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Quantifying Mixing in Sewer Networks for
Source Localization

Fred Sonnenwald, Ph.D.1; Joe Shuttleworth2; Olivia Bailey, Ph.D., Dr.Techn.3; Margaret Williams, CEng.4;

James Frankland5; Becky Rhead6; Ole Mark, Ph.D.7; Matthew J. Wade, Ph.D.8; and Ian Guymer, Ph.D., CEng.9

Abstract: There has been a recent increase of interest in sewer network water quality, both for pollutants and wastewater epidemiology.

Of particular interest is the ability to perform cost-effective small-scale monitoring to understand the sewer network and perform source

localization (the process of identifying the sources of materials of interest within the network), enabling prioritization of combined sewer

overflow (CSO) interventions and targeted response to the detection of infectious diseases. Rhodamine WT fluorescent dye tracing was

carried out in the combined sewer networks of four UK cities, for which network geometries were available. Over 100 dye concentration

profiles were recorded, from which discharge, travel time (velocity), and dispersion were quantified. A simplified hydraulic and water quality

(conservative solute transport) modeling approach was used to investigate dispersion further. A theoretical method for calculating dispersion

over a reach with nonuniform properties was derived and used with the models and recorded data to develop a method for estimating the

dispersion coefficient in sewers. Novel simultaneous injections into multiple manholes within one sewer network were conducted. Modeling

of these injections validated the modeling approach and explained the measured concentration profiles, demonstrating both the potential of

hydraulic and solute transport modeling and the new dispersion coefficient predictor for source localization. Such modeling can be used to

develop sewer network “fingerprints” and source location probability plots based on residence time distribution (RTD) theory to maximize

information from limited water quality monitoring. This will aid managers and operators in identifying potential intermittent sources of

material within the network. DOI: 10.1061/JOEEDU.EEENG-7134. This work is made available under the terms of the Creative Commons

Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Water quality; Sewers; Mixing; Tracing; Solute transport; Longitudinal dispersion; Pollutants; Source localization.

Introduction

In the UK, over 400,000 combined sewer overflow (CSO) spill

events were reported in 2020 (Environment Agency 2022). There

has been significant public interest in storm overflows, and the
Environment Act 2021 (UK Parliament 2021) obliges UK water

companies to reduce storm overflows and their impacts. In the
United States, the US EPA reports a $48 billion investment is
needed for CSO correction, 18% of the total investment needed

to meet federal water quality objectives (US EPA 2016). Similar
issues exist worldwide (e.g., Botturi et al. 2021; Petrie 2021).

Simultaneously, several recent studies have reported the presence
of SARS-CoV-2 (COVID-19) within sewage (e.g., Mallapaty 2020;
Medema et al. 2020) and the UK Government’s Environmental

Monitoring for Health Protection (EMHP) program, led by the
UK Health Security Agency, demonstrated government willingness

to investigate the value of wastewater monitoring to track COVID-
19 through sewer networks (UK Health Security Agency 2022).
Both cases require an understanding of where the material has

originated and its temporospatial variation throughout the sewer
network. For CSOs this is to evaluate and prioritize interventions,

and for public health monitoring to localize outbreaks. Thus, there
is now a collective and significant interest in sewer network water
quality and the information that can be obtained from wastewaters

(Scassa et al. 2022). This interest is only expected to grow (Manuel
et al. 2022).

The traditional and overarching priority for water companies is

water quantity and ensuring sufficient network capacity to transport
sewage to downstream treatment. For this, water companies typi-
cally use hydraulic sewer models such as InfoWorks ICM, MIKE

URBAN+, or SWMM (Obropta and Kardos 2007), which are
calibrated/validated using in situ flow monitoring (Titterington

et al. 2017). In contrast to hydraulic models, where the key concern
is how much water there is at any point in time, water quality mod-
els are more concerned with where that water originates from and
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what it contains. Although hydraulic sewer model software can
evaluate water quality (e.g., Garsdal et al. 1995; Mark 2005), sewer
models are rarely configured or calibrated to do so. When sewer
network water quality models are used, they are calibrated for spe-
cific sections of interest (e.g., Magnusson et al. 1998; Balmforth
et al. 2002), and in practice tend to perform poorly (Jia et al. 2021).

Many water quality models are physics-based (Jia et al. 2021)
and rely on a description of solute transport, such as the advection-
dispersion equation (ADE), utilized in conjunction with the hy-
draulic portion of a network model. In a 1-dimensional (1D) sewer
network the ADE is

∂c

∂t
þU

∂c

∂x
¼ Dx

∂2c

∂x2
ð1Þ

where c = concentration; t = time; U = mean longitudinal velocity;
x = longitudinal position; and Dx = longitudinal dispersion coef-
ficient (Fischer et al. 1979). While U is provided by the solved
hydraulics, choice of Dx is problematic and poorly quantified in
sewer networks. MIKE URBAN+ suggests a relationship between
dispersion and velocity in the form of Dx ¼ ajUjb, where a and b

are user-specified coefficients, typically taking values of 2 and 0
respectively, for a constant dispersion of 2 m2=s (Bouteligier
et al. 2005; DHI A/S 2020; Zehnder 2021). InfoWorks ICM
suggests Dx ¼ au�B, where a is a user-specified constant with a
default value of 0, u� is shear velocity, and B is channel breadth,
for dispersion of 0 m2=s, i.e., no dispersion (Innovyze Inc. 2022).
Previous studies (e.g., Magnusson et al. 1998; Bouteligier et al.
2005; Rieckermann et al. 2005) have shown that neither is appro-
priate and dispersion must be correctly accounted for.

In normal dry weather flow conditions where sewer pipes act
as channels, Rieckermann et al. (2005) found the magnitude of
dispersion within sewers tended to vary little between networks,
with most sewers having Dx ≈ 0.2 m2=s. Sokáč and Velísková
(2016) report similar values. Dispersion in sewers in surcharged
conditions may be an order of magnitude higher than in dry weather
flow (Boxall et al. 2003) where hydraulic structures such as man-
holes contribute significantly to dispersion (Sonnenwald et al.
2021). Dispersion in sewers shows the expected scaling with
velocity (Fischer et al. 1979; Rieckermann et al. 2005; Sokáč and
Velísková 2021).

Rieckermann et al. (2005) identified several predictors for Dx

in open-channel sewer flow, falling into two main categories:
dispersion in irregular channels (e.g., Fischer 1975) and dispersion
in a partially full pipe (e.g., Sooky 1969). The predictors identified
were largely theoretical but modified by assumptions of flow
conditions, typically containing terms for width, friction, velocity,
and/or shear velocity (friction and shear velocity being difficult to
obtain in practice). Although they found that the majority of pre-
dicted dispersion coefficients were within one order of magnitude
of the measured value, Rieckermann et al. (2005) recommended
new measurements when accuracy was required.

Fluorescent dye tracing has a wide variety of applications
(Swarnkar et al. 2022), including model validation (e.g., Garsdal
et al. 1995; Magnusson et al. 1998), and particularly is often used
in determining Dx (e.g., Guymer and O’Brien 2000; Boxall et al.
2003; Istók and Kristóf 2014). Most fluorescent dyes are largely
conservative, have low limits of detection, and can be continuously
monitored (Wilson et al. 1984). To determine Dx, the fluorescent
dye is injected at an upstream location, concentrations are moni-
tored at one or more downstream locations that may be up to tens
of kilometers apart, and Dx is calculated from the increase in the
variance of the concentration distributions, or other methods such
as optimization (Fischer et al. 1979; Guymer and O’Brien 2000).

Fluorescent dye can be used to determine discharge by assuming
conservation of mass (Fischer et al. 1979; Turner Designs Inc.
2022b) and to calibrate flow meters (e.g., Stonehouse et al. 2001;
Lepot et al. 2014). Dye tracing in sewer networks can be simulta-
neously used to generate model validation data, confirm net-
work geometry, estimate discharge, and determine the dispersion
coefficient.

Source localization is the concept of identifying the sources of
materials (chemicals, viruses, pollutants, etc.) monitored at a down-
stream location. The ideal approach, although prohibitively expen-
sive, would be the placement of sensors at every manhole in a sewer
network. Several studies (e.g., Wei et al. 2019; Bartos and Kerkez
2021; Chachuła et al. 2022) have investigated how to intelligently
place as few as possible sensors within a network (be it a sewer,
river, or water distribution network) for maximum coverage using
computational methods. For complete network coverage and locali-
zation, the studies report that on the order of 30%–50% of nodes
must be monitored, and there is a clear link between increased sen-
sor data and increased prediction accuracy (Adedoja et al. 2018). In
practice, there is some consideration to be made of the costs of ex-
tensive sensor networks, and the health and safety issues associated
with the installation and maintenance of these sensors, particularly
in sewer networks. Intending to rapidly identify a source of virus
within a sewer network, Nourinejad et al. (2021) present a hybrid
sensor and manual sampling approach to optimally place a small
number of sensors (a few percent) that minimizes the need for
manual sampling.

There is a clear reliance of source localization on water quality
and, hence, solute transport modeling. Piazza et al. (2022) found
that correctly accounting for dispersion significantly affected opti-
mal sensor placement. Bartos and Kerkez (2021) demonstrate this
link explicitly, using a finite difference solution to Eq. (1) in their
work. Both Grbčić et al. (2021) and Zehnder (2021) used hydraulic
and solute transport model outputs to train machine learning
models to identify pollutant sources. These approaches tackle the
challenges of unknown injection volume, type, and duration, but
require output from accurate modeling of the system/flows. These
studies highlight the importance of understanding the spread
(dispersion) of material, but despite the reliance of source locali-
zation on solute transport modeling, most studies give little con-
sideration to the choice of dispersion coefficient. Further, there
is a need for data to validate sewer network water quality models
(Jia et al. 2021). The aims and objectives of this paper are there-
fore to:
• collect and analyze fluorescent dye traces in sewer networks and

interpret this data to determine discharge, travel time (velocity),
and dispersion coefficient;

• compare these results against predictors of dispersion coeffi-
cient, providing a recommendation for predicting dispersion
coefficient in sewers; and

• employ solute transport modeling of the traced sewer networks
to investigate source localization and suggest what information
may be obtainable with limited monitoring.

Field Work

A fieldwork campaign, conducting fluorescent dye tracing in sewer
networks, was carried out in 2021 and 2022 over a total of 23 days
in four UK cities. The cities had between 3 and 8 measurement
locations and the sites studied were between 3.6 and 6.3 km in
length. The monitored sections of Cities 1 to 3 were linear with
injections at the top of the network. While City 4 had measurements
along a linear path, it also had the most complex set of experiments

© ASCE 04023019-2 J. Environ. Eng.
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with injections on four different branches of the network. Across all
four cities, there was a range of pipe diameters, between 225 and

2,450 mm, with circular, oval, and ‘egg-shaped’ concrete cross-

sections (Innovyze Inc. 2022). An overview of the Cities is given

in Table 1 and long sections are shown in Fig. 1. The geometry of

these networks was available from validated InfoWorks hydrody-

namic sewer models.
The fluorescent dye tracing was carried out using up to eight

Turner Designs Cyclops-7F submersible fluorometers (Turner

Designs Inc., San Jose, California) attached to Precision Measure-

ment Engineering submersible Cyclops-7 loggers (Precision Meas-

urement Engineering, Inc., Vista, California), configured to log at

5-s intervals. Between 1 and 50 mL of dye, diluted into one litre of

distilled water, was poured into the dry weather channel of an up-

stream manhole as a pulse injection. Dye volume was increased

with increased distance and dilution to the furthest monitoring

location. The dye used was Rhodamine WT (National Center for

Biotechnology Information 2022) in a 20% solution obtained from

Town End (Leeds) plc. (Leeds, UK). A temperature-dependent flu-

orometer calibration (Smart and Laidlaw 1977) was carried out,

described in Appendix S1 and Fig. S1.
Initial fixed installation of the fluorometers to the side wall

of the sewer often resulted in excessive ragging or the probe not

being fully submerged. Upon switching to securing the probes

by chain and laying them in the main channel, to allow more free-

dom of movement, ragging almost completely ceased. In instances

where the water depth was insufficient, a small temporary weir was
installed to submerge the probe further. Two fluorometers were in-
stalled in the furthest downstreammanhole (Manhole 1) of City 3 to
check on instrument installation (side wall fixture versus chained)
and the robustness of the measurement system. More detailed guid-
ance on conducting dye tracing in sewers is provided by Turner
Designs Inc. (2022a).

A unique aspect of the fieldwork is the multiple simultaneous
dye injections carried out on the main leg and three side branches of
the City 4 sewer network. This experiment was carried out twice,
once with a single injection and once with a double injection at a
15-minute interval. A schematic of this network is provided in
Fig. 2, showing the four injection and four monitoring manhole
locations.

Simultaneous in situ flow monitoring was ongoing in City 1 at
three of the manholes using Detectronic MSFN S2.5T area velocity
flow meters (Detectronic Limited, Colne, UK). These recorded data
at two-minute intervals. A 10-minute moving average was applied
to the data to smooth out rapid oscillations. Matching discharge for
a trace was calculated as the mean discharge from the start to the
end of the trace.

Analysis Methods

The analyses undertaken in this paper, described in this section, are
as follows:

Table 1. Overview of study sewer networks

City
Number of monitoring

locations
Length
(km)

Primary conduit
shape

Pipe diameter (mm) Slope (1 in X)
Mean discharge

(L=s)Min/median/max Min/median/max

1 8 3.6 Circular 300 825 1,200 826 69 7 56
2 3 6.2 Egg 225 1,000 2,450 3,000 311 11 465
3 3 6.3 Circular 225 525 1,400 2,700 148 11 188
4 4 3.1 Circular 225 885 1,650 2,500 112 5 103

Source: Reproduced from Guymer et al. (2022), under Attribution 4.0 International (CC-BY-4.0) license (https://creativecommons.org/licenses/by/4.0/).

Fig. 1. City long sections with 50:1 vertical exaggeration. Changes in conduit cross section are drawn above the manhole where they change, scaled

relative to each other. [Reproduced from Guymer et al. (2022), under Attribution 4.0 International (CC-BY-4.0) license (https://creativecommons.org

/licenses/by/4.0/)].
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1. Process the concentration data recorded during the fluores-
cent dye tracing fieldwork to calculate discharge, travel time
(velocity), and dispersion coefficient.

2. Use the calculated discharge, in addition to network geometry,
as the input to a simplified hydraulic model to estimate conduit
characteristics (flow depth, hydraulic radius, etc.) at the time
of the dye trace for each conduit between each upstream and
downstream measurement location.

3. Convert the individual conduit characteristics to single reach

unified characteristics suitable for comparison to the measured
dispersion coefficients and perform a regression analysis to
identify a dispersion coefficient predictor.

4. Investigate the multiple simultaneous injections and source
localization using simplified hydraulic and solute transport
modeling.

Concentration Data Processing

All recorded concentration profiles have been preprocessed. Times
were corrected for logger clock drift and the data were temperature
corrected. Visual inspection was used to identify background
concentrations, which were subtracted, and then calibration was
applied. A moving average was temporarily applied to reduce the
impact of noise and the times of 1% of the peak concentration of the
smoothed data were used to identify the start and end of the trace
and trim the data record. In some instances, the start or end of the
trace was manually defined due to poor quality data or traces over-
lapping due to injections too close together in time. The traces used
for analysis were those judged to be of good quality, exhibiting
low noise and a consistent scale with other traces from the same
injection. Discharge from the recorded dye traces was calculated
by equating the mass passing the fluorometer with the known mass
of injected dye assuming perfect mass recovery. i.e., Q ¼ vo=
∫ cðx; tÞdt, where v0 is the volume of injected neat dye in ppb:m3

(Fischer et al. 1979).
To determine the travel time (velocity) and dispersion coeffi-

cient, pairs of upstream and downstream traces were identified for
each injection, and then optimization of the routing solution to the
1D ADE was applied. The routing solution is given by

cðx2; tÞ ¼

Z
∞

γ¼−∞

cðx1; γÞUffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDx t̄

p exp

�
−
U2ðt̄ − tþ γÞ2

4Dx t̄

�
dγ ð2Þ

where cðx1; tÞ and cðx2; tÞ are the temporal concentration profiles
upstream and downstream at locations x1 and x2, t̄ = travel time
(the difference in centroids between the upstream and downstream
profile), and γ = integration variable representing time (Fischer
et al. 1979). By substituting an upstream concentration profile into
Eq. (2), least-squares optimization may be performed comparing
measured and predicted downstream concentration profiles to

obtain the best-fit U and Dx (Guymer and O’Brien 2000), with
t̄ ¼ ðx2 − x1Þ=U. This was achieved using the MATLAB lsqcurve-

fit function (MathWorks Inc. 2022). The data were mass-balanced
before optimization to comply with the implicit mass balance in
Eq. (2). Although it is possible to calculate t̄, U, and Dx between
the injection and the most upstream measurement location, this
has not been carried out due to uncertainties regarding the manual
injection and very low discharges at the upper reaches of the
network.

Similarity (goodness-of-fit) between predicted and measured
values has been quantified using the R2

t function:

R2
t ¼ 1−

P
N
i¼1

ðbyi − yiÞ
2

P
N
i¼1

y2i
ð3Þ

where ŷ and y = predicted and measured values respectively
(Young et al. 1980). An R2

t value of 1.0 indicates perfect agreement,
while a negative value indicates no agreement. R2

t provides a robust
comparison of measured and predicted concentration profiles
(Sonnenwald et al. 2013).

Simplified Hydraulic and Solute Transport Model

To evaluate the dispersion coefficient while considering variations
in pipe diameter and discharge, and to investigate source localiza-
tion, a hydraulic and solute transport sewer network model was
required that allows the prediction of conduit hydraulics and down-
stream concentration profiles. While the Saint-Venant equations
typically used in commercial hydrodynamic modeling packages
(e.g., Innovyze Inc. 2022) can be solved quickly (e.g., Li et al.
2022), in this case, the additional complexity introduced by re-
quirements for a continuous geometry and the desire for rapid
model execution for exploration and optimization led instead to the
development of a simplified many-to-one network modeling ap-
proach. The simplified hydraulic and solute transport model utilizes
Manning’s equation to estimate pipe velocities from discharge and
Eq. (2) to model solute transport. Thus, the model only requires
network geometry (pipe lengths and connections), flow rates,
dispersion coefficients, and upstream concentrations. The hydraulic
portion of the model calculates the velocity for each pipe, then
the solute transport portion uses that velocity and a dispersion co-
efficient to route upstream to downstream concentrations, where
downstream concentrations are diluted according to the ratio of
flows calculated by the hydraulic portion. The model is described
in more detail in Appendix S2.

Flow rates were taken where possible from the dye tracing
results at upstream and downstream manholes. Where discharges
calculated from tracing were unavailable (e.g., intermediate man-
holes), scaled mean daytime (9 a.m. to 6 p.m.) discharges from the
available InfoWorks hydrodynamic sewer models were used.

Fig. 2. The branched network of City 4 used for multiple simultaneous injections, slopes are given in italics. The grayed-out section was not modeled.

© ASCE 04023019-4 J. Environ. Eng.
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Reach Unified Parameters

Longitudinal dispersion is often expressed as functions of param-
eters such as velocity, pipe diameter, surface width, slope, hydraulic
radius, and flow depth (Fischer et al. 1979). The complexity of
associating measured dispersion coefficients in sewers to these
parameters is increased due to nonuniformity throughout the meas-
urement reach. Rieckermann et al. (2005) suggested that length-
weighted parameters could be used. Models of randomized reaches
consisting of multiple pipes in series were created using the
simplified modeling approach outlined in the previous section with
a basic predictor of dispersion. Velocity and dispersion coefficient
for the entire reach were found using least-squares optimization of
Eq. (2). Although reach mean velocity calculated according to
travel time weighting the velocity in each pipe (U ¼

P
N
i¼1

Ui t̄i=P
N
i¼1

t̄i) was found to agree with the optimized velocity, neither
length nor travel time weighted dispersion agreed with the opti-
mized dispersion coefficient. Similarly, neither weighting approach
described the other parameters, e.g., flow depth. As neither weight-
ing approach can be used to relate dispersion coefficients over
multiple pipes, as measured experimentally, to known network
geometry, a new reach unified approach has been developed.

Eq. (2) may be substituted into itself to reveal that the equivalent
unified longitudinal dispersion coefficient of a reach consisting of
N multiple subreaches is given by:

Dx ¼
ð
P

N
i¼1

Ui t̄iÞ
2
P

N
i¼1

ðDx;i t̄i
Q

N
j¼1;j≠i U

2
jÞ

ð
Q

N
i¼1

U2
i Þð

P
N
i¼1

t̄iÞ
3

ð4Þ

Dx for a whole reach found optimizing Eq. (2) is compared to
average sub-reach input Dx calculated using length weighting,
travel time weighting, and Eq. (4) in Fig. 3. Both travel time
weighting and Eq. (4) are improvements upon length weighted
averaging, with reach unified Dx calculated using Eq. (4) showing
perfect agreement with optimized Dx.

Assuming that longitudinal dispersion is a function of velocity
(Taylor 1954), then Dx ¼ kU, where k is a constant, may be sub-
stituted along with the travel-time weighted velocity into Eq. (4) to
obtain a relationship for reach unified parameters:

k ¼ U

P
N
i¼1

ki t̄i=UiP
N
i¼1

t̄i
ð5Þ

Eq. (5) is the equivalent of Eq. (4) for other parameters such
as hydraulic radius. It is an alternative to length or travel time

weighting, describing a reach unified value between two locations
representative of several conduits with varying characteristics.
When reach unified parameters are used predictively, it is reach
unified Dx that is predicted, enabling the comparison between
reaches with nonuniform characteristics and experimentally deter-
mined dispersion coefficients. This comparison has been carried
out using a log-transformed multiple linear regression analysis
(Gelman and Hill 2006) of reach unified parameters and experi-
mental dispersion coefficient fit through the origin. This was
achieved using the MATLAB regress function (MathWorks Inc.
2022).

Results and Discussion

Of 191 dye traces recorded from 42 injections, 95 were suitable for
analysis, providing the largest single data set of dye traces in sewers
available, to date. 31 traces were off-scale due to being too close to
the injection location and thus unusable, while the remaining traces
were of insufficient quality. Example good quality results from
injections in each City are shown in Fig. 4, with low noise and
decreasing peaks downstream. Every monitoring location is
represented except for the furthest upstream location in City 1
(Manhole 8), which never recorded a good trace. As evidenced
by that absence, not all instruments recorded a good signal for
every injection, and as a result, some injections are missing some
sites. The additional noise at Manhole 3 of City 2 is typical of flow
aeration affecting the measurement. In general, the profiles are
Gaussian in shape, providing evidence of full cross-sectional mix-
ing and sufficient time to reach equilibrium. The longer tails ob-
served in City 2 at all three monitoring manholes are consistent
with a very low discharge at the injection manhole stretching
the input profile. In City 1, a storage tank between Manholes 4
and 3 combined with clock sync issues and very short pipe lengths
has resulted in uncertainties in first arrival time at Manholes 3
and 2. The full set of recorded data are available in Guymer et al.
(2022).

Discharge

Fig. 5 shows the distribution of calculated discharges, which almost
always consistently increased downstream. Variability between re-
peated injections scales with discharge, explained by fluctuations in
network use/flow conditions. The calculated discharge varies sig-
nificantly in City 1 as the result of rainfall on one of the fieldwork
days. The discharges observed are typical of moderate-sized catch-
ments on the order of 10,000 thousand homes (Lawson et al. 2018).
Out of four injections with good quality replicated measurements
where two fluorometers were installed in Manhole 1 of City 3, the
percentage difference in discharge between the two instruments
ranged between 2% and 14%, with a mean of 8%. If the traces that
show possible indicators of ragging are ignored, this drops to less
than 5%, reflecting limitations of the measurement system depend-
ing on instrument location.

Discharges calculated from the dye tracing are compared to the
matching in-situ flow meter measurements in Fig. 6. Approxi-
mately half of the flow meter measurements fall within the 8% error
boundary of the dye calculated discharge previously suggested.
Some of this variability is possibly due to imperfect dye injections.
During rainfall, the flow meter at Manhole 1 reported less flow than
at the upstream Manhole 3. Some error is expected in the flow me-
ter readings as a result of a long installation period (months) where
at least one instrument was replaced due to corrosion. Area-velocity
flow meters are also sensitive to the build-up of sediment, surface
level fluctuations, and the assumed area-velocity relationship.

Fig. 3. Length weighted, travel time weighted, and reach unified

dispersion coefficients compared to reach optimized dispersion coeffi-

cients. Line is line of equality.
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The higher calculated discharges during rainfall may in part
be the result of higher velocities encouraging the resuspension

of previously settled sediments, increasing the effects of sorption

and turbidity (Blaen et al. 2017). Under normal conditions, while

sorption is possible due to the presence of, e.g., sediments, error in
estimated hydraulic parameters in channels tends to be on the order

of 1% as dye degradation occurs much less rapidly than the

length of experiments (Runkel 2015; Turner Designs Inc. 2022b).

(a)

(b)

(c)

(d)

Fig. 4. Recorded traces from an injection at the most upstream location of (a) City 1; (b) City 2; (c) City 3; and (d) City 4, and manhole distances from

the injection. Manhole 1 is the furthest downstream.

(a) (b) (c) (d)

Fig. 5. Box plots of calculated discharges in (a) City 1; (b) City 2; (c) City 3; and (d) City 4. Manhole 1 is the furthest downstream.
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Similarly, if operating to design standards, dry weather infiltration
and inflow should be on the order 50 times less than measured
flows (WRC 2012) and, in general, additional flow should dilute
the dye, resulting in a correct higher measurement of discharge.
Unfortunately, it was not possible to check on the effects of
sorption, etc., during this study due to time and field constraints.
Neither sorption, mass-recovery/degradation, nor infiltration/
inflow should impact estimates of travel time or dispersion as it
can reasonably be assumed, in line with the frozen cloud approxi-
mation (Fischer et al. 1979), that these processes occur much less
rapidly than flow past the fluorometer.

Simplified Model Predicted Travel Times

Fig. 7 compares calculated travel times with travel time predicted
using the simplified modeling based on calculated discharge. Half
of the predicted travel times fall within 20% of the measured travel
time. Relative error increases as reaches get shorter, suggesting a
consistent over-estimate in travel time regardless of reach length.
For reaches over 100 m, the mean error in predicted travel time
is 18%. This error may be due to the assumptions of steady-state
and treating each pipe individually, in addition to imperfect net-
work knowledge, e.g., limited estimates of roughness. The simpli-
fied model predicts travel time reasonably well with R2

t ¼ 0.971,

suggesting the known network geometry reflects the buried infra-

structure and that the model represents the hydraulics. Hence, the

use of the simplified model is considered suitable as a tool for

further investigation of dispersion within sewer networks.

Longitudinal Dispersion in Sewers

Dispersion coefficient and mean velocity were optimized from 44

trace pairs using Eq. (2) (shown in Fig. S2). Mean R2
t was 0.994

with a standard deviation of 0.007, indicating that all dispersion

coefficients describe the data well, confirming the applicability

of a Gaussian transfer function description of mixing in sewers.

Velocities ranged from 0.25 to 1.70 m=s, with a mean of 0.87 m=s.

About one-quarter of these velocities fall below the 0.75 m=s self-

cleansing velocity suggested by WRC (2012). The longitudinal

dispersion coefficient varied between 0.01 and 1.72 m2=s with a

mean of 0.53 m2=s. The spread of the optimized experimental

dispersion coefficients is shown in Fig. 8.
The City 3 injections with two fluorometers in Manhole 1 have

been used to examine variability in the optimized dispersion

coefficient. For the three replicated traces, the mean percentage

difference in velocity was less than 1% and the mean percentage

difference in dispersion coefficient ranged from 6% to 44% with a

mean of 17%. In controlled laboratory pipe experiments, the per-

centage difference in dispersion coefficient between repeats ranged

from less than 1% to 20%, with a mean of 5%, increasing with

Reynolds number (Hart et al. 2021). Considering this, and that a

20% difference in Dx does not significantly impact a downstream

prediction other than a small change in peak concentration (R2
t

changes less than 1%), the observed variability is expected.
The results obtained suggest dispersion increases with velocity,

but that it is not solely a function of velocity. Pipe diameter, surface

width, slope, hydraulic radius, and flow depth have been obtained

for each pipe between the upstream and downstream measurement

location using the simplified modeling and combined into a single

reach unified value using Eq. (5). Of the parameters,Dx=U showed

the strongest correlation with flow depth, hydraulic radius, and

surface width. Performing regression analysis using the reach uni-

fied parameters, most of the possible predictors that were found

performed equally well due to scatter in the data.

Fig. 6. Discharges calculated from dye tracing compared to metered

discharges in City 1, R2
t ¼ 0.873. Line is a line of equality.

Fig. 7. Simplified model predicted travel times compared to travel

times calculated from dye tracing, R2
t ¼ 0.971. Line is a line of

equality.

Fig. 8. Comparison of dispersion coefficients predicted using Eq. (6)

and reach unified parameters to experimental longitudinal dispersion

coefficients optimized from dye tracing using Eq. (2), R2
t ¼ 0.610.

Line is line of equality.
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Of the theoretical predictors of Dx identified by Rieckermann
et al. (2005), one of the best predictions was given by Sooky
(1969), who performed a triple integral analysis of dispersion in
an open channel with a circular segment cross section (a partially
full pipe), assuming a vertical logarithmic velocity profile varying
across the width of the pipe. They found Dx to be a function of
hydraulic radius, channel width, and shear velocity. While this
equation underpredicts experimental Dx here by approximately a
factor of 10 (similar was also observed by Rieckermann et al.
2005), it can be modified and fit to the data to give:

Dx ¼ 0.1
UW2

R
ð6Þ

whereW is water surface width. This relationship maintains dimen-
sionality and performs as well as any of the other predictors found
using regression. Eq. (6) is not applicable for a pipe flowing full.

Fig. 8 shows the optimized experimental dispersion coefficients
from the current study compared to predictions made using Eq. (6).
Experimental dispersion values from Rieckermann et al. (2005) are
also compared as a validation case, albeit using length weighted
parameters in the absence of detailed network geometry. It is
apparent that in the current study a larger range of dispersion co-
efficients has been found than that reported by Rieckermann et al.
(2005), although there is a similar cluster of lower dispersion
coefficients. Dispersion coefficient also tends to cluster by City,
both the experimental and predicted values, suggesting some self-
similarity in flow conditions and conduit geometry.

The tight clustering of dispersion coefficients for City 3 might
be attributable to smaller more consistent pipe diameters, whereas
the remaining cities had larger and more variability in pipe
diameters. In City 1, the outliers with high optimized Dx and lower

predicted Dx are from the very short reaches where there was some
uncertainty in first arrival and hence travel time. Similarity between
the predicted dispersion coefficients in each City is heavily influ-
enced by similar velocities and hydraulic radiuses from repeat tests.

Rieckermann et al. (2005) suggested high dispersion values re-
present underperforming sewers. Some reaches have pipes with
negative slopes and Sokáč and Velísková (2016) suggest these
cause a backwater dead zone that would enhance dispersion. The
reasonable performance of Eq. (6), showing a positive correlation
between predicted and measured dispersion coefficient (R2

t ¼
0.610), and its correct dimensionality, recommends it as a predictor
ofDx in sewers. Combined with its simplicity, this has the potential
to encourage its adoption when performing sewer network water
quality modeling and improve those source localization methods
relying on modeling results.

Multiple Simultaneous Injections

A simplified hydraulic and solute transport model (as described
previously) of City 4 (Fig. 2) has been constructed to investigate
the multiple simultaneous injections undertaken. The model covers
every conduit between Manhole 4 and Manhole 1 as well as the
conduits in the additional injection side branches. Discharges at the
monitoring manholes have been estimated as the mean discharge
from the single injection dye tracing work and discharges at the
branches estimated from the available InfoWorks hydrodynamic
sewer model.

The comparison of modeled and recorded concentrations result-
ing from the four simultaneous injections is shown in Fig. 9, where
three downstream pulses were observed both in the recorded data
and model prediction. Profile spread [described by Eq. (6)] appears
visually similar. At Manhole 3 only the travel time of the last peak

(a)

(b)

(c)

Fig. 9. Modeled and calibrated modeled concentrations compared to recorded concentrations downstream of multiple simultaneous injections into

four branches of City 4 at: (a) manhole 3; (b) manhole 2; and (c) manhole 1.
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appears to be in good agreement, with the first two peaks offset

within the error bounds of predicted travel time (Fig. 7). Further

downstream, error in predicted travel time has increased, resulting

in R2
t values of 0.128,−0.662, and−0.471 for Manholes 3, 2, and 1

respectively. The negative R2
t values, due to the predicted travel

times, suggest that the simplified hydraulic model may not be suit-

able for large applications as is, although an approximately 20%

error on travel time and peak concentration is not unreasonable

for an uncalibrated model utilizing only geometry and discharges.

Some errors may also be attributable to differences between the

modeled network geometry and actual buried infrastructure.
Similar results were observed for the double injection.

To focus on investigating dispersion, a simple calibration has

been applied by decreasing the roughness of the pipes downstream

of Manhole 3 (ks=10 or n=1.5). This improves model agreement

and suggests, in agreement with Mark (2005), the value of dye trac-

ing as a tool for calibrating roughness. After calibration, all travel

time predictions are within a few minutes and R2
t values for the

calibrated predictions are 0.138 and 0.467 for Manholes 2 and 1
respectively. Examining the last peak on its own, which has been

in the flow for the longest amount of time and therefore experi-

enced the widest variety of hydraulic conditions, R2
t values are

0.950, 0.785, and 0.852, suggesting that the effects of dispersion

are accurately modeled and that while the model does not produce a

highly accurate prediction, it does represent the observed physical

processes.
Although four injections were carried out for a single simulta-

neous input, only three peaks in concentration were measured

(Fig. 9) when four were expected. This could easily be attributed

to a misconnection or misunderstanding of the network geometry

without further investigation. However, the model can be utilized to

disaggregate the predicted concentration profile into contributions

to total concentration from each injection location. This reveals that

the second peak is formed of dye injected at injection locations B
and C arriving near-simultaneously, as shown in Fig. 10. Verifica-

tion is provided by the higher concentrations of the second peak

predicted by the model matching that of the higher experimental

measurement.
In retrospect, the coincident arrival of dye from injection

locations B and C could have been anticipated considering the

proximity of the two locations, being less than 150 m of conduit

apart. This proximity was unfortunately unknown at the time of the
fieldwork as these locations were selected on the day, with the

constraints of safe accessibility and manholes that network data

indicated were connected. The success of the model in identifying

the dye from two locations arriving simultaneously highlights the

power of physics-based numerical modeling in understanding

observed behavior. Without the hydraulic and solute transport

modeling, it would have been more difficult, if not impossible,

to determine with confidence why only three peaks were observed
from the four simultaneous injections.

Source Localization

The dye tracing and numerical modeling undertaken here have been
done with consideration for source localization, i.e., finding the lo-
cation of an event later monitored downstream. One approach to
source localization based on a downstream measurement is that
of matching a downstream record against a downstream prediction
(Sokáč 2018; Grbčić et al. 2021). Zehnder (2021) identifies match-
ing the spread of the recorded profile as a key factor. To do so re-
quires an accurate description of dispersion, which we have shown
to be obtainable from dye tracing. In general, understanding the
relationship between the injection event and the monitored results
of the event is essential, and this can be aided by the use of numeri-
cal modeling.

Some additional insight into source localization can be gained
by assuming the cause of the event (e.g., an injection) is a short-
duration (pulse) input. In which case, the recorded concentration
distribution monitored at any given point in the network is a res-
idence time distribution (RTD). An RTD describes the cumulative
effects of dilution, advection, and mixing between the injection and
measurement location (Levenspiel 1972). Following RTD theory,
recorded downstream concentrations scale linearly with dilution
and injection volume. If the short pulse occurs twice then two
downstream responses are observed, i.e., the downstream response
of an event is described by the convolution of the injection (which
may be any arbitrary profile) with a network response (RTD).

Using numerical modeling, the RTD at a site can be calculated
for every possible injection location, giving a sewer network
“fingerprint,” similar to what is shown in Fig. 10. The measured
downstream profile can then be compared to every RTD in the
fingerprint to identify possible source locations. Fingerprint com-
parisons are limited by the instantaneous injection assumption
since non-instantaneous injections, e.g., a more realistic time-
distributed source, could produce similar/identical measured down-
stream profiles to a different instantaneous injection. Similarly, in
a large network, two injection locations may have the same
downstream profile, increasing uncertainty about the source loca-
tion. Regardless, this approach could help to minimize possible
source locations and thus the need for manual sampling throughout
the network.

Unfortunately, to take best advantage of fingerprint compari-
sons, high-frequency continuous online monitoring is needed.
Instead, the network fingerprint (each upstream manhole’s RTD)
can be convolved (using the convolution integral; Levenspiel
1972) with a daily activity profile, producing estimates of down-
stream concentrations. Concentration contributions can be normal-
ized by contribution to total concentration to produce a source

Fig. 10. Predicted contributions from each injection location stacked to predict concentrations at Manhole 1 [cf., Fig. 9(c)].
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location probability plot (SLP2), allowing the identification of pos-
sible sources of spot samples. This assumes that monitored events
are related to human activity tied down to a time of day allowing the
problem scope to be reduced. An illustrative daily profile is used to
generate an example SLP2 in Fig. 11, with the contributions from
each location shown in Fig. 10 (the City 4 Manhole 1 network
fingerprint) convolved with a “lunchtime” profile [Fig. 11(a)].
The SLP2 in Fig. 11(b) is easily interpreted. The probability of
a sample taken at 13:00 coming from injection locations A, B, C,
and D are 3%, 29%, 30%, and 38%, while at 14:00 these proba-
bilities are 89%, 5%, 5%, and 1%. This suggests the existence of
optimal sampling times.

In this way, the application of physics-based water quality mod-
eling to source localization can help aid management decisions and
maximize the inference possible from even a single measurement
location. Such approaches enable small-scale, high-quality, cost-
effective monitoring. Future work should focus on investigating
and reducing the limitations of assumed steady flow, further vali-
dation, and the application of the approaches outlined here to more
realistic scenarios using standardized hydraulic modeling tools.

Conclusions

Fluorescent dye tracing is a useful tool for the characterization of
sewer hydraulics, confirmed by good quality tracing undertaken
here in four UK sewer networks providing simultaneous measure-
ment of discharge, travel time (velocity), and dispersion. This data
can be used to improve descriptions of physical processes and mod-
eling tools, and for validating water quality models in sewers.

The newly collected data has been analyzed with the aid of
a simplified steady-state sewer network hydraulic and solute
transport model and a new approach to averaging reach character-
istics termed reach unified. Reach unification gives the equivalent
longitudinal dispersion coefficient (Dx) and reach characteristics
(e.g., hydraulic radius) for single ADE routing (as observed

experimentally) to multiple ADE routings with varying Dx and
reach characteristics carried out in series (as in a model). Reach
unification has been used in reverse to better relate observed Dx

with network geometry and produce a new, dimensionally correct,
predictor of Dx.

Among the dye tracing carried out for this study were two, first
of their kind, multiple simultaneous injections at four locations. A
model of all four branches of this network was created and a com-
parison between it and the recorded dye traces revealed that the
observed three peaks in response to four injections was due to two
of the injections coinciding in the sewer. This demonstrates the
value of physics-based modeling in understanding sewer network
performance.

Consideration of the source localization problem suggests that
residence time distribution (RTD) theory can be applied. A sewer
network fingerprint is made up of the RTDs describing the possible
concentration distributions observed at a monitoring location as a
result of a pulse input at every upstream manhole. An assumed
daily activity profile can be convolved with the fingerprint to
produce a source location probability plot, which when compared
with the time a sample was taken can be used to suggest possible
sources. Further investigation of this approach is warranted.

Many studies investigating source localization focus on placing
more sensors in better locations. In contrast, this paper explores the
benefits of dye tracing, coupled with numerical modeling, to im-
prove our understanding of network hydraulics and the underlying
physical processes. These, in turn, improve the source localization
that can be conducted with the data available from small-scale
monitoring.
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Notation

The following symbols are used in this paper:

c = concentration (ppb);

Dx = longitudinal dispersion coefficient (m2=s);

I = reach or pipe index;

ks = equivalent sand grain roughness (m);

N = number of;

n =Manning’s roughness coefficient (s=m1=3);

Q = bulk discharge or flow rate (m3=s);

R = hydraulic radius (m);

t = time (s);

t̄ = travel time (s);

(a)

(b)

Fig. 11. Source location probability plot example: (a) illustrative

lunchtime human behavior output profile; and (b) source location prob-

abilities at City 4 Manhole 1 given time of day, assuming input into

locations A to D according to the behavior profile.
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U = mean streamwise velocity (m=s);

u� = shear or friction velocity (m=s);

W = channel width at the surface (m); and

x = longitudinal position (m), with subscripts 1 and 2 indicating
upstream and downstream respectively.

Supplemental Materials

Appendixes S1 and S2, Eq. (S1), and Figs. S1 and S2 are available
online in the ASCE Library (www.ascelibrary.org).
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