighted sum of the coefficient 

of energy saving e% and the coefficient of voltage stabilizing v% within time step ΔT, as shown in Eq. 

(10): 

%]%[m1 veaxr                                                   (10) 

Where   is the weighting coefficient of e%,   is the weighting coefficient of v%. The coefficient of 

energy saving e% is defined as the percentage of the change of the total output energy of the substation 

after the installation of the HESS in the total output energy of the substation without the energy storage 

system, and coefficient of voltage stabilizing v% is evaluated by the integration of the portion of the 

DC traction voltage above/below the limit [41], as shown in Eq. (11) and (12), respectively.  
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Where hess

dcu / nohess

dcu
 
are the voltages of the DC traction network with/without the HESS installed, hess

dci

/ nohess

dci
 
are the currents of DC traction network with/without the HESS installed. 
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Where refh

dcu / refl

dcu  are the safety upper limit/safety lower limit of the DC traction network voltage, and 

Δh/Δl are the times when the DC traction voltage exceeds the safety upper limit/lower limit under the 

operating conditions. 

(2) HESS protection part: i) in ultracapacitor protection part, by setting the SOCuc safety range to 

achieve ultracapacitor overcharge and overdischarge protection, and it is expected that SOCuc can be 

kept within the safety range [0.15, 0.85]. ii) In battery protection part, the battery lifetime degradation 

is another important factor need to be taken into consideration in the HESS power allocation. The 

degradation of the battery is mainly characterized by the gradual decrease of the actual discharge 

capacity and discharge time as the increase of operation cycles. Combined with the actual operating 

environment of the urban rail systems and according to the Cr model of lithium iron phosphate battery 

capacity decay rate established by Swierczynski et al [42], it can be found that at 30 ºC, the capacity 

decay rates of the battery after 500, 1000, 1500, and 2000 cycles at a depth of discharge of 50% are 

about 5%, 8%, 11%, and 12.5%, respectively. Therefore, it is necessary to reduce the allocated power 

of the battery according to the capacity decay accordingly. In addition, due to uncertain factors such 

as differences in cell consistency and/or temperature, there could be rapid capacity decay caused by 

sudden battery discharge, which could shorten the battery life rapidly and reduce the system efficiency. 

Therefore, we take both the gradual decay and the sudden drop of the battery capacity into 

consideration by considering the following supplementary reward function term: 

)]1(*[m
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        (13) 

Where SOCuc-char and SOCuc-dis represent SOC values of the ultracapacitor in the state of 

charge/discharge; σ is the weighting coefficient of the full utilization of the ultracapacitor; η is the 

(penalty) weighting coefficient of the overcharge and overdischarge of the ultracapacitor; Cr is the 
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capacity decay rate, which is related to the depth of battery discharge; Cbat is the discharge rate of the 

battery; ρ and ψ are the corresponding reward weights, respectively. When the capacity of battery 

undergoes gradual or sudden decline, the actual discharge rate and depth of discharge are reduced by 

gradually reducing the power allocated to the battery, so as to achieve the purpose of protecting the 

battery. Finally, the overall reward function is designed as follows: 

)max( 21 rrr                                                                    (14) 

In the reward function, the reward is given as a single scalar value at each time instant. The 

Agent's goal is to maximize the accumulated reward, which is used to measure the level of progress in 

learning. In general, in order to stimulate the Agent to learn, the reward coefficients should be small 

while the penalty punishment coefficient should be large. 

3.6 Off-line training - online optimization - online sequential decision making 

The proposed sequential decision optimization framework for DRL is shown in Figure 6. 

 

Figure 6 A-TD3 sequential decision optimization framework 

(1) Offline model training - online optimization. Offline training is firstly performed on a simple 

urban rail plant model, taking the advantages of DRL training without accurate model and providing 

a good initial strategy for Agent to realize pre-training, which greatly saves the training time. A 

simulation platform of the rail transit traction power supply is then used as the environment for the 
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Agent. Preliminary control of the HESS is conducted through initial energy rule control to achieve a 

preliminary stable control effect (The on-board ultracapacitor is controlled by filter-based traction 

power feedforward control and the ground battery is controlled by rule-based PI control). At the same 

time, DRL is used as the supervision and supplement of the power allocation rule controller, and the 

guided exploration is used to make the Agent learn and progress quickly, which improves the dynamic 

adaptive ability of the controller and ensures the stability and the guided exploration effect under the 

condition of guaranteeing the benchmark control performance. The control block diagram is shown in 

Figure 7. In addition, the running speed of the train in each round is randomly changed within the safe 

operating range when the Agent is trained to improve the stability in the changing environment, 

particularly the gradual or abrupt change of the environment as well as achieve the stable application 

of the control strategy in the hardware-in-the-loop system. 

 

Figure 7 Initial energy rule control and DRL optimization 

(2) Online sequential decision. RT-LAB semi-physical real-time simulation system is used to 

simulate real-time operating conditions. The Agent makes decisions and learns based on the real-time 

system state information. The combination of online training and online decision greatly shortens the 
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Agent exploration stage in the experiment and improves the learning efficiency of energy management 

algorithm. On the other hand, through the Agent offline training-online learning and decision making, 

online optimization of the control performance can be achieved in the presence of model errors and 

parameter changes in the system. 

4. Simulation and results 

4.1 Hyperparameter selection 

The weighting coefficients in the reward function and the hyperparameter design in online 

learning are shown in Table 2. In order to minimize the impact of the selection of hyperparameters on 

the performance of different algorithms, the selected hyperparameters are general, and the 

hyperparameters of DDPG, TD3 and ATD3 are guaranteed to be consistent. Taking episodes in each 

training round as an example, the Agent takes a batch of 512 samples from the experience buffer (size 

2e6) for training through the Annealing bias - priority mechanism in the experience buffer, and 

improves the optimization efficiency by replacing random sampling strategy. In the training, the Agent 

adopts Gaussian noise model to smooth the update of the target strategy and an additional noise 

variance attenuation rate of α=1e-4 is added to increase the exploration capability at later stage. Finally, 

a discount factor γ=0.995 is introduced to increase the long-term awards. 

Table 2 Hyperparameter settings  

symbol parameter The numerical symbol parameter The numerical 

- Experience Buffer Length 2e6 α Initial value of 

variable priority factor 

0.5 

- Mini Batch Size 512 β Initial value of 

annealing factor 

0 

γ Discount Factor 0.995 λ weight coefficient 1 2 

Var Exploration / Policy Noise 

Variance 

0.1 μ weight coefficient 2 2 
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- Exploration / Policy Noise 

Variance Decay Rate 

1e-4 σ weight coefficient 3 10 

- Delay update frequency 2 η weight coefficient 4 50 

- Critic learn Rate 0.0001 ρ weight coefficient 5 10 

- Actor learn Rate 0.001 ψ  weight coefficient 6 50 

 

4.2 Online training  

In order to verify the effectiveness of the proposed A-TD3 power dynamic allocation algorithm, 

TD3 algorithm and DDPG algorithm were trained online in the Matlab/Simulink simulation-based 

urban rail power supply model for the purpose of comparison. In order to save computing resources, 

we scaled the running time of the simulation model according to the actual working conditions at a 

time ratio of 1:42.85. Therefore, the running time in each episode round was set to be 3.5s until the 

training converges, and verification was still carried out according to the real running time in the RT-

LAB real-time simulation system. The learning curve of each algorithm is shown in Figure 8 and the 

training times are shown in Table 3. 

    

a. DDPG                                                                         b. TD3 
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c. A-TD3                                                                d. Comparison 

Figure 8 Agent learning process 

Table 3 Training time  

Symbol Episodes to  

 converge 

Time of  

convergence (s) 

DDPG 70 1.7e4 

TD3 60 1.47e4 

A-TD3 50 1.16e4 

 

It can be observed that the A-TD3 algorithm can make the system converge to a stable state more 

quickly and the average reward is much higher than the other two algorithms, improving the training 

efficiency and optimization accuracy of the agent. 

4.3 Simulation result analysis 

Based on the analysis in the previous section, a traction network and urban rail transit model was 

established. Since urban rail has the characteristics of uniform power distribution and uniform car 

speed, a permanent magnet traction motor can be selected to simulate the running process of the train 

under the condition of saving computing resources as much as possible (achieved by scaling overall 

traction system power level to a motor power level)[43],[44]. In this simplified simulation, the train 

departed from station A to station B at 0s, reached a maximum speed of 80km/h at 0.67s, where the 

traction motor speed was about 3524.57rpm, and braked and decelerated into station B at 2.68s. A 

“constant acceleration-constant power traction-idling-braking” mode of operation was adopted. The 
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running state curve of train traction and motor traction are shown in Figure 9 and Figure 10, 

respectively. 

    

Figure 9 Train running state                             Figure 10 Motor traction state 

From Figure 10, it can be determined that the highest traction motor startup power demand is 

about 313 kW and the highest braking power demand is about -648.3 kW. Considering that the lithium 

battery is the energy storage element, and it is not suitable to bear large power, its rated output power 

should be taken as the average power load demand power. Combined with the working range of low-

voltage side voltage of DC/DC converter, which is generally 200V-600V, the rated voltage and total 

capacity of the battery were chosen as 495V and 40Ah. Since the ultracapacitor is assembled on the 

train and can only be used by one train, the capacity configuration can be directly adopted. In addition, 

considering the large flow of the trains on the platform and the frequent start of the braking of the 

trains on and off the platform, the capacity of the lithium battery pack on the platform should be 

appropriately increased while maintaining the rated voltage. Therefore, according to the actual 

operating energy range of urban rail transit, the capacity indexes of ultracapacitor and lithium battery 

were selected. Control parameters are shown in Table 4, the HESS capacity in the simulation has been 

reduced according to the actual operation conditions. 

Table 4 HESS simulation control parameters 

Parameter Value Parameter Value 

Working temperature -20°C~45°C Ultracapacitor charge and 

discharge cycle life 

1 million times 
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Rated voltage of lithium 

battery cell 

2.7V Ultracapacitor monomer 

rated voltage 

2.7V 

Rated capacity of lithium 

battery cell 

20Ah Rated capacity of 

ultracapacitor monomer 

3000F 

Number of lithium battery 

in series 

185 Number of ultracapacitor 

in series 

223 

Number of lithium battery 

in parallel 

6 Number of ultracapacitor 

in parallel 

5 

Lithium battery initial 

capacity SOC 

85% Ultracapacitor initial 

capacity SOC 

100% 

Battery safe capacity range   20%~85% Ultracapacitor safe 

capacity range 

15%~100% 

Rated voltage of battery 

module 

495V Rated voltage of 

ultracapacitor module 

594V 

Discharge threshold Udis 1480V Charge threshold Uchar 1520V 

 

(1) Simulation analysis of voltage fluctuations range: A comparison of the DC traction currents 

under different control strategies is shown in Figure 11 and Table 5. 

 

Figure 11 Traction network voltage comparison under different control strategies 

 

Table 5 Traction network voltage under different control strategies 

Energy storing 

device 

Lowest Traction 

Network Voltage (V) 

Traction Network 

Voltage Peak (V) 

Traction Network Voltage 

Fluctuation Range (V) 
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Traction control 

without HESS 
1046 1887 1046~1887 

Braking resistor 

control 
1046 1700 1046~1700 

Rule-based PI 

control 
1422 1537 1422~1537 

MAF 1452 1525 1452~1525 

DDPG 1455 1520 1455~1520 

TD3 1457 1520 1457~1520 

A-TD3 1461 1520 1461~1520 

From Figure 11 and Table 5, it can be observed that when the HESS is not used, the train uses 

electric braking to feedback regenerative energy, resulting in sharp fluctuation of DC traction voltage. 

At the moment of train start, the voltage drops to 1046V, and when the train brakes, the voltage rises 

to 1887V, this indicates that most of the regenerative braking energy is not recycled and is likely to 

cause safety hazards as well. When the braking resistor control is used, the remaining regenerative 

braking energy is consumed by the brake resistor, the traction voltage rises to 1700V, which keeps 

voltage fluctuations within the safe limits, but it causes a lot of energy dissipations. When both the on-

board ultracapacitor and the ground battery is controlled by rule-based PI control, the traction voltage 

drops to 1422V for train start but recovers relatively slow, which cannot meet the rapid need of the 

peak-time traction power. At the breaking stage, the maximum value of the traction voltage is 1537V, 

which is not satisfactory. Therefore, rule-based PI control allocates power demand according to pre-

set principles, and the quantitative control objective is not fundamentally clear, which makes it difficult 

to give full play to the characteristics of HESS. By adopting the traditional filter-based control (such 

as moving average filter (MAF)) in the HESS, the traction power is divided into high-frequency power 

component and low-frequency power component by MAF, which are assigned to the on-board 

ultracapacitor and ground battery respectively. The power compensation is realized for the DC traction 

network voltage under the condition of giving full play to the energy storage characteristics of the 
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ultracapacitor and batter. Although the traction voltage can drop to 1452V, compared with rule-based 

PI control, the MAF method provides a faster response and a traction network voltage up to 1525V. 

For the traditional DDPG algorithm, the convergent voltage stabilizing effect is better than that 

of MAF, and the traction voltage sag and increase range are relatively smaller, stable at 1455-1520V. 

For TD3, the addition of operations such as the prevention of the biased estimation of Q value, the 

delayed update of strategy and the smoothing of update of value function not only speed up the training 

convergence, but also improve the control performance. Finally, the voltage fluctuation of traction 

network is kept within 1457V-1520V. Furthermore, A-TD3 enables the agents to learn knowledge and 

experience that are more suitable for working conditions in complex and changing urban rail power 

supply scenarios through experience replay of priority, so as to better and faster complete knowledge 

interaction between the agents and the environment, which achieves the effect of fast convergence and 

high reward. The DC traction voltage is stabilized at 1461V~1520V, which is the best voltage 

stabilization performance compared with the other four algorithms. 

    

a. e%                                          b. v% 

Figure 12 Energy saving and voltage stabilization effect 

 

Table 6 e% and v% under different control strategies 

Energy storing device e% v% 

Traction control without 

HESS 
0 0 
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Braking resistor control 15.3 27.4 

Rule-based control 34.3 82.4 

MAF 57.6 86.2 

DDPG 58.1 89.3 

TD3 60 89.4 

A-TD3 65.6 89.6 

 

Figure 12 and Table 6 represent the variation of energy saving parameters e% and voltage 

stabilization parameters v%. Compared with case where the HESS is not used, the rule-based filtering 

control algorithm and RL algorithm can realize the recovery and reuse of braking energy well, which 

greatly improves the effect of energy saving and voltage regulation. Compared with the traditional 

filtering algorithm MAF, the RL algorithm has better energy saving and voltage stabilizing effect. The 

A-TD3 performs even better, which the coefficient of energy saving e% is increased by 5.6% and the 

coefficient of voltage stabilizing v% is increased by 0.2% compared with the original TD3 methods. 

(2) Simulation analysis of HESS state variation: Figures. 13 and 14, 15 as well as Table 7 show 

the power and state changes of the HESS, among which the on-board ultracapacitor is mainly used to 

facilitate the fast exchange of permanent magnet traction power while the ground battery is used to 

assist in power supply and stabilize the traction voltage.  

    

a. Psc                                                                                     b. Pbat 

Figure 13 Variation of given power of HESS 
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a. SOCuc                                                                            b. SOCbat 

Figure 14 Variation of SOC  

     

a. Usc                                                                               b. Ubat 

Figure 15 terminal voltage of HESS 

Table 7 HESS power and state variation range 

Energy 

storing device 
Psc(KW) Pbat(KW) SOCuc% SOCbat% Usc(V) Ubat(V) 

Rule-based PI 

control 
-241.2 ~ 146.5 -144.8 ~ 126 47.7% ~ 86.1% 82.45% ~ 83.6% 410.4 ~ 551.1 431.4 ~ 454 

MAF -304.8 ~ 194.8 -115.4 ~ 114 41.6% ~ 79% 82.44% ~ 83.66% 383.2~ 528.2 432.2 ~ 453.7 

DDPG -309.5 ~ 216.1 -98.5 ~ 97.8 27.8% ~ 68.3% 82.97% ~ 84.19% 313.3 ~ 491 434.5 ~ 453.4 

TD3 -310.3 ~ 225.1 -96.3 ~ 91.5 23.7% ~ 64.1% 84.17% ~ 84.4% 289.5 ~ 475.7 435.7 ~ 454.2 

A-TD3 -306.5 ~ 243.4 -96.5 ~ 77.3 16.4% ~ 55% 83.67% ~ 84.86% 240.8 ~ 440.5 437.8 ~ 455.4 

 

It can be observed that the ultracapacitor under the control strategy of the rule-based PI control, 

MAF, or DDPG algorithms are not fully discharged. This is caused by the uneven power allocation of 

the ultracapacitor-battery-traction network, which will make it difficult to achieve a good energy-

saving and voltage-stabilizing effect. In the case of the rule-based PI control, the train braking makes 
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the ultracapacitor SOCuc eventually rise to 86.1%, breaking the safety range [0.15~0.85], SOCuc 

controlled by MAF, DDPG and TD3 also has broken through this range, which will greatly affect the 

life of the capacitor; and in the case of the MAF, DDPG, TD3 algorithms, the battery output power is 

very high, which indicates that the on-board ultracapacitor has not achieved a good energy saving 

effect. Compared with the other four algorithms, the proposed A-TD3 can make the ultracapacitor 

reach a better charge and discharge depth within the safety range and reduce battery output. In 

summary, the proposed control strategy can achieve optimal energy saving, voltage stabilization and 

ultracapacitor overcharge / overdischarge protection while fully completing the permanent magnet 

traction power exchange. 

(3) Simulation analysis of battery cycle lifetime decay: In order to test the adaptive ability of the 

proposed DRL algorithm to cope with the dynamic changes of the environment, the ground battery is 

taken as the main protection object. It can be seen from Section 3.5 that when the initial capacity of 

the battery is 85%, the remaining capacities after 500, 1000, 1500, and 2000 cycles of discharge 

(gradual decay) correspond to 80.75%, 78.2%, 75.65%, and 74.375%, respectively. At the times of 

0.2s~1s, the sudden capacity decline of the battery was simulated, and the corresponding sudden 

discharge currents were 40A, 50A, 65A, and 80A, respectively. The proposed A-TD3 method was 

used to detect the operating conditions of the battery in real time, dynamically allocate the given battery 

power, and respond to the two conditions of gradual battery attenuation and sudden attenuation in time. 

In the simulation, the experiments with 500, 1000, 1500, and 2000 charge-discharge cycles (1 cycle of 

the battery is composed of many charging and discharging processes, that is, the battery is reduced 

from 85% of the initial capacity to 20% of the minimum capacity after multiple discharges and charges, 

and then the system is cut out and charged to the initial capacity process, we regard this process as 1 

cycle work of the battery) in the built urban rail operating environment were conducted and the MAF 

method was used for the purpose of comparison. Different from battery, in order to maximize the 

advantages of the ultracapacitor, we design a cycle process of the on-board ultracapacitor as one start 
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and break of the train between stations. The simulation results are shown in Figure 16 and Figure 17, 

respectively. 

 

Figure 16 Battery discharge state after different discharge cycles 

 

Figure 17 Discharge state of the battery under different sudden decay 

It can be observed from Figure 16 that the total battery capacity SOC will gradually decrease with 

the increase of the number of cycles but the discharge current is still relatively stable. However, the 

sudden discharge current of the battery will have a greater impact on its life. In Figure17, the Agent 

can adaptively adjust the battery output power at the moment of sudden change of battery discharge 

current to reduce the battery discharge rate Cbat and the peak discharge current, thereby reducing the 

impact of instantaneous sudden change on the battery life. The method can timely respond to the 

sudden change of the urban rail power supply environment and has better adaptive ability. 
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(4) Simulation analysis of two-train energy interaction: In real urban rail line, the train has certain 

energy interaction with the adjacent train when stopping at the platform, which aggravates the voltage 

fluctuation of the traction network. In order to study the interaction conditions of multiple trains and 

verify that the proposed method still has a good voltage regulation effect, a down train is added in the 

simulation. Suppose that the battery is located in the platform, assisting in power supply to all the trains 

through the DC traction network. There are on-board ultracapacitor for every individual train, mainly 

used to facilitate the fast exchange of permanent magnet traction power. In this simulation, the train A 

departed from station A to station B at 0s, reached a maximum speed of 80km/h at 0.67s, where the 

traction motor speed was about 3524.57r/min, and braked and decelerated into station B at 2.68s. At 

the same time, the train B accelerated and departed from station B. The running state curves of the two 

trains are shown in Figure 18. 

    

a. Train speed                                             b. Motor speed 

    

c. Accelerated speed                                      d. Motor output power 

Figure 18 The running state curve of train 
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It can be seen from Figure 18 that it is difficult to achieve a reasonable transfer of braking energy 

and starting energy at 2.68s even if two trains act at the same time (train A brakes and train B starts), 

because the braking process is faster than starting and the resulting instantaneous braking power is 

higher, so HESS is required to coordinate the process. After adding HESS and the proposed method, 

the DC voltage fluctuations are shown in Figure 19 and Table 8. 

 

Figure 19 Traction network voltage 

Table 8 Traction network voltage under different control strategies 

Energy storing 

device 

Lowest Traction 

Network Voltage (V) 

Traction Network 

Voltage Peak (V) 

Traction Network Voltage 

Fluctuation Range (V) 

Traction control 

without HESS 
1046 1887 1046~1887 

A-TD3 1456.5 1520 1456.5~1520 

 

It can be seen from Figure 19 and Table 8 that the DC voltage fluctuates sharply without HESS, 

and the time for voltage stabilization is slow. The voltage fluctuation range can be kept between 

1456.5V and 1520V after adding HESS and the proposed ATD3 method, which can effectively 

suppress DC voltage fluctuation caused by the train energy interaction. The state change of HESS is 

shown in Figure 20. 
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Figure 20 State of HESS 

Table 9 HESS power and state variation range 

Energy storage systems Power (KW) Voltage (V) SOC% 

Ultracapacitor A -176.5 ~ 243.4 243 ~ 312.6 16.7% ~ 27.7% 

Ultracapacitor B 0 ~ 199.7 451.5 ~ 594 57.7% ~ 100% 

Ground Battery -92.3 ~ 95.7 434.87 ~ 453.3 83.3% ~ 84.2% 

 

It can be seen from Figure 20 and Table 10 that a reasonable energy allocation among ESS can 

still be achieved during energy interaction period between the two trains with the proposed method, so 

as to prevent the ground battery from taking on excessive power peaks. In addition, the ultracapacitor 

of train A can also be prevented from overcharging and over discharging with the proposed method, 

and their charge states vary from 16.7% to 27.7%, which is kept within the safety range [0.15, 0.85]. 
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4.4 RT-LAB real-time simulation 

To verify the effectiveness of the proposed control strategy, the RT-LAB semi-physical real-time 

simulation system was used, as shown in Figure 21. The DSP including the learned agents performs 

the control algorithm part while the RT-LAB mainly simulate the permanent magnet traction system 

with the HESS. 

 

Figure 21 RT-LAB real-time simulation system 

The simulation was based on the reference data from a real-world rail network. The train departed 

from station A with a starting acceleration of 1.44m/s2, reached a maximum speed of 80km/h after 

acceleration, then ran at a constant speed, and decelerated at a braking acceleration of 1.65m/s2. and 

finally stopped at Station B. The traction motor speed is shown in Figure 22. Output power of the 

HESS is shown in Figure 23. 

    

Figure 22 Train operating parameters                 Figure 23 Variations of the HESS power 

The controller in the HESS implemented the power allocation through the real-time information 

of the train running state. At the train traction/braking moment, a high frequency power given value 
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was assigned to increase the output power of the ultracapacitor and therefore realize the energy 

exchange between the permanent magnet traction and the ultracapacitor, undertaking the task of high 

frequency power requirement at peak time. At the same time, the battery at the platform undertook 

low-frequency power to smooth the fluctuation of the traction network. 

 

Figure 24 Voltage variation of DC traction network 

Figure 24 shows the voltage variation of DC traction network. When the train accelerates at 0s, 

the traction voltage decreases to about 1453.6V, then rises rapidly and returns to stability. At this point, 

the output of the HESS realizes "valley filling". The train brakes and decelerates, and the HESS cuts 

off the sudden "peak" by recovering energy, making the voltage stable at about 1520.8V, which shows 

excellent voltage stabilization effect. Eventually, the regenerative energy recovery is realized while 

the DC voltage fluctuation is effectively stabilized. 

   

Figure 25 Energy saving and voltage stabilization effect          Figure 26 Changes of HESS SOC  

Table 10 e%, v% and SOC changes 
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Energy storing 

device 
e% v% SOCuc% SOCbat% 

A-TD3 62.5 88.7 19.1 ~ 61.9 83.6 ~ 84.7 

 

Figure 25 shows the variation of coefficient of energy saving e% and coefficient of voltage 

stabilizing v%, and Table 10 shows the e%, v% rate and SOC. The initial SOC of the ultracapacitor is 

100%, and the initial SOC of the battery is 85%. It can be observed that the e% under the proposed 

control strategy can reach up to 62.5%, and the v% reaches 88.7%, with excellent energy-saving and 

voltage stabilization effects. As can be seen from Figure 26, under the proposed control strategy, the 

adaptive working condition change can achieve more accurate online dynamic power distribution of 

the HESS and effectively prevent the overcharge and overdischarge of the ultracapacitor under the 

traction acceleration and braking deceleration of the train. During discharge, the SOCuc of 

ultracapacitor charge state drops to a minimum of 19.1% and rises to a maximum of 61.9% during 

charging, so that the SOCuc is effectively kept within the safe range [0.15, 0.85], which effectively 

prolongs the life of on-board ultracapacitor. 

The experimental results show that under the proposed control strategy, the advantages of each 

energy storage element can be fully utilized to improve the effect of energy saving and voltage 

stabilization. In the same power supply section, the coordinated control and dynamic power 

distribution among the HESS are realized according to the DRL on-line sequential decision-making 

method, which can effectively stabilize the DC traction voltage fluctuations and protect the on-board 

ultracapacitor. 

 

5. Conclusions 

In this study, considering the severe voltage fluctuations of traction networks and unbalanced 

charge-discharge behavior between each ESSs caused by starting and braking of urban rail trains, a 

HESS power dynamic allocation strategy has been proposed, which is based on annealing bias - 
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priority experience replay with double-delay depth deterministic policy gradient algorithm (A-TD3). 

The main conclusions can be drawn as follows: 

(1) By training the experience buffer in TD3 with priority probabilistic experience replay, in 

conjunction with the proposed off-line training - online optimization - online sequential decision 

making method, the training efficiency and the correctness of the agents can be greatly improved. 

(2) Compared with the traditional filtering algorithms and DRL algorithms, the proposed control 

strategy can effectively stabilize the DC traction voltage fluctuation, make the "peak-shaving and 

valley-filling" effect more significant, and balance the utilization of each ESS, which effectively 

prevents overcharge and overdischarge of ultracapacitor and battery, taking on the excessive power 

demands. 

(3) Due to paper length and time, we have conducted a case analysis based on the typical 

interaction conditions of two trains. The simulation shows that the proposed method is helpful for the 

energy interaction process of dual trains, such as realizing DC voltage stability and HESS protection. 

However, the energy interaction and scheduling of multiple trains is a relatively complex problem, 

which often needs to be combined with the optimization of the operating schedule, energy scheduling, 

the full life cycle calculation of energy storage, and even the economic cost of equipment, etc. In the 

future, we will combine more complex operating conditions with energy scheduling and control 

optimization. 

(4) The real-time simulation experiments on RT-LAB demonstrate that the proposed method is 

suitable for real-time urban rail applications, and the results show that coefficient of energy saving 

reaches 62.5% and the coefficient of voltage stabilizing reaches 88.7%, which realizes the overall 

optimal dynamic performance and economic benefits. 

(5) A limitation of the current study is the use of the semi-physical simulation platform, where 

the modeling error could affect the system performance when implementing in real world system. The 

future work will focus on the application to metro projects. 
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