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QUINARY FORMS AND PARAMODULAR FORMS

NEIL DUMMIGAN, ARIEL PACETTI, GUSTAVO RAMA, AND GONZALO TORNARÍA

Abstract. We work out the exact relationship between algebraic modular
forms for a two-by-two general unitary group over a deĄnite quaternion algebra,
and those arising from genera of positive-deĄnite quinary lattices, relating
stabilisers of local lattices with speciĄc open compact subgroups, paramodular
at split places, and with Atkin-Lehner operators. Combining this with the
recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on
Jacquet-Langlands type correspondences (mildly generalised here), provides
an effective tool for computing Hecke eigenvalues for Siegel modular forms of
degree two and paramodular level. It also enables us to prove examples of
congruences of Hecke eigenvalues connecting Siegel modular forms of degrees
two and one. These include some of a type conjectured by Harder at level one,
supported by computations of Fretwell at higher levels, and a subtly different
congruence discovered experimentally by Buzzard and Golyshev.

1. Introduction

Modular forms play a central role in modern mathematics, leading to the devel-
opment of very fruitful areas of mathematics (such as automorphic forms, Galois
representations and many applications to diophantine problems). An instance of
the interaction between modular forms and geometry is the modularity of rational
elliptic curves as conjectured by Shimura and Taniyama, and proved by Wiles et al
(in [Wil95] and [BCDT01]). A natural generalisation in this direction is understand-
ing the relation between analytic objects and higher dimensional abelian varieties
(a particular case of the Langlands program). In [Yos80] (§8, last paragraph of
Example 2) Yoshida suggested that an abelian surface should be related to a Siegel
modular form of degree 2.

Let H2 be the Siegel upper half-plane of degree 2 consisting of 2 × 2 complex
symmetric matrices whose imaginary part is positive-definite (a natural generalisation
of Poincaré’s upper half plane). Siegel modular forms are holomorphic functions on
H2 that satisfy a transformation property similar to classical modular forms. More
concretely, let V be a finite dimensional C-vector space and let ρ : GL2(C) → Aut(V )
be a representation. A Siegel modular form of weight ρ is an holomorphic map
f : H2 → V such that

F ((AZ + B)(CZ + D)−1) = ρ(CZ + D)(F (Z)),
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for all ( A B
C D ) in a subgroup of the symplectic group Sp2(Q) (see [vdG08] for a nice

exposition).
In [BK14] (see also [BK19]) Brumer and Kramer made the following precise

conjecture (known as the “paramodular conjecture”): abelian surfaces whose en-
domorphism ring over Q equals Z should be related to weight 2 (i.e. V = C and
ρ(CZ + D)w = det(CZ + D)2w) Siegel modular forms, transforming as above under
the paramodular group of level N (the conductor of the surface) given by

P (N) :=




Z NZ Z Z
Z Z Z 1

N Z
Z NZ Z Z

NZ NZ NZ Z


 ∩ Sp2(Q).

Some genuine cases of the paramodular conjecture were proven in [BPP+19] (see
also [BCGP21]).

A related problem is that of constructing tables of paramodular forms. There
are nowadays several different algorithms for computing classical modular forms.
The most well-known are the modular symbol approach (as in [Cre97]), quaternion
algebras and Brandt matrices (as in [Piz80]), or the use of ternary quadratic forms
(as in [Bir91], [Tor05], [Ram14], [Hei16] and [HTV]).

There are some tables of paramodular forms, based on Fourier series expansions,
due mostly to Poor, Yuen and some coauthors (see [PY15], [PSY17], [KPSY18]
and [BPP+19]). A different approach using quinary forms, analogous to Birch’s
use of ternary quadratic forms, can be used to compute Hecke eigenvalues more
easily. This builds on the lattice-neighbour method for algebraic modular forms on
orthogonal groups, using an algorithm of Plesken and Souvignier [PS97] to test for
lattice isometry, as introduced by Greenberg and Voight [GV14]. Following earlier
computations by Hein [Hei16] and Ladd [Lad18], this approach was developed in
[RT20] and [Ram20a]. One of the main achievements of the present article is to
extend their method to more general values of N (not just square-free ones) and
weights. Conjecture 15 of [RT20] is a special case of results proved here. Note that
what we call “N” here will generally be “D” later in the paper.

Our result is in the spirit of Eichler’s basis problem (as in [Eic73]). Eichler’s
statement of the basis problem is the following: “the basis problem, is to give bases of
linearly independent forms of these spaces which are arithmetically distinguished and
whose Fourier series are known or easy to obtain”. Eichler’s solution, given a positive
integer N (under the assumption that N is square-free, which was later relaxed by
Hijikata in [Hij74]), takes a prime p dividing it. Then the space of quaternionic
modular forms for the quaternion algebra ramified at ¶p, ∞♢, of level given by an
Eichler order (of level N), provides a solution to the basis problem. Furthermore,
such a space can be computed easily (as Fourier expansions, corresponding to theta
functions of positive-definite quadratic forms in four variables).

The main idea of Birch was to relate the arithmetic of quaternion algebras to
ternary quadratic forms (instead of quaternary ones), making computations more
efficient. In the present article, we present a partial solution to the basis problem for
paramodular forms. The word partial refers to two main obstacles of our method.
The first one is related to the possible weights we can compute. Unfortunately,
paramodular forms of weight 2 (related to abelian surfaces) are not cohomological
(as happens for classical weight 1 modular forms), hence they cannot be computed
with our approach, whereas all weights with scalar part 3 or more can. The second



QUINARY FORMS AND PARAMODULAR FORMS 3

issue has to do with a big difference between classical and Siegel modular forms
(of degree greater than one). For classical modular forms, a newform satisfies that
its Fourier expansion is trivially determined by the eigenvalues of Hecke operators.
This is no longer the case for Siegel modular forms. Our approach only allows to
compute a basis for the space of algebraic modular forms (for the orthogonal group
of a positive-definite quinary quadratic form) and to compute Hecke operators acting
on them (as in [RT20]).

More concretely, let N be a positive integer, and assume that there exists a prime
p such that p ♣ N but p2 ∤ N . In Section 5 we prove that there is a (unique up to
semi-equivalence) quinary positive-definite integral quadratic form Q, of determinant
2N , with the following properties:

• The Hasse-Witt invariant of Q is −1 at p and ∞, and +1 at all other primes.
• The quadratic form Q is special, with Eichler invariant e(Qq) = +1 for all

primes different from p (see §5).

Then, neglecting Yoshida lifts (cf. Proposition 9.1) and any Saito-Kurokawa lifts
(cf. Proposition 9.4), the space of algebraic modular forms for the orthogonal group
of Q, with values in a certain representation Wj+k−3,k−3, is isomorphic (as a Hecke

module) to the space of p-new paramodular forms of weight detk ⊗Symj , with k ≥ 3.
This is Theorem 9.7, with D− = p, D+ = N/p.

Let B denote a definite quaternion algebra over Q. The proof of our result exploits
the relation between the algebraic group GSp2 and its compact twist GU(2, B). In a
series of articles, Ibukiyama and some coauthors (see [IK17] and also [Ibu19, Ibu18])
stated conjectures relating automorphic forms on GU(2, B) and GSp2, in the case of
square-free levels (see the articles [Dem14, CD09] on computations of automorphic
forms on GU(2, B)). The conjectures were proven by Rösner and Weissauer in a
recent article [RW21], using the trace formula. A somewhat less general result was
obtained independently by van Hoften [vH21] using very different, algebro-geometric
tools. Although in [RW21] the result is proven for groups whose level involves only
primes ramified in the quaternion algebra B, we extend their result to our more
general setting (see Theorem 9.7).

A main contribution of the present article is to relate algebraic modular forms
for GU(2, B) with those for SO(Q) for a suitable integral quadratic form Q (see
Theorem 8.2). A partial result in this direction was obtained by Ladd ([Lad18]) in
his doctoral thesis in the case N = p, though our approach was influenced more
by a paper of Ibukiyama [Ibu19]. Our strategy is to construct a six-dimensional
space U in M2(B) invariant under conjugation by GU(2, B), and a quadratic form
on it that is invariant under the action of GU(2, B), and also under translation by
scalar matrices. This induces a quadratic form on the five-dimensional quotient
V := U/QI. We construct a rank 6 lattice inside U (defined in §4.1) and consider
its quotient by ZI. The dual of this produces the rank 5 integral lattice L. One is
left to relate the compact level in GU(2, B) studied by Ibukiyama with the stabiliser
of L (up to the centre of GU(2, B)). These two groups are not exactly the same,
as the Atkin-Lehner operator on GU(2, B) stabilises the lattice L. To get the right
subgroup, we define a character on the stabiliser of Lp := L⊗Zp for each prime p (see
Definition 7.6), whose kernel does match the open compact subgroup of GU(2, Bp)
corresponding to a paramodular form. This allows us to transfer automorphic forms
from one algebraic group to the other one.
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It is important to mention that we can prove not only that the correspondence
preserves Hecke operators, but also a precise relation between the action of the
Atkin-Lehner operators (see Theorem 10.1). In particular, for genuine forms (those
that cannot be constructed from forms for GL2), the Atkin-Lehner sign changes
sign for the ramified primes, while it stays the same for the non-ramified ones (as
happens with the classical Jacquet-Langlands correspondence between GL2 and B).

The above is directly applicable to the efficient computation of Hecke eigenvalues
for Siegel modular forms of degree two and paramodular level, at least if the vector
part of the weight is small, and the scalar part at least 3. But actually looking at
the eigenvectors within spaces of algebraic modular forms also allows us to prove
various instances of congruences of Hecke eigenvalues. This is the subject of §11. We
warm up by re-proving a congruence originally obtained by Poor and Yuen [PY15,
§8, Example 1]. This is of the form

λF (p) ≡ ap(g) + p + p2 (mod λ).

On the left, F is a cuspidal Hecke eigenform of degree 2, weight 3 and paramodular
level 61, and λF (p) its eigenvalue for T (p), with p any prime number different from
61. On the right, g is a newform of degree 1, of weight 4 for Γ0(61), with Hecke
eigenvalues ap(g) in a field of degree 6, in which the modulus λ is a divisor of the
rational prime 43. The right-hand-side can be interpreted as the eigenvalue of T (p)
on the Saito-Kurokawa lift SK(g) of g. Both F and SK(g) have corresponding
eigenforms inside a space of algebraic modular forms arising from a certain genus
of quinary lattices of determinant 2 · 61. We can prove the congruence of Hecke
eigenvalues by observing that these eigenvectors are the same modulo λ. The
modulus comes from the algebraic part of the critical L-value L(3, g).

Such congruences can be extended to F of weight (k, j) with k ≥ 3 and even
j > 0, with g of weight j + 2k − 2 and λ ♣ ℓ coming from L(j + k, g). For F and
g of level 1 this is a conjecture of Harder [Har08]. Computational evidence for
some examples of levels 2, 3, 5, 7 was obtained by Fretwell [Fre18]. Congruences
involving Saito-Kurokawa lifts are a degenerate case j = 0, but for j > 0 the problem
is that the right hand side of the congruence, ap(g) + pk−2 + pj+k−1, is not the
Hecke eigenvalue of T (p) on any Siegel modular form. We address this by observing
that pk−2 + pj+k−1 = pk−2(1 + pj+1), that (1 + pj+1) is a Hecke eigenvalue for an
Eisenstein series of level 1 and weight j + 2, and that modulo λ this can be replaced
by a cuspidal eigenform of level q and weight j + 2, where q is an auxiliary prime
such that qj+2 ≡ 1 (mod ℓ). Thus, modulo λ, ap(g) + pk−2 + pj+k−1 becomes the
eigenvalue of T (p) on some Yoshida lift, which does not exist as a holomorphic
Siegel modular form of paramodular level, but does exist in one of our spaces of
algebraic modular forms, allowing us to proceed almost as before to prove several
congruences of this type. Actually the target F is represented by an eigenvector
in a different space of algebraic modular forms, coming from a different genus of
quinary lattices with the same determinant. But it is linked to the Yoshida lift by
their mutual congruence with a third form, of paramodular level qN , represented
by eigenvectors in both spaces.

The same idea using Yoshida lifts allows us to prove a congruence discovered
experimentally by Buzzard and Golyshev (see Theorem 11.8). This involves the same
F as in the example of Poor and Yuen, but the right hand side is now 1+p3 +pap(g),
where g is now weight 2 and level 61, with Hecke eigenvalues in a cubic field, and λ
is a divisor of 19 in this field. We use an auxiliary weight 4 form of level 37. This
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congruence, and its proof, is more subtle in two ways. First, the modulus is not
observable in a critical value of L(s, g). Second, in the proof we see two eigenvectors
that are not the same modulo λ, but they are forced nonetheless to lie in the same
mod-λ Hecke eigenspace, thanks to the intervention of a newform of level 61 · 37,
with Hecke eigenvalues congruent to both.

Acknowledgements. This project has its roots in a visit of Jeffery Hein and
Watson Ladd to Uruguay in 2014 for a small research workshop on the subject of
quinary orthogonal modular forms. The workshop topic was suggested by John
Voight to whom we are grateful for many conversations regarding orthogonal modular
forms. A main motivation for the present article was to prove the conjectures stated
in [RT20].

The project benefitted from communications with Vasily Golyshev (on congru-
ences) and Rainer Weissauer (on the relation between Siegel modular forms and
automorphic forms for GU(2, B)); indeed another main motivation for this paper
was to prove the mod 19 congruence brought to our attention by Golyshev.

The first and fourth-named authors met during the workshop “Picard-Fuchs
Equations and Hypergeometric Motives” at the Hausdorff Research Institute for
Mathematics, Bonn, in March 2018, and are also grateful for the hospitality of the
Max Planck Institute for Mathematics, Bonn, during a short visit in April 2019.

We thank Tomoyoshi Ibukiyama, Cris Poor and Ariel Weiss for comments on
earlier versions of the paper.

2. The general spin group

Let k be a field of characteristic different from 2 and let (V, Q) be a quadratic
space over k. Let Cliff(V ) be the Clifford algebra attached to (V, Q). Recall that
the Clifford algebra Cliff(V ) has a natural Z/2-graduation, so let Cliff0(V ) denote
its even part. The subspace Cliff0(V ) is a subalgebra of Cliff(V ) which is central if
(V, Q) is regular (i.e. non-degenerate) of odd dimension, so from now on we assume
this is the case.

The Clifford algebra Cliff(V ) has two natural anti-involutions ∗ : Cliff(V ) →
Cliff(V ) (see [SP20]) which agree on the even part Cliff0(V ) so we do not need to
make any particular choice.

Definition 2.1. The General Spin group GSpin(V ) is the subgroup of Cliff0(V )×

given by

GSpin(V ) = ¶g ∈ Cliff0(V ) : g∗g ∈ k× and g−1V g = V ♢.

The spinor norm ν : GSpin(V ) → k× is given by ν(g) = g∗g.

There is a natural homomorphism

(1) ϕ : GSpin(V ) → O(V )

given by ϕ(g)(v) = gvg−1 (see [Cas78, Chapter 10, Lemma 3.1]).

Theorem 2.2. The image of ϕ equals SO(V ) and its kernel equals k×.

Proof. See [Cas78, Chapter 10, Theorem 3.1]. □

When V has odd dimension, the natural copy of V in Cliff(V ) lies in the odd
part. However, in such a case, the centre of Cliff(V ) has a one dimensional odd part.
For example, if ¶e1, . . . , en♢ is an orthogonal basis, then the vector c = e1 · · · en
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generates such subspace and c2 ∈ k. In particular, the subspace c · V does lie in
Cliff0(V ) and furthermore, the elements of Cliff0(V ) normalising V are the same as
the ones normalising c · V . Note also that the involution acts on c · V by (−1)⌊n/2⌋.

2.1. The 5-dimensional case. From now on we restrict to quadratic forms over a
number field k. Let (V, Q) be a regular quinary quadratic space over k.

Lemma 2.3. The subspace U = ¶v ∈ Cliff0(V ) : v∗ = v♢ equals the subspace
k ⊕ c · V .

Proof. Clearly k is invariant under the involution. Let ¶e1, . . . , e5♢ be an orthogonal
basis for V , so Cliff0(V ) = k ⊕ c · V ⊕ ⟨eiej : 1 ≤ i < j ≤ 5⟩. The involution sends
eiej to ejei = −eiej and fixes c · V , hence U = k ⊕ c · V . □

In the five dimensional case, the condition g−1V g = V on the definition of the
General Spin group is superfluous provided g∗g ∈ k×.

Lemma 2.4. If dim(V ) = 5, then

GSpin(V ) = ¶g ∈ Cliff0(V ) : g∗g ∈ k×♢.

Proof. We recall the proof from [Eic52, §5.5]. Let g ∈ Cliff0(V ) such that g∗g ∈ k×

and let v ∈ V . Then g∗(cv)g is fixed by the involution so by Lemma 2.3 we
have g∗(cv)g = α + cw with α ∈ k and w ∈ V . Squaring this equality gives
ν(g)c2Q(v) = α2 + c2Q(w) + 2αcw ∈ k. If v ̸= 0 then clearly w ≠ 0 so α = 0 and
g∗(cv)g = cw. Since c is central, we conclude g−1vg = 1

ν(g) w ∈ V . □

For each place v of k the Hasse-Witt invariant HWv(Q) ∈ ¶±1♢ is an invariant
of the quadratic space Vv given by the class of Cliff0(Vv) in the Brauer group (see
[Lam05, (3.12) in p.117]). If ¶e1, . . . , e5♢ is an orthogonal basis with Q(ei) = ai

then

(2) HWv(Q) = (−1, −1)v

∏

i<j

(ai, aj)v,

where the quadratic Hilbert symbol (a, b)v is +1 or −1, according as ax2 + by2 = z2

has, or has not (respectively), a solution (x, y, z) ̸= (0, 0, 0) in k3
v (see [Lam05]

Proposition 3.20).

Remark 2.5. The definition of the Hasse-Witt invariant for quinary forms coincides
with the classical Hasse invariant for odd primes, but it differs by (−1, −1)v for
even primes and real places.

Let

(3) S = ¶v : HWv(Q) = −1♢,

the set of places where the quadratic form Q has Hasse-Witt invariant −1. By
Hilbert’s reciprocity S has even cardinality.

Remark 2.6. For computational purposes, we assume k is totally real and the
quinary quadratic form Q is totally positive definite, so all the archimedean places
are in S.

Remark 2.7. Let B be the quaternion algebra over k ramified precisely at the
places of S and denote b 7→ b its standard involution. By definition, the central
simple algebras Cliff0(V ) and B correspond to the same class in the Brauer group.
It follows that Cliff0(V ) ≃ M2(B) since dim Cliff0(V ) = 4 dim B.
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Lemma 2.8. The isomorphism Cliff0(V ) ≃ M2(B) can be chosen so that the
involution of Cliff0(V ) corresponds to the involution of M2(B) given by m∗ = mt.

Proof. Let D = det V and choose α and β such that (−αD, −βD)v = HWv(Q).
Without loss of generality we can assume V has an orthogonal basis ¶e1, e2, e3, e4, e5♢
with Q(e1) = α, Q(e2) = β, Q(e3) = αβD and Q(e4) = Q(e5) = D.

Consider the representation of Cliff0(V ) as a tensor product of quaternion algebras
given in [Eic52, (5.18)]:

Cliff0(V ) ≃ [1, e1e2, e2e3, e3e1] ⊗ [1, e1e2e3e4, e1e2e3e5, e4e5] .

By our choice of α and β we have [1, e1e2, e2e3, e3e1] ≃ B with the involution on
the left side corresponding to the standard involution of B.

On the other hand we have [1, e1e2e3e4, e1e2e3e5, e4e5] ≃ M2(k) as follows:

e1e2e3e4 7→
(

αβD 0
0 −αβD

)
, e1e2e3e5 7→

(
0 αβD

αβD 0

)
, e4e5 7→

(
0 D

−D 0

)
,

and the involution on the left side corresponds to the transpose in M2(k). Thus
Cliff0(V ) ≃ B ⊗ M2(k) ≃ M2(B) and the involution of Cliff0(V ) corresponds to the
involution on M2(B) given by m∗ = mt. □

By the lemma we can (and will) identify Cliff0(V ) with M2(B) with the involution
given by m∗ = mt. The group GSpin(V ) is then isomorphic to the group

(4) GU(2, B) := ¶g ∈ M2(B) : g∗g = ν(g)I, ν(g) ∈ k×♢.

The group GU(2, B) consists of the invertible elements in M2(B) preserving the
hermitian form ⟨(x, y), (r, s)⟩ = xr + ys on B2 (via left multiplication) up to scale.

3. Quaternionic unitary groups and some local subgroups

Keep the notation of the previous section. Let B be a definite quaternion algebra
over Q ramified at a finite set of primes S (containing the infinity place), with main
involution α 7→ α and denote GU(2, B) := ¶g ∈ M2(B) : g∗g = ν(g)I, ν(g) ∈ Q×♢.

3.1. Local subgroups of GU(2, B). For v a rational place, let Bv := B ⊗ Qv

denote the completion of B at v. We define for each place v an open compact
subgroup Uv ⊂ GU(2, Bv) as follows.

3.1.1. Archimedean place. Our assumption that B is definite implies that GU(2, B∞)
is the compact group Sp(2) (up to center) of rank 2 (the compact form of Sp(2,R)).
Hence we take K∞ := GU(2, B∞) as our compact open subgroup.

3.1.2. Non-archimedean places in S. Let Rp denote the unique maximal order of
Bp [Vig80, Chapitre II, Lemme 1.5], and p its maximal ideal (given by the elements
of norm divisible by p). Let R0

p := ¶r ∈ Rp : r + r = 0♢. Following [IK17], let

ξ ∈ M2(Bp) be such that ξ∗ ξ = ( 0 1
1 0 ) and consider the Zp-lattice

(5) Lp := ξ ·

(
p

Rp

)
⊂ B2

p .

Let K−
p be the subgroup of GU(2, Bp) given by the stabiliser of Lp (column vectors)

under the natural left action of GU(2, Bp) on B2
p .

Let H := ( 0 1
1 0 ), and denote by GU(1, 1, Bp) the group

GU(1, 1, Bp) := ¶g ∈ M2(Bp) : g∗Hg = ν(g)H, ν(g) ∈ Q×
p ♢.
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Conjugation by ξ gives an isomorphism between GU(2, Bp) and GU(1, 1, Bp). Under
this isomorphism, the group K−

p maps to the stabiliser K−(p) of the lattice p ⊕ Rp

(see [Ibu19, §2] and [vH21, §4.3]), the intersection of GU(1, 1, Bp) with the order(
Rp p

p−1 Rp

)
of M2(Bp).

Note that the subgroup K−(p) of GU(1, 1, Bp) is normalised by an Atkin-Lehner

element ω′
p :=

(
0 p
1 0

)
∈ GU(1, 1, Bp), which satisfies (ω′

p)2 = pI, and (ω′
p)∗Hω′

p =

pH. So we define ωp := ξω′
pξ−1 ∈ GU(2, Bp), which normalises K−

p , with ω2
p = pI

and ω∗
pωp = pI, so ν(ωp) = p.

3.1.3. Non-archimedean places not in S. At any prime number p ̸∈ S we fix an
isomorphism Bp ≃ M2(Qp), then let Rp denote the matrix order M2(Zp). For n a
non-negative integer, consider the Zp-lattice

(6) Lpn :=

(
M2(Zp)

πn · M2(Zp)

)
⊂ B2

p ,

where π =
(

1 0
0 p

)
. Similar to the definition of K−

p above, we define K+
pn as the

subgroup of G(Qp) of elements preserving the lattice Lpn under left multiplication.

The main involution is given by

(
a b
c d

)
7→

(
d −b

−c a

)
. Consider the isomor-

phism Ψ : M2(Bp)
∼

−→ M4(Qp) given by

(7) Ψ

(
( a11 a12

a21 a22
)
(

b11 b12

b21 b22

)

( c11 c12
c21 c22

)
(

d11 d12

d21 d22

)
)

=

(
a11 b11 a12 b12

c11 d11 c12 d12

a21 b21 a22 b22

c21 d21 c22 d22

)
.

Note that Ψ swaps second and third rows, then also second and third columns. Let
GSp2(Qp) = ¶g ∈ M4(Qp) : gtJg = νJ, ν ∈ Q×♢, where

J =

( 0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

)

Lemma 3.1. The isomorphism Ψ induces an isomorphism between the groups
GU(2, Bp) and GSp2(Qp).

Proof. If we let J ′ =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


, then Ψ(J ′) = J and J ′−1

= −J ′. Since

(
0 −1
1 0

)
t

(
a b
c d

)(
0 1

−1 0

)
=

(
d −b

−c a

)
, we see that B∗ = J ′−1 tBJ ′, where

the transpose is as a 4-by-4 matrix. Hence for g ∈ M2(Bp),

g∗g = νI ⇐⇒ J ′−1 tgJ ′g = νI ⇐⇒ tgJ ′g = νJ ′ ⇐⇒ tΨ(g)JΨ(g) = νJ.

□

The paramodular group of level pn is given by K(pn) := ¶k ∈ GSp2(Qp) :
h−nkhn ∈ GL4(Zp)♢, where h := diag(1, 1, 1, p).

Lemma 3.2. The group K+
pn maps onto the paramodular group K(pn) under the

isomorphism (7).
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Proof. The isomorphism (7) sends the lattice L =

( Zp Zp Zp Zp/pn

Zp Zp Zp Zp/pn

Zp Zp Zp Zp/pn

pnZp pnZp pnZp Zp

)
to it-

self, and K(pn) is the intersection of L with GSp2(Qp), so it suffices to show
that K+

pn is the intersection of L with GU(2, Bp). If we describe L with the no-

tation
(

M2(Zp) M2(Zp)·π−n

πn·M2(Zp) πn·M2(Zp)·π−n

)
, it is easy to verify this, recalling that Lpn :=

(
M2(Zp)

πn · M2(Zp)

)
. □

It is well known that the integral condition on elements of K(pn) plus the fact that
it preserves the symplectic form imply that K(pn) is the intersection of GSp2(Qp)
with the order

(8) R :=




Zp pnZp Zp Zp

Zp Zp Zp p−nZp

Zp pnZp Zp Zp

pnZp pnZp pnZp Zp


 ⊂ M4(Qp).

Note that the subgroup K(pn) is normalised by the Atkin-Lehner element of
GSp2(Qp)

(9) Wpn :=

( 0 pn 0 0
1 0 0 0
0 0 0 1
0 0 pn 0

)
.

The Atkin-Lehner involution satisfies W 2
pn = pnI, and W ∗

pnWpn = pnI hence
ν(Wpn) = pn. The preimage of (8) under (7) can be expressed as the block matrices

(10)
(

M2(Zp) M2(Zp)·π̄n

πn·M2(Zp) πn·M2(Zp)·π−n

)
=
( 1 0

0 π̄−n

) ( M2(Zp) M2(Zp)
pnM2(Zp) M2(Zp)

) (
1 0
0 π̄n

)
.

The preimage under (7) of the Atkin-Lehner involution equals W +
pn :=

( 0 0 pn 0
0 0 0 1
1 0 0 0
0 pn 0 0

)
.

The following is [Vig80, Chapitre II, Theoreme 2.3(1)].

Lemma 3.3. Let R1, R2 be two maximal orders of Mn(Qp), then there exists
α ∈ GLn(Qp) such that αR1α−1 = R2.

Lemma 3.4. The only maximal orders in M4(Qp) containing R are α−1
m M4(Zp)αm,

for 0 ≤ m ≤ n, where αm := diag(1, pm, 1, pm−n).

Proof. Recall the definition of R given in (8). By the previous lemma, any maximal
order is of the form α−1 M4(Zp)α, for some α ∈ GL4(Qp). Suppose that R ⊂
α−1 M4(Zp)α. By the Iwasawa decomposition, we may left multiply α by an element

of GL4(Zp) to put it in upper triangular form α =




a b c d
0 e f g
0 0 h i
0 0 0 j


. Applying

α Rα−1 ⊂ M4(Zp) to the elements diag(0, 1, 0, 0), diag(0, 0, 1, 0) and diag(0, 0, 0, 1)
of R, and inspecting the above-diagonal elements of the second, third and fourth
columns respectively, we find that b

e , c
h , f

h , d
j , g

j , i
j ∈ Zp. The factorisation

α =




1 b
e

c
h

d
j

0 1 f
h

g
j

0 0 1 i
j

0 0 0 1







a 0 0 0
0 e 0 0
0 0 h 0
0 0 0 j


 ,
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and the fact that the first factor is in GL4(Zp) implies that we can assume α equals
the second factor. Then

α Rα−1 =




Zp pn a
eZp

a
hZp

a
j Zp

e
aZp Zp

e
hZp p−n e

jZp
h
aZp pn h

eZp Zp
h
j Zp

pn j
aZp pn j

eZp pn j
hZp Zp


 .

For this to be contained in M4(Zp), we see that −n ≤ ordp( a
e ) ≤ 0, −n ≤ ordp( h

e ) ≤

0, ordp( a
h ) = 0, 0 ≤ ordp(a

j ) ≤ n, ordp( e
j ) = n and 0 ≤ ordp(h

j ) ≤ n. Hence

(removing a scalar power of p and a diagonal unit matrix) we may assume that
α = αm := diag(1, pm, 1, pm−n) for 0 ≤ m ≤ n. □

Lemma 3.5. The unique way of writing R as an intersection of maximal orders in
M4(Qp) is

R = hn M4(Zp)h−n ∩ W −1
pn hn M4(Zp)h−nWpn .

Proof. Recall that

R =




Zp pnZp Zp Zp

Zp Zp Zp p−nZp

Zp pnZp Zp Zp

pnZp pnZp pnZp Zp


 ,

while

α−1
m M4(Zp)αm =




Zp pmZp Zp pm−nZp

p−mZp Zp p−mZp p−nZp

Zp pmZp Zp pm−nZp

pn−mZp pnZp p
n−mZp Zp


 .

If R = α−1
m1

M4(Zp)αm1
∩ α−1

m2
M4(Zp)αm2

, with 0 ≤ m1, m2 ≤ n then to avoid
non-integral elements in the left entry of the second row we must have some mi = 0,
and to avoid non-integral elements in the top entry of the fourth column we must
have some mi = n, say m1 = 0, m2 = n.

Clearly

α−1
0 M4(Zp)α0 = hn M4(Zp)h−n,

since α0 = diag(1, 1, 1, p−n) = h−n, and

α−1
n M4(Zp)αn = W −1

pn hn M4(Zp)h−nWpn ,

since

h−nWpn =




0 pn 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 αn.

□

Lemma 3.6. The normaliser of R, i.e. the set ¶g ∈ GL4(Qp) : g−1Rg = R♢, is
the union of pZW µ

pn R× for µ = 0, 1.

Proof. By Lemma 3.5, conjugation by g either fixes or swaps the maximal orders
hn M4(Zp)h−n and W −1

pn hn M4(Zp)h−nWpn . Clearly it suffices to show that the

normaliser of M4(Zp) is pZM4(Zp)×, but this can be done by reducing to diagonal
elements, as in the proof of Lemma 3.4, but easier. □
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4. Local lattices in a six-dimensional GU(2, B)-space

Consider an action of GU(2, B) on the Q-vector space (of Lemma 2.3)

(11) U := ¶A ∈ M2(B) : A∗ = A♢.

This space is very related to the one considered by Ibukiyama in [Ibu19], but we
remove the trace zero hypothesis.

Lemma 4.1. The vector space U is of dimension 6. Moreover, it is given by

U =

{(
s r
r t

)
: s, t ∈ Q, r ∈ B

}
.

Proof. It is clear that if M t = M then the entries (1, 1) and (2, 2) of the matrix are
fixed by the involution, hence rational. The second hypothesis is also clear. □

Note that the space U contains the centre of M2(B) (i.e. the rational scalar
matrices). In Section 6 we will define a quadratic form on U invariant under
translation by the centre, hence the quotient space becomes a quadratic space.

Proposition 4.2. The group GU(2, B) acts on U via conjugation.

Proof. If g ∈ GU(2, B) it satisfies that g−1 = g∗

ν(g) . Then (gvg−1)∗ = (gv g∗

ν(g) )∗ =
g

ν(g) v∗g∗ = gvg−1 because ν(g) is in the centre of M2(B). □

4.1. Local lattices in U at split primes. Let p be an unramified prime (i.e.
p ̸∈ S). Given n ≥ 0, define a Zp-lattice U+

pn ⊆ Up := U ⊗ Qp by

(12) U+
pn :=








s

(
pna b
pnc d

)

(
d −b

−pnc pna

)
t


 : a, b, c, d, s, t ∈ Zp





.

Using the previous notation (i.e. π =
(

1 0
0 p

)
), the lattice can be written in the

compact form U+
pn =

{(
s r
r̄ t

)
: s, t ∈ Zp, r ∈ M2(Zp) · π̄n

}
.

Lemma 4.3. Suppose that p is prime. The subring R′ of M4(Qp) generated by U+
pn

equals

(
ZpI2 02

02 ZpI2

)
⊕




pnZp pnZp pnZp Zp

pnZp pnZp pnZp Zp

Zp Zp pnZp Zp

pnZp pnZp p2nZp pnZp


 .

Proof. Since

(
I2 02

02 02

)
∈ R′ and

(
02 02

02 I2

)
∈ R′, if we multiply these elements by

elements in U+
pn of the form




02

(
a b
c d

)

(
d −b

−c a

)
02


, with b, d ∈ Zp and a, c ∈

pnZp, we find that


02

(
pnZp Zp

pnZp Zp

)

02 02


 ⊂ R′ and




02 02(
Zp Zp

pnZp pnZp

)
02


 ⊂ R′.



12 NEIL DUMMIGAN, ARIEL PACETTI, GUSTAVO RAMA, AND GONZALO TORNARÍA

Multiplying elements of these subsets together, one way round or the other, we find
that

(
ZpI2 02

02 ZpI2

)
⊕




pnZp pnZp pnZp Zp

pnZp pnZp pnZp Zp

Zp Zp pnZp Zp

pnZp pnZp p2nZp pnZp


 ⊆ R′.

It is easy to see that the left hand side contains U+
pn and is closed under multiplication,

hence the inclusion must be equality. □

Remark 4.4. If one takes the second summand, divides the top left and bottom
right 2 × 2 blocks by pn and applies the map Ψ : M2(Bp) → M4(Qp) (cf. (7)) then
one obtains R from the previous section (cf. (8)).

Remark 4.5. Anticipating Remark 6.4 below, when p = 2, had we replaced U+
pn by

its trace zero sublattice, we would only have been able to show that
( 2I2 02

02 02

)
lies in

R′.

4.2. Local lattices in U at non-split primes. Let p now be a ramified prime.
Recall that ξ was chosen so that ξ∗ξ = H := ( 0 1

1 0 ), giving ξ−1GU(2, Bp)ξ =

GU(1, 1, Bp). Following [Ibu19, §4], define Ũp = ξ−1Upξ.

Lemma 4.6. The vector space Ũp equals the space ¶( r s
t r̄ ) : s, t ∈ Qp, r ∈ Bp♢.

Proof. The proof is given in [Ibu19] (page 212), although the author considers only
the subspace of Up of trace zero elements. Recall that over Qp the two spaces differ
by the identity matrix, which maps to itself under conjugation. □

For any p, define U−
p ⊆ Up by U−

p := ξŨ−
p ξ−1, where Ũ−

p ⊆ Ũp is defined by

(13) Ũ−
p :=

{(
r ps
t r

)
: r ∈ Op, s, t ∈ Zp

}
.

Lemma 4.7. Suppose that p is prime. The subring R′ of M2(Bp) generated by Ũ−
p

equals
{(

a b
c d

)
∈ M2(Bp) : a, c, d ∈ Rp, b ∈ pRp and a ≡ d̄ (mod π)

}
.

Proof. The proof is similar to [Ibu19, Lemma 4.2]. Multiplying the elements
(

0 0
1 0

)(
r 0
0 r̄

)
=

(
0 0
r 0

)
,

proves that the element in the place (2, 1) of the matrix can be arbitrary. Considering
the element

(
0 p
0 0

)
we get the same result for the entry (1, 2) but with multiples of p.

To get the diagonal elements, note that
(

r 0
0 r̄

)(
s 0
0 s̄

)
=

(
rs 0
0 rs

)
+

(
0 0
0 r̄s̄ − s̄r̄

)
.

In particular, we can add to an element of Ũ−
p a matrix with any element of the form

rs − sr to the place (2, 2). Note that any such difference lies in the unique maximal
ideal (as the quotient of Rp by π is the finite field of p2 elements, in particular is
abelian) and in fact, they generate the maximal ideal, hence the statement. □
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5. Special lattices

Let R be a Dedekind domain with field of fractions k, of characteristic different
from 2. Let (V, Q) be a regular quadratic space over k with associated symmetric
bilinear form ⟨v, w⟩ = Q(v + w) − Q(v) − Q(w), so that ⟨v, v⟩ = 2Q(v).

An R-lattice on V is a finitely generated R-submodule L ⊂ V such that k L = V .
If L is an R-lattice, its dual lattice L∨ is defined by

L∨ := ¶v ∈ V : ⟨v, w⟩ ∈ R ∀w ∈ L♢.

A lattice L is integral if Q(L) ⊂ R; this implies L ⊆ L∨. If L is integral and
L = L∨ it is called even unimodular. More generally L is called modular if L = IL∨

for some ideal I ◁ R. The (signed) determinant of a free lattice L is defined as
det L := (−1)⌊n/2⌋ det(⟨vi, vj⟩) where ¶v1, . . . , vn♢ is a basis of L. Note that det L
is, up to squares of units, independent of the choice of basis.

It is clear that if L is integral then det L ∈ R. If, in addition, the rank is odd
we have det L ∈ 2R: considering the expression for det L as an alternating sum
of products, transposition gives us pairs of products, equal because the matrix is
symmetric, and a product can be paired with itself only when either the rank is
even or the product includes an even factor from the diagonal.

A lattice is called maximal if it is maximal among all integral lattices in its ambient
quadratic space. Note that an integral lattice with unit determinant is necessarily
maximal since any proper super-lattice would have non-integral determinant; for a
similar reason an integral lattice of odd rank whose determinant is twice a unit is
maximal.

Definition 5.1. A special lattice is an integral R-lattice L of odd rank such that
L∨/L is cyclic as an R-module.

5.1. Local classification of special lattices. In this section R is the ring of
integers of a local field with valuation v and maximal ideal p. Since R is a principal
ideal domain all R-lattices are free.

Theorem 5.2. If L is a special lattice then L = A ⊥ Rw, where A is even
unimodular and w ∈ L.

Proof. The lattice L can be written as the orthogonal sum of modular lattices of
rank 1 or 2 [O’M73, §91C]. Say

L = A1 ⊥ · · · ⊥ As

where Ai = Ii A∨
i for some Ii ◁ R. Then

L∨/L =
⊕

i

A∨
i /Ii A∨

i ≃
⊕

i

(R/Ii)
dim Ai .

Since L is special, at most one Ii0
≠ R and necessarily dim Ai0

= 1. If all Ii = R
choose any i0 with dim Ai0

= 1, which exists since dim L is odd. In any case
L = A ⊥ Rw where A =

⊕
i ̸=i0

Ai is even unimodular and Ai0
= Rw. □

We now recall some useful facts about even unimodular lattices. In what follows
we will say a unit u of R is unramified if it is a square modulo 4.

Lemma 5.3. Let A be an even unimodular lattice. Then det A is an unramified
unit and HWv(A) = 1.
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Proof. When p ∤ 2 the lattice A has an orthogonal basis of vectors with unit norm
so det A is a unit. The Hilbert symbol is trivial on units, hence HWv(A) = 1.

When p ♣ 2 the lattice A is the orthogonal sum of even unimodular lattices of
rank 2 (since there are no even unimodular lattices of rank 1). An even unimodular
lattice of rank 2 has matrix

(
2a b
b 2c

)
with b a unit, hence its (signed) determinant

b2 − 4ac is the square of a unit modulo 4. Since the determinant for lattices of even
rank is multiplicative, it follows that det A is the square of a unit modulo 4.

For the Hasse-Witt invariant use the fact that for lattices A1 and A2 of even rank
we have HWv(A1 ⊥ A2) = HWv(A1)·HWv(A2)·(det A1, det A2)v (see [Lam05, (3.13)
in p.117]); the Hilbert symbol is trivial on unramified units so it suffices to prove
HWv(A) = 1 when A has rank 2. Since A is even unimodular there is some w1 ∈ A
with Q(w1) = α ∈ R×. Let w2 ∈ A such that ⟨w1, w2⟩ = 0 and let Q(w2) = β. The
vectors w1 and w2 span a lattice B ⊆ A with det(B) = −αβ = det A · s2 for some
s ∈ R and HWv(A) = HWv(B) = (α, β)v = (α, −αβ)v = (α, det A)v = 1 where
in the last equality we have used that α is a unit and that det A is an unramified
unit. □

In view of this lemma we define an invariant for even unimodular lattices as
follows.

Definition 5.4. If A is an even unimodular lattice, we let

d(A) = (p̃, det A)v .

where p̃ is a local uniformizer.

Note that d(A) is independent of the choice of uniformizer. Indeed, since det A
is an unramified unit the Hilbert symbol (u, det A)v equals 1 for any unit u.

Lemma 5.5. Let A be an even unimodular lattice. Then the invariant d(A), together
with the rank, determines the isometry class of A.

Proof. Suppose A and A′ are unimodular lattices of the same rank such that
d(A) = d(A′). The latter means that det A/ det A′ is a square modulo 4p and by the
local square theorem (see [O’M73, 63:1]) this implies that det A/ det A′ is a square
in R. We conclude A and A′ have the same rank, determinant and Hasse-Witt
invariant so they lie in isometric quadratic spaces ([O’M73, 63:20]). Finally, A
and A′ are maximal lattices in isometric quadratic spaces so they are themselves
isometric ([O’M73, 91:2]). □

Lemma 5.6. Let n ≥ 1 and d ∈ ¶±1♢. There is an even unimodular lattice A of
rank 2n and d(A) = d.

Proof. Pick u ∈ R× such that u ≡ 1 (mod 4) and (p, u)v = d, and write u = 1 − 4α
with α ∈ R. Let J be the binary lattice with matrix ( 2 1

1 2α ) which is even unimodular
of determinant u, and let H be the hyperbolic plane which is even unimodular of
determinant 1. Then A = J ⊥ Hn−1 has rank 2n, determinant u and invariant
d(A) = d. □

Proposition 5.7. Let L be a special lattice of determinant 2N with p ∤ N . Then
HWv(L) = 1, L is maximal, and the class of N modulo squares, together with the
rank, determines the isometry class of L. In particular L = A ⊥ Rw where A is
even unimodular of determinant 1 and Q(w) = N .
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Proof. Write L = A ⊥ Rw as in Theorem 5.2. From [Lam05, (3.13) in p.117] we
have HWv(L) = HWv(A) · HWv(Rw) · (−Q(w), det A)v. By Lemma 5.3, we have
HWv(A) = 1 and det A is an unramified unit; the hypothesis implies Q(w) is a
unit and so the Hilbert symbol (−Q(w), det A)v equals 1. Finally HWv(Rw) = 1
because it has rank 1, and it follows that HWv(L) = 1.

Since L is of odd rank with det L ∈ 2R× we have that L is maximal. From this it
follows, as in the proof of Lemma 5.5, that N and the rank determine the isometry
class of L.

For the last claim let A be an orthogonal sum of hyperbolic planes so it is even
unimodular with det A = 1 and consider a unary lattice Rw with Q(w) = N . Then
A ⊥ Rw has the same determinant and rank as L. □

We aim to classify the special lattices of a given rank and determinant. For this
purpose we introduce an invariant which, in the case of rank 3, is related to the
Eichler invariant of quaternion orders.

Definition 5.8. The Eichler invariant of a special lattice L of determinant 2N is
given by

e(L) =

{
1 if 4N Q(v) = 1 for some v ∈ L∨;

−1 otherwise.

Proposition 5.9. Let L be a special lattice of determinant 2N and write L = A ⊥
Rw as in Theorem 5.2. If p ∤ N then e(L) = 1 and if p ♣ N then e(L) = d(A).

Proof. We have L∨ = A ⊥ 1
2a Rw where a = Q(w) so any vector v ∈ L∨ can be

written as v = x
2a w+u with x ∈ R and u ∈ A. We compute 4N Q(v) = tx2+4N Q(u)

where t = N
a = det A. When p ∤ N we can assume, by Proposition 5.7, that

t = det A = 1 and so 4N Q(v) represents 1. When p ♣ N we have 4N Q(v) ≡ tx2

(mod 4p) represents 1 if and only if t is a square modulo 4p, i.e. if and only if
d(A) = 1. □

In any case we can always assume e(L) = d(A); when p ∤ N using the last part of
Proposition 5.7.

Corollary 5.10. For a special lattice of determinant 2N the Hasse-Witt invariant
satisfies HWv(L) = e(L)v(N).

Proof. Write L = A ⊥ Rw as in Theorem 5.2. We know HWv(A) = 1 by Lemma 5.3;
also HWv(Rw) = 1 since Rw has rank 1. Applying [Lam05, (3.13) in p.117] as
before we conclude HWv(A ⊥ Rw) = (−Q(w), det A)v. Since det A is an unramified
unit and N/Q(w) is a unit we have (−Q(w), det A)v = (N, det A)v = d(A)v(N) =
e(L)v(N). □

Corollary 5.11. Two special lattices of the same rank, determinant and Eichler
invariant are isometric.

Proof. Let L and L′ be the two lattices of determinant 2N . When p ∤ N the claim
follows from Proposition 5.7. When p ♣ N write L = A ⊥ Rw and L′ = A′ ⊥ Rw′.
The hypothesis e(L) = e(L′) implies, by Proposition 5.9, that d(A) = d(A′) and
hence, by Lemma 5.5 that A and A′ are isometric. Moreover Q(w)/Q(w′) =
det A′/ det A is the square of a unit so that Rw and Rw′ are isometric. We conclude
that L and L′ are isometric. □
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Theorem 5.12. For a given n ≥ 1, N ∈ R and e ∈ ¶±1♢ there exists a unique
isometry class of special lattices of rank 2n+1, determinant 2N and Eichler invariant
e, provided e = 1 when N ∈ R×.

Proof. Let A be an even unimodular lattice of rank 2n with invariant d(A) = e which
exists by Lemma 5.6. Then L = A ⊥ Rw where Q(w) = N/ det A has rank 2n + 1,
determinant 2N and e(L) = d(A) = e. Uniqueness follows from Corollary 5.11. □

5.2. Global classification. In this section we let R be the ring of integers of a
number field k with r1 real places. If p is a prime ideal of R, by Rp we denote the
completion of R at p. If L is an R-lattice, then Lp = L ⊗ Rp.

Proposition 5.13. Let L be an R-lattice of odd rank. Then L is special if and only
if Lp is special for all non-archimedean places p of R.

Proof. If L is special then L∨/L ≃ R/I for some ideal I ◁R. Then L∨
p /Lp ≃ Rp/Ip

is cyclic.
For the converse let S be a finite set of primes such that Lp is even unimodular

for p ̸∈ S. For p ∈ S we have L∨
p /Lp ≃ Rp/Ip = R/(Ip ∩ R) for some ideal

Ip ◁ Rp. Then, using the Chinese remainder theorem, we have L∨/L ≃ R/I where
I =

∏
p∈S(R ∩ Ip). □

Theorem 5.14. For a given n ≥ 3 odd, N ∈ R and ep ∈ ¶±1♢ for each p ♣ N , there
is a unique genus of totally positive definite special lattices of rank n, determinant
2N and local Eichler invariants ep, provided

∏

p♣N

ev(N)
p = (−1)[k:Q].

Proof. This follows immediately from the local classification Theorem 5.12, together
with the fact [O’M73, 72:1] that the only global obstruction is

∏
HWv(L) = 1. By

Corollary 5.10 the left hand side is the product of HWv(L) for the non-archimedean
places. Note that HWv(L) = 1 for complex places and HWv(L) = −1 for real
places; hence the product of HWv(L) for the archimedean places is (−1)r1 . Since
[k : Q] ≡ r1 (mod 2) this equals the right hand side. □

6. A special global quinary lattice for GU(2, B)

Let D− =
∏

p∈S p and let D+ be a positive integer, not necessarily square-free,

but coprime to D−, and let D := D−D+. Let Q be the quadratic form on U given
by

(14) Q (( s r
r t )) =

1

4D
((s − t)2 + 4N(r)),

where N(r) = rr is the norm of r as an element of the quaternion algebra.

Remark 6.1. It follows from its definition that the quadratic form Q is invariant
under translation by centre elements, i.e. Q(v + λI) = Q(v) if λ ∈ Q.

If A =
(

a b
c d

)
∈ M2(B), let Adj(A) =

(
d −b

−c a

)
denote its usual adjoint matrix.

Lemma 6.2. If v ∈ U the following relation holds

(15)
1

4D
(v − Adj(v))2 =

(
Q(v) 0

0 Q(v)

)
.
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Proof. Follows from an elementary computation. □

In particular, we can alternatively define the quadratic form via

(16) Q(v) =
1

8D
Tr((v − Adj(v))2).

Definition 6.3. Let (V, Q) be the quadratic space V = U/QI, with the quadratic
form Q in the quotient space.

Remark 6.4. Over Q we can take an orthogonal complement for the scalar matrices
subspace (given by the elements in U whose trace is zero), and the quadratic space(

( 1 0
0 1 )

⊥
, Q
)

(isometric to the space (V, Q)) is isometric to the space considered

by Ibukiyama in [Ibu19]. In this case the quadratic forms becomes Q
(

t r̄
r −t

)
=

1
D (t2 + N(r)) (i.e. Q(A) = 1

2D Tr(A2)). The advantage of working with the 6-
dimensional space will prove crucial while working over Z2, cf. Remark 4.5.

Since B ⊗R splits over C, B can be embedded in M2(C), hence M2(B) in M4(C),
so the following is immediate.

Lemma 6.5. Let g ∈ GU(2, B) and v ∈ U , then Tr(gvg−1) = Tr(v).

Note that v, considered as an element of M2(B), has rational scalar entries on
the leading diagonal, so its trace as a 2 × 2 matrix and its trace as an element of
M4(C) differ only by a factor of 2.

Proposition 6.6. The action of GU(2, B) on U (and on V ) preserves the quadratic
form Q, up to a factor ν(g).

Proof. Note that v−Adj(v) = 2v−Tr(v), hence by (16), 8D Q(gvg−1) = Tr(2gvg−1−
Tr(gvg−1))2. But (2gvg−1−Tr(gvg−1))2 = g(2v−Tr(v))2g−1 = g(v−Adj(v))2g−1 =

4Dg
(

Q(v) 0
0 Q(v)

)
g−1 = 4D Q(v)I and the result follows. □

6.0.1. The quadratic form at split primes. If p is a split prime, i.e. Bp ≃ M2(Qp),

with r 7→

(
a b
c d

)
, the quadratic form (on trace zero elements) 1

D

(
t2 + rr

)
becomes

1
D

(
t2 + ad − bc

)
, giving an isomorphism GU(2, Bp)/Q×

p ≃ SO5(Qp), the split special
orthogonal group.

6.0.2. The quadratic form at non-split primes. As mentioned earlier, we can identify
the quotient Up/QpI with the subspace of trace zero matrices. If A ∈ Up and

Ã = ξ−1Aξ ∈ Ũp, tr(A) = 0 ⇐⇒ tr(Ã) = 0, hence the trace zero elements can be
described by

Ṽp =

{(
y s
t y

)
: t, s ∈ Qp, y ∈ Bp, y + y = 0

}
.

and the quadratic form becomes

Q(A) =
1

2D
tr(A2) =

1

2D
tr(Ã2) =

1

D

(
st + y2) .

This is the quadratic form associated with the non-split special orthogonal group
SO∗

5(Qp) (cf. [GR06, §3]), and we get isomorphisms

GU(2, Bp)/Q×
p ≃ GU(1, 1, Bp)/Q×

p ≃ SO∗
5(Qp).
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6.1. A global lattice in V . Let D = D−D+ as before, and consider the 5-
dimensional Q-vector space V = U/QI with the quadratic form Q defined in (14).

Recall that by the local-to-global principle, to give a lattice in a Q-vector space
is equivalent to giving it locally for each finite place p.

Definition 6.7. Let L be the Z-lattice in V whose local completion Lp := L ⊗ Zp

at a prime p is as follows.

(1) For p ∤ D, Lp := (U+
p0/ZpI)∨.

(2) For p ♣ D+, Lp := (U+
pn/ZpI)∨, where n = vp(D+).

(3) For p ♣ D−, Lp := (U−
p /ZpI)∨.

Proposition 6.8. The lattice L is integral with respect to the quadratic form Q.
Furthermore, there exists a basis such that the Hessian matrix of the quinary form
is as follows:

• If p ∤ D−, let n = vp(D), then

H(Q) = 2D ⊥
D

pn

(
0 1
1 0

)
⊥

D

pn

(
0 1
1 0

)
.

• If p ♣ D− is odd, let ε be a non-square modulo p. Then

H(Q) = 2Dε ⊥
2D

p
⊥

−2Dε

p
⊥

D

p

(
0 1
1 0

)
.

• If 2 ♣ D−, then

H(Q) =
−2D

3
⊥

−D

2

(
2 1
1 2

)
⊥

D

2

(
0 1
1 0

)
.

In particular, the determinant of H(Q) equals 2D.

Proof. We can check this locally prime-by-prime. For the determinant statement,
since Q is positive-definite and D > 0, it is enough to check that the valuation is
correct at each prime p.

(1) If p ∤ D the quaternion algebra B is unramified at p. In the canonical basis
B :=

{
( 1 0

0 0 ) , ( 0 0
0 1 ) , ( 0 1

0 0 ) ,
(

0 0
−1 0

)}
the quadratic norm form has Hessian

matrix ( 0 1
1 0 ) ⊥ ( 0 1

1 0 ). Let n = vp(D). Consider the basis for U+
pn

{(
I2 02

02 02

)
,

(
02 02

02 I2

)
,

(
02 vπ̄n

πnv 02

)
: v ∈ B

}
.

In particular, a basis for the quotient U+
pn/ZpI is given by the last five

elements. It is easy to check that in such a basis, the quadratic form Q has
Hessian matrix

1

4D

(
2 ⊥ 4pn

(
0 1
1 0

)
⊥ 4pn

(
0 1
1 0

))
.

For Lp = (U+
pn/Zp)∨ a Hessian matrix is then

(17) 2D ⊥
D

pn

(
0 1
1 0

)
⊥

D

pn

(
0 1
1 0

)
.

Integrality at p follows from the fact that D/pn ∈ Z×
p .
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(2) If p ♣ D−, the quaternion algebra is ramified at p. Recall from Lemma 6.2
that if v ∈ U , (v − Adj(v))2 is a diagonal matrix, hence its trace (which
gives the quadratic form) is invariant under conjugation by ξ. In particular,
it is enough to understand the lattice

{(
r ps
t r̄

)
: s, t ∈ Zp, r ∈ Op

}
.

with the quadratic form 1
4D ((r − r̄)2 + 4pst). If p is odd, then Op =

⟨1, µ, π, µπ⟩Zp
, where the last three elements have trace zero and satisfy

µ2 = ε ∈ Z×
p (a non-square), π2 = −p and πµ = −µπ. Then the Hessian

matrix of the quadratic form 1
4D (r − r̄)2 has diagonal entries (see [Brz83]

and also Section 5 of [Lem11])

1

4D
(0 ⊥ 8ε ⊥ 8p ⊥ −8pε).

Then in the basis
{( µ 0

0 −µ

)
,
(

π 0
0 −π

)
,
( µπ 0

0 −µπ

)
, ( 0 1

0 0 ) ,
(

0 0
p 0

)}
(a basis for

U−
p /ZpI) the quadratic form has matrix

4

4D

(
2ε ⊥ 2p ⊥ −2pε ⊥

(
0 p
p 0

))
.

In particular, its dual lattice has Hessian matrix

(18) 2Dε ⊥
2D

p
⊥

−2Dε

p
⊥

D

p

(
0 1
1 0

)
.

This implies both the integrality and the determinant statement (recall that
vp(D) = 1 hence D/p ∈ Z×

p ).

If p = 2, B2 is the Hamilton 2-adic quaternion algebra (i2 = j2 = −1),

a basis for O2 is ⟨1, i, j, 1+i+j+k
2 ⟩. A better basis for the quadratic form

(r − r̄)2/2 (over Z2) is ⟨1, 1+i+j+k
2 , −1+2i−j−k

3 , −1−i+2j−k
3 ⟩, where the Gram

matrix becomes

4

4D

(
0 ⊥ −3/2 ⊥

2

3

(
−2 1
1 −2

))

Then, the quinary form in the quotient equals

−3

2D
⊥, −

2

3D

(
2 −1

−1 2

)
⊥

1

D

(
0 2
2 0

)
,

and its dual lattice has Gram matrix

−2D

3
⊥

−D

2

(
2 1
1 2

)
⊥

D

2

(
0 1
1 0

)
,

which is an integral quadratic form, whose Hessian matrix has determinant
valuation 2 (since D/2 is a unit in Z2).

□

Proposition 6.9. The lattice L is special. Furthermore, its Eichler and Hasse-Witt
invariants are the following:

(1) HW∞(Q) = −1.
(2) HWp(Q) = e(Lp) = 1 if p ∤ D−.
(3) HWp(Q) = e(Lp) = −1 if p ♣ D−.
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Proof. By Corollary 5.10 it is enough to compute the Eichler invariant at each finite
place and the Hasse-Witt invariant at the infinite place. Note that Proposition 6.8
expresses each completion of the lattice at a finite place as an orthogonal sum of a
rank one lattice and a unimodular one, hence L is special by Proposition 5.13.

(1) At the infinity place, (2) gives HW∞(Q) = (−1, −1)∞(1, 1)10
∞ = −1.

(2) If p ∤ D−, Proposition 6.8 implies that e(Lp) = (p, 1)p = 1.
(3) If p ♣ D− is odd, Proposition 6.8 implies that e(Lp) = (p, ε)p = −1 while

the case p = 2 gives e(L2) = (2, −3)2 = −1.

□

Remark 6.10. Let (Ṽ , Q̃) be a quinary quadratic space, whose quadratic form
is positive definite. Then by Remark 2.7 the even Clifford algebra Cliff0(Ṽ ) is
isomorphic to M2(B), where B is a quaternion algebra ramified precisely at infinity
and the finite primes where Q̃ has Hasse-Witt invariant −1. The quadratic space
(V, Q) constructed from M2(B) then has the same Hasse-Witt invariants as (Ṽ , Q̃)
by the last proposition, in particular they are isometric, providing an isomorphism
GU(2, B)/Q× ≃ SO(Ṽ ).

Remark 6.11. Let (L̃, Q̃) be a quinary lattice, whose quadratic form is positive
definite, and is special of determinant 2D. (Note that if D is square-free, (L̃, Q̃) is
automatically special.) Let S = ¶p : e(L̃)p = −1♢ and suppose that vp(D) = 1
for all p ∈ S. Let (L, Q) be the quinary lattice of Definition 6.7. Then (L, Q) and
(L̃, Q̃) are in the same genus, in particular SO(Q) ≃ SO(Q̃).

6.2. Radicals. Let (q, Λp) be an integral quadratic form, where Λp is a Zp-lattice.

Definition 6.12. The radical of the form (q, Λp) equals

Rad(q, Λp) := ¶v ∈ Λp ⊗ (Z/2p) : ⟨v, w⟩ ≡ 0 (mod 2p) ∀w ∈ Λp♢ .

In particular, if p ≠ 2, Rad(q, Λp) is an Fp-vector space, while for p = 2 it is a
Z/4-module.

Lemma 6.13. Let p be a prime number and (Q, Lp) be as in Definition 6.7. If
p ♣ D then Rad(Q, Lp) is a Z/2p lattice of rank 1.

Proof. Recall from Proposition 6.8 that the quadratic form Q is equivalent to

H(Q) =





2D ⊕ D
pn

(
0 1

1 0

)
⊕ D

pn

(
0 1

1 0

)
if p ♣ D+,

2Dε ⊕ 2D
p ⊕ −2Dε

p ⊕ D
p

(
0 1

1 0

)
if p ♣ D−, p ̸= 2,

−2D
3 ⊕ −D

2

(
2 1

1 2

)
⊕ D

2

(
0 1

1 0

)
if 2 ♣ D−.

In all cases, the first element of the basis clearly spans the radical. □

7. Stabilisers of the local lattices Lp

Let us compute for each prime p the stabiliser (under conjugation) of the lattice
Lp of Definition 6.7. For ease of notation, let us denote by Up either U+

p0 , U+
pn or

U−
p according to the case.
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Lemma 7.1. The stabiliser in GU(2, Bp) of the rank five lattice Lp equals that of
the rank six lattice Up.

Proof. Since the quadratic form is invariant under the conjugation action of GU(2, Bp)
(by a local version of Proposition 6.6) the stabiliser of Lp is the same as that of its
dual lattice Up/ZpI, which is what we shall actually look at.

The action of GU(2, Bp) is trivial at the identity matrix, hence if an element
stabilises the rank 6 lattice Up it also stabilises the quotient Up/ZpI. To prove the
converse, let g be an element stabilising the quotient lattice Up/ZpI. Let v ∈ Up be
any vector, so gv̄g−1 = w̄ for some w in Lp. In particular, there exists λ ∈ Qp such
that

(19) gvg−1 = w + λ ( 1 0
0 1 ) ,

for some element w ∈ Up in the preimage of w̄. Since v, w ∈ Up, their traces are
integral and since tr(gvg−1) = tr(v) (by Lemma 6.5), 2λ ∈ Zp. This gives the
statement when p ≠ 2. Suppose that p = 2 and λ ̸∈ Z2. We can look at the
“determinants” of equation (19). For that purpose, take a quadratic extension of Q2

that splits the quaternion algebra, and take the determinant (as 4 × 4 matrices with
coefficients in such an extension). Since all elements of U2 have integral entries, their
determinants are integral. Since det(AB) = det(BA), det(gvg−1) is integral, which
is not the case for w +

(
λ 0
0 λ

)
(as it corresponds to a 4×4 matrix with integral entries

outside the diagonal, but with negative valuation at all diagonal elements). □

Proposition 7.2. Let p ̸∈ S be an unramified prime.

(1) The subgroup K0,p of GU(2, Bp) preserves the Zp-lattice U+
p0 ⊆ Up, which

was defined by

U+
p0 =








s

(
a b
c d

)

(
d −b

−c a

)
t


 : s, t, a, b, c, d ∈ Zp





(2) In fact, the image of K+
p0 is the full stabiliser of U+

p0 in GU(2, Bp)/Q×
p .

Proof. (1) Immediate.
(2) Suppose g ∈ GU(2, Bp) ≃ GSp2(Qp) is such that g U+

p0g−1 = U+
p0 . By [Ibu19,

Lemma 4.1], gM4(Zp)g−1 = M4(Zp), hence we are led to compute the
normaliser of M4(Zp). Although the same proof given by Eichler to prove the
“Lemma” ([Eic73], page 93 for M2(Zp)) applies mutatis mutandis, we recall
the one given by Ibukiyama. For some sufficiently large n, png ∈ M4(Zp),
and then pngM4(Zp) = pnM4(Zp)g is a two-sided ideal of M4(Zp). As in
[Ibu18, Lemma 3.1], necessarily pngM4(Zp) = peM4(Zp) for some e ≥ 0.

Equating sets of determinants, p4n det(g)Zp = p4eZp, so det(g) ∈ p4(e−n)Z×
p ,

and pn−eg ∈ GSp2(Qp) ∩ GL4(Zp) = K+
p0 , as required.

□

Let us state an elementary result.
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Lemma 7.3. If A ∈ 1
pn Zp ( 1 0

0 1 ) + M2(Zp) has integral determinant, then A ∈

M2(Zp). Similarly, if A ∈ 1
pn Zp ( 1 0

0 1 ) +

(
Zp p−nZp

pnZp Zp

)
has integral determinant,

then A ∈

(
Zp p−nZp

pnZp Zp

)
.

Proof. Suppose on the contrary that A =
( a

pr b

c d
pr

)
with a, d ∈ Z×

p , 0 < r ≤ n. The

hypothesis det(A) = ad
p2r − bc ∈ Zp implies 2r ≤ 0 getting a contradiction. The other

case is similar. □

Proposition 7.4. Let p ̸∈ S be an unramified prime.

(1) The subgroup K+
pn of GU(2, Bp) preserves the Zp-lattice U+

pn ⊆ Up, which
was defined by

U+
pn :=








s

(
a b
c d

)

(
d −b

−c a

)
t


 : s, t, b, d ∈ Zp, a, c ∈ pnZp





.

So does the Atkin-Lehner element W +
pn .

(2) In fact, the subgroup of GU(2, Bp)/Q×
p generated by the images of K+

pn and

W +
pn is the full stabiliser of U+

pn .

Proof. (1) Recall that

K+
pn := ¶k ∈ GU(2, Bp) : h−nkhn ∈ GL4(Zp)♢,

where h := diag(1, 1, 1, p). Given A =




s

(
a b
c d

)

(
d −b

−c a

)
t


 ∈ Up,

(20) h−nAhn ∈ M4(Zp) ⇐⇒




s

(
a pnb
c pnd

)

(
d −b

−p−nc p−na

)
t


 ∈ M4(Zp)

⇐⇒ b, d ∈ Zp, a, c ∈ pnZp ⇐⇒ A ∈ U+
pn .

If k ∈ K+
pn and A ∈ U+

pn , by Proposition 4.2, kAk−1 ∈ Up. Let k = hnmh−n ∈ K+
pn ,

with m ∈ GL4(Zp), and A = hnm′h−n ∈ U+
pn , with m′ ∈ M4(Zp), then

kAk−1 = hnm(h−n(hnm′h−n)hn)m−1h−n = hn(mm′m−1)h−n,

and the latter is an element in Up which is in U+
pn by (20).

Recall that W +
pn :=

( 0 0 pn 0
0 0 0 1
1 0 0 0
0 pn 0 0

)
. Then if A ∈ U+

pn is as before,

W +
pnAW +

pn

−1
= p−nW +

pnAW +
pn =




t

(
pnd −b

−pnc a

)

(
a b

pnc pnd

)
s


 ∈ U+

pn .
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(2) Note that K+
pn = GU(2, Bp) ∩ R̃×, where R̃ = Ψ−1(R) (cf. (8)) given by

R̃ =




(
Zp Zp

Zp Zp

) (
pnZp Zp

pnZp Zp

)

(
Zp Zp

pnZp pnZp

) (
Zp p−nZp

pnZp Zp

)

 .

By Lemma 3.6 it suffices to show that if g ∈ GU(2, Bp) satisfies g−1 U+
png = U+

pn

then g−1 R̃g = R̃. Switching g and g−1 to get the reverse inclusion, it suffices to
show that g−1 R̃g ⊆ R̃.

By Lemma 4.3, the minimal order containing U+
pn equals

R′ =
(

ZpI2 02

02 ZpI2

)
⊕




(
pnZp pnZp

pnZp pnZp

) (
pnZp Zp

pnZp Zp

)

(
Zp Zp

pnZp pnZp

) (
pnZp Zp

p2nZp pnZp

)
.




In particular, if g−1 U+
png = U+

pn then g−1 R′g = R′. R̃ is generated (as a Zp-module)

by R′ and by elements of the form
(

M 02
02 02

)
or
(

02 02

02 M ′

)
, with M ∈ M2(Zp) and

M ′ ∈
(

Zp p−nZp

pnZp Zp

)
. The Atkin-Lehner operator also fixes R′, and since conjugating

by W +
pn a general element of the first form gives one of the second, it suffices to

show that if M ∈ M2(Zp), g−1
(

M 02
02 02

)
g ∈ R̃.

Write g = ( A B
C D ), with A, B, C, D ∈ M2(Qp). From g∗ g = ν(g) I, we get

g−1 =
1

ν(g)
g∗ =

1

ν(g)

(
A C
B D

)
.

Recall that if A =
(

a b
c d

)
then A =

(
d −b

−c a

)
, and AA = AA = det A. Now,

(21) g−1
(

M 02

02 02

)
g =

1

ν(g)

(
AMA AMB
BMA BMB

)
.

In the particular case M = I2, since
(

I2 0
0 0

)
∈ R′, looking at the top left and bottom

right blocks we find that det A
ν(g) , det B

ν(g) ∈ Zp.

Since
(

pnM 02

02 02

)
∈ R′, its conjugate is also in R′, hence the relation (21) im-

plies that 1
ν(g) ApnMA ∈ Zp + pnM2(Zp), so 1

ν(g) AMA ∈ 1
pn Zp + M2(Zp). On the

other hand, det
(

1
ν(g) AMA

)
= det A

ν(g) det(M) ∈ Zp, hence Lemma 7.3 implies that
1

ν(g) AMA ∈ M2(Zp).

Similarly, 1
ν(g) BMB ∈ 1

pn Zp +

(
Zp p−nZp

pnZp Zp

)
. The same determinant compu-

tation combined with Lemma 7.3 implies that 1
ν(g) BMB ∈

(
Zp p−nZp

pnZp Zp

)
.

Finally,
1

ν(g)
AMB =

AMA

ν(g)

ν(g)

det A

AB

ν(g)
.

We have already shown that the first factor is in M2(Zp), the second factor is in Zp

since det A
ν(g) ∈ Z×

p , and the third factor is in

(
pnZp Zp

pnZp Zp

)
, using the special case M =

I2. Hence 1
ν(g) AMB ∈

(
pnZp Zp

pnZp Zp

)
, and similarly 1

ν(g) BMA ∈

(
Zp Zp

pnZp pnZp

)
.

□
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Proposition 7.5. Let p ∈ S be a ramified prime.

(1) The subgroup K−
p of GU(2, Bp) preserves the Zp-lattice U−

p ⊆ Up, which was

defined by U−
p = ξ Ũ−

p ξ−1, where

Ũ−
p :=

{(
r ps
t r

)
: r ∈ Op, s, t ∈ Zp

}
.

So does the Atkin-Lehner element ωp.
(2) The subgroup of GU(2, Bp)/Q×

p generated by the images of K−
p and ωp is

the full stabiliser of U−
p .

Proof. (1) Let h̃ := ( π 0
0 1 ), where π2 = −p. Recall that K−(p) is the stabiliser (via left

multiplication) of the lattice p⊕Op = h̃O2
p. Then k ∈ K−(p) ⇐⇒ h̃−1kh̃ ∈ M2(Op).

Given Ã = ( r s
t r ) ∈ ξUpξ−1,

(22) h̃−1Ãh̃ ∈ M2(Op) ⇐⇒

(
π−1rπ π−1s

tπ r

)
∈ M2(Op)

⇐⇒ r ∈ Op, s ∈ pZp, t ∈ Zp ⇐⇒ Ã ∈ Ũ−
p .

Now given k ∈ K−(p), k = h̃mh̃−1 with m ∈ GL2(Op), hence

kÃk−1 = h̃mh̃−1Ãh̃m−1h̃−1.

If Ã ∈ Ũ−
p then h̃−1Ãh̃ = m′ ∈ M2(Op), and h̃−1(kÃk−1)h̃ = mm′m−1 ∈ M2(Op),

so kÃk−1 ∈ Ũ−
p , as required. Also,

ωpÃω−1
p = p−1ωpÃωp =

(
r pt

s/p r

)
∈ Ũ−

p .

(2) Suppose that g ∈ GU(1, 1, Bp) is such that gŨ−
p g−1 = Ũ−

p . By Lemma 4.7, the
element g also normalises the order

{(
a b
c d

)
∈

(
Rp pRp

Rp Rp

)
: a ≡ d̄ (mod π)

}
.

By [Ibu19, Lemma 4.3], then gRg−1 = R, where R =

(
Op p

p−1 Op

)
is the left order

of p ⊕ Op (this is precisely the statement of [Ibu19, Corollary 4.4], which is only
stated for odd primes).

Looking at the form of R, clearly for some sufficiently large n, png ∈ R, and then
pngR = pnRg is a two-sided ideal of R. As in [Ibu18, Proposition 3.2], pngR = ωe

pR

for some e ≥ 0. Recalling that ω2
p = pI, ω2n−e

p gR = R, so ω2n−e
p g ∈ R×. Letting

m = ⌊ 2n−e+1
2 ⌋, either pmg ∈ R× ∩ GU(1, 1, Bp) = K−(p), or pmω−1

p g ∈ R× ∩

GU(1, 1, Bp) = K−(p), as required.
□

7.1. Paramodular subgroups as kernels of sign characters. Let Stab(Lp) :=
¶g ∈ GU(2, Bp) : gvg−1 = v ∀v ∈ Lp♢ be the stabiliser of Lp. If g ∈ Stab(Lp)
then the action of g preserves Rad(Q, Lp). Suppose that p ♣ D, and let v0 denote
a generator of Rad(Q, Lp) as Z/2p-module (it has rank 1 by Lemma 6.13). Since
Q(gv0g−1) = Q(v0), we must have gv0g−1 ≡ ±v0 (mod 2p).
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Definition 7.6. Let p be a prime dividing D. Define a homomorphism θp :
Stab(Lp) → ¶±1♢ by

gv0g−1 ≡ θp(g)v0 (mod 2p).

By Propositions 7.5 and 7.4, if p ♣ D then

Stab(Lp) =

{
⟨pZ, ωp, K−

p ⟩ if p ♣ D−,

⟨pZ, W +
pn , K+

pn⟩ if pn ∥ D+.

Proposition 7.7. Let p be an odd prime such that p ♣ D. Then:

(1) θp(pZ) = ¶1♢.
(2) If p ♣ D−, θp(K−

p ) = ¶1♢ and θp(ωp) = −1.

(3) If pn ∥ D+, θp(K+
pn) = ¶1♢ and θp(W +

pn) = −1.

Proof. (1) Immediate.

(2) From the proof of Proposition 6.8, it follows that if p ≠ 2, then the generator of

Rad(Q, Lp) is the element
( pµ 0

0 −pµ

)
(we are taking the dual of the basis described

in the proof of Proposition 6.8), where tr(µ) = 0 and µ2 = ε. Recall that Op =

⟨1, µ, π, πµ⟩, where πµ = −µπ, π2 = −p. If g =
(

a π−1b
πc d

)
∈ K−

p , then g−1 =
1

ν(g)

(
d̄ b̄π̄−1

c̄π̄ ā

)
(where ν(g) is a unit). In particular, d̄a− b̄c = ν(g) (as π̄−1 = −π−1).

Then

(23)
p

ν(g)

(
d̄ b̄π−1

c̄π a

)(
µ 0
0 µ̄

)(
a π−1b
πc d

)
=

p

ν(g)

(
d̄µa + b̄π−1µ̄πc ∗

∗ ∗

)
.

The (1, 1) entry equals then p
ν(g) (d̄µa − b̄µc) (recall that µ̄ = −µ and that µ

and π anti-commute), and since Op/(π) is commutative (generated by ¶1, µ♢), it is

congruent to pµ d̄a−b̄c
ν(g) = pµ modulo πp. Looking at this one entry modulo πp is

enough to distinguish the cases gv0g−1 ≡ ±v0 (mod 2pLp).
For the Atkin-Lehner statement,

(
0 1
p 0

)(
pµ 0
0 pµ̄

)(
0 1/p
1 0

)
=

(
pµ̄ 0
0 pµ

)
= −

(
pµ 0
0 −pµ

)
.

For p = 2 (the (−1, −1) algebra), let µ = 2D
(

1+i+j+k
2

)
and let π = i + k,

so that R2 = ⟨1, µ, π, πµ⟩ and π generates the maximal ideal. From the proof of
Proposition 6.8 it follows that once again the generator of Rad(Q, L2) is the element( 4µ 0

0 −4µ

)
. Looking at the (1, 1) entry of (23), we are left to prove that

(24)
d̄µa + b̄π̄−1µ̄πc

ν(g)
≡ µ (mod 4).

Recall that the maximal order of B2 equals R2 = ⟨1, 1+i+j+k
2 , −1+2i−j−k

3 , −1−i+2j−k
3 ⟩

(so µ equals 2D times the second element). Note that the left hand side of (24)
lies in 4R2 so in particular, it can be written as 4α + βµ + 4γe3 + 4δe4, for some
α, β, γ, δ ∈ Z2, where e3, e4 denote the third and fourth elements of the generators
of R2. In particular, it is congruent to βµ modulo 4L2 (as expected).

It is easy to check that π̄−1µ̄π = −2D + µ
3 − 2De4, hence the left hand side of

(24) is congruent to d̄µa−b̄µc
ν(g) modulo 4L2.
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On the other hand, since R2/2 is commutative (as can easily be verified), d̄µa−b̄µc
ν(g)

is congruent to µ modulo 8R2 (recall that g−1g = 1 together with π̄ = −π implies
that d̄a + b̄c = ν(g)). In particular,

d̄µa − b̄µc

ν(g)
= 8α̃ + β̃µ + 8γ̃e3 + 8δ̃e4.

Since tr(1) ≡ tr(e3) ≡ tr(e4) ≡ 0 (mod 2), the right hand side of the previous line
has trace congruent to 2Dβ̃ (mod 16). Using the fact that in a quaternion algebra,
tr(αβ) = tr(βα), the left hand side has trace equal to

tr

(
(d̄a − b̄c)

ν(g)
µ

)
= tr(µ) = 2D.

Since v2(D) = 1, we get that β̃ ≡ 1 (mod 4) as stated. The Atkin-Lehner statement
follows from the same proof of the odd prime case, noting that (once again) µ̄ ≡ −µ
modulo 4L2.
(3) Arguing as in the previous case, v0 := 2D ·

(
I2 02
02 02

)
is a generator for the radical.

Given g =
(

a b
c d

)
∈ K+

pn ⊂ GU(2, Bp) ≃ GSp2(Qp),

gv0g−1 =
2D

ν(g)

(
a b
c d

)(
I2 02

02 02

)(
a c

b d

)
=

2D

ν(g)

(
aa ac
ca cc

)
.

The condition
1

ν(g)

(
a b
c d

)(
a c

b d

)
= I4,

implies that aā = ν(g) − bb̄ and cc̄ = ν(g) − dd̄. Then

gv0g−1 − v0 =
2D

ν(g)

(
ν(g) − bb − ν(g) ac

ca ν(g) − dd̄

)
=

=
2D

ν(g)
(ν(g) − dd̄) ·

(
I2 0
0 I2

)
−

2D

ν(g)

(
(ν(g) + bb̄ − dd̄)I2 ac

ca 02

)
.

The first term is zero in Up/QpI, hence it is enough to check that ν(g) + bb̄ − dd̄ ≡ 0

(mod 2p). The equivalence g−1g = I4 implies that ν(g) − bb̄ − dd̄ = 0, hence it is

enough to prove that 2bb ≡ 0 (mod 2p). The fact g ∈ K+
pn =⇒ b ∈

(
pnZp Zp

pnZp Zp

)
,

so bb = det b ∈ pnZp hence the statement. Regarding the Atkin-Lehner statement,

W +
pn

v0

2D
W +

pn

−1
=




0 0 pn 0
0 0 0 1
1 0 0 0
0 pn 0 0



(

I2 02

02 02

)



0 0 1 0
0 0 0 p−n

p−n 0 0 0
0 1 0 0




=




0 0 0 0
0 0 0 0
1 0 0 0
0 pn 0 0







0 0 1 0
0 0 0 p−n

p−n 0 0 0
0 1 0 0


 =

(
02 02

02 I2

)
≃ −

v0

2D
,

where the last statement comes from the fact that our lattice is a quotient by scalar
matrices. Then θpn(W +

pn) = −1. □
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Remark 7.8. Our lattice Lp with quadratic form Q is equivalent (up to unit
scaling of the form) to Gross’s Λ(N) with his ⟨, ⟩/N [Gro16, §5], to Tsai’s Lm

with ⟨, ⟩m [Tsa13, Definition 7.1.1], and to Lachausée’s L with quadratic form q′

[Lac20, Definition 3.4.1, §3.5]. Our v0 is Gross’s Nc, Tsai’s pmv0 and Lachausée’s v′
0.

Remarque 2 after [Lac20, Proposition-Définition 3.5.1] shows that our θpn (when
descended to GU(2, Bp)/Q×

p ≃ SO5(Qp)) is the same as his α, with kernel his J+

(case n = 1), or the character considered for any n ≥ 1 by Tsai [Tsa13, Definition
7.1.2]. All these authors work more generally with SO2m+1(Qp) for any m ≥ 1,
where the kernel of θpn on SO2m+1(Qp) is Brumer and Kramer’s generalisation of
Γ0(pn) for m = 1 and paramodular subgroups for m = 2 [BK14].

Remark 7.9. A clear statement of Proposition 7.4(2) is given in [Tsa13, §6.2, p.81],
and some combination of Propositions 7.4(2) and 7.7(3) is stated in [Gro16, §5
“When n = 2”]. As far as we know, the detailed proofs we present here are the first
in the literature.

Remark 7.10. As explained in § 2, we may reconstruct M2(Bp) as the even
part of the Clifford algebra of the quadratic space Vp. The multiplier character
ν : GU(2, Bp) → Q×

p (well-defined modulo squares on GU(2, Bp)/Q×
p ) becomes

the spinor norm ν : SO5(Qp) → Q×
p /(Q×

p )2 or ν : SO∗
5(Qp) → Q×

p /(Q×
p )2. Let

χ : Q×
p → ¶±1♢ be the unramified character. Then χ ◦ ν acts as +1 on K+

pn

(pn ∥ D+) or K−
p (p ♣ D−), on which ν takes unit values. Its acts as −1 on the

Atkin-Lehner elements Wpn (when n is odd) and ωp, on which we have seen ν takes
values pn, p respectively. So when pn ∥ D+ with n odd, θp agrees with χ ◦ ν. But
beware that when pn ∥ D+ with n even, θp and χ ◦ ν are not the same, as the latter
is the trivial character.

8. An isomorphism of algebraic modular forms for GU(2, B) and SO(V ).

8.1. Finite-dimensional complex representations of GSp2(C) and SO5(C).
Whereas B ⊗ R ̸≃ M2(R), B ⊗ C ≃ M2(C), so the situation is like for B ⊗ Qp with
p ∤ D−. Thus GU(2, B ⊗ C) ≃ GSp2(C) and

V ⊗ C ≃








t

(
d −b

−c a

)

(
a b
c d

)
−t


 : t, a, b, c, d ∈ C





,

with Q(A) = 1
D (t2 + ad − bc). Let W be the natural 4-dimensional complex

representation of GU(2, B ⊗ C) ≃ GSp2(C) . Given positive integers a ≥ b ≥ 0, let
n = a + b. Consider the representation W ⊗(n) (the tensor product representation).
The permutation group Sn acts on W ⊗(n) and its action commutes with that of
GSp2(C). The Young diagram

(25) 1 2 · · · b · · · a

1 2 · · · b

gives rise to a idempotent on the complex group algebra of Sn (as explained for
example in [FH91, Section 4.1]). More concretely, enumerate the squares of (25)
(from 1 to a in the first row and from a+1 to n in the second one). The diagram (25)
corresponds to the partition λ : n = a + b. Let P be the subgroup of Sn preserving
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the rows of (25) (via our enumeration) and Q that preserving the columns. Define
two elements:

aλ =
∑

σ∈P

eσ and bλ =
∑

τ∈Q

sgn(τ)eτ .

Then define cλ := aλ · bλ, and let Sλ denote the subspace cλW ⊗(n). Such a
representation is not in general irreducible. For each pair of indices I = ¶p, q♢ with
1 ≤ p < q ≤ n, let ΦI : W ⊗(n) → W ⊗(n−2) be the linear map

(26) ΦI(v1 ⊗ · · · ⊗ vn) = E(vp, vq)v1 ⊗ · · · ⊗ v̂p ⊗ · · · ⊗ v̂q ⊗ · · · ⊗ vn,

where v̂i means remove such term from the tensor product, and E(v, w) is the
symplectic form preserved by Sp2. Let W ⟨n⟩ denote the intersection of the kernels
of all the ΦI and S⟨λ⟩ = W ⟨n⟩ ∩ Sλ.

Theorem 8.1. The representation S⟨λ⟩ of GSp2(C) is irreducible. The standard
maximal torus acts on a highest weight vector via the character

diag(t1, t0t−1
1 , t2, t0t−1

2 ) 7→ ta
1tb

2.

Furthermore, its dimension equals

dim(S⟨λ⟩) =
(a + b + 3)(a − b + 1)(a + 2)(b + 1)

6
.

Proof. See Theorem 17.11 and Exercise 24.17 of [FH91], which shows that in fact
the restriction to Sp2(C) is irreducible. □

Note that the central character of S⟨λ⟩ is z 7→ za+b = zn, as it must be, inside

W ⊗(n). The similitude character restricts to the torus as

diag(t1, t0t−1
1 , t2, t0t−1

2 ) 7→ t0.

For z = zI4 (with z ∈ C×), t1 = t2 = z and t0 = z2, so ν(zI4) = z2.
From now on we restrict to the case a ≡ b (mod 2). Then the representation of

GSp2(C) on

Wa,b := S⟨λ⟩ ⊗ ν− a+b
2

has trivial central character, so descends to an irreducible representation of

GSp2(C)/C× ≃ SO5(C),

which may be extended to O5(C) by letting −I5 act trivially. (We shall not consider
the other extension, where −I5 acts by −1.)

The trivial representation is W0,0, the original W is W1,0, while W1,1 is the
irreducible 5-dimensional representation of O5(C). We constructed this as V (rather
V ⊗C) inside the matrix space Hom(W, W ) ≃ W ∗ ⊗W , on which the natural action
of GSp2(C) is via g−1 on the domain, g on the codomain, i.e. our conjugation. Via
the symplectic form, W ∗ ≃ W ⊗ ν−1, so we see V ⊗ C inside W ⊗(2) ⊗ ν−1. In fact
the 6-dimensional anti-symmetric part (

∧2
W ) ⊗ ν−1 is a direct sum of C I4 and

V ⊗ C.
All representations of SO5(C) come from Young diagrams and tensor powers of the

5-dimensional representation W1,1, with Wa,b associated to the partition a+b
2 + a−b

2
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of a. To make sense of this, note that conjugation by diag(t1, t0t−1
1 , t2, t0t−1

2 ) acts

on




t

(
d −b

−c a

)

(
a b
c d

)
−t


 by

(t, a, b, c, d) 7→ (t, s−1
2 a, s1b, s−1

1 c, s2d),

where (s1, s2) = (t1t2t−1
0 , t1t−1

2 ). The highest weight character on Wa,b is now

diag(t1, t0t−1
1 , t2, t0t−1

2 ) 7→ ta
1tb

2t
−(a+b)/2
0 = s

(a+b)/2
1 s

(a−b)/2
2 .

8.2. Spaces of algebraic modular forms. Following the conventions of [GV14,
Introduction], let G/Q be a reductive group with G(R) compact. Let W ′ be a

finite-dimensional complex representation of G(Q), and let K̂ be an open compact

subgroup of G(Af ), where Af ≃ Ẑ ⊗ Q is the ring of finite adèles. We define

M(W ′, K̂) := ¶f : G(Af ) → W ′ : f(γgk) = γ·f(g) ∀γ ∈ G(Q), g ∈ G(Af ), k ∈ K̂♢.

If ¶gi : 1 ≤ i ≤ h♢ is a set of representatives of G(Q)\G(Af )/K̂ then

(27) M(W ′, K̂) ≃
h⊕

i=1

(W ′)Γi ,

where Γi := giK̂g−1
i ∩ G(Q).

Two special cases will be of particular interest to us.

(1) G such that G(Q) = GU(2, B), with B/Q a definite quaternion algebra as

above, W ′ = Wa,b with a ≥ b ≥ 0, as in the previous section, and K̂ = K̂(D)
defined by its local components

K̂(D)p :=





K0,p if p ∤ D;

K+
pn if pn ∥ D+;

K−
p if p ♣ D−.

Then

Ma,b(K̂(D)) := M(Wa,b, K̂(D)).

Although strictly speaking G(R) is only compact modulo its centre, since
Wa,b has trivial central character (recall our assumption a ≡ b (mod 2)) we
could just as well be working with GU(2, B)/Q×, which does satisfy the
condition.

(2) G = SO(Ṽ ), where Ṽ is as in Remark 6.10. Since the lattice L̃ ⊂ Ṽ from
Remark 6.11 is in the same genus as L ⊂ V , there is an isomorphism Φ of
Q-quadratic spaces from (Ṽ , Q̃) to (V, Q), such that for each prime p there
is hp ∈ SO(Vp) with

Φ(L̃p) = hpLp.

(Though at first hp ∈ O(Vp), we may ensure it is in SO(Vp) by multiplying

by −I5 if necessary.) Via Φ, SO(Ṽ ) ≃ SO(V ) ≃ GU(2, B)/Q× (with slight
abuse of notation), so the representations Wa,b may be viewed also as

representations of SO(Ṽ ).
It follows that there is essentially no difference between (Ṽ , L̃, Q̃) and

(V, L, Q), as far as algebraic modular forms are concerned. (In (27), replacing
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K̂ by hK̂h−1 and gi by gih
−1, where h := (hp), leaves Γi the same.) So

from this point onwards we neglect the distinction.

We define an open compact subgroup K̂(L) of G(Af ) by

K̂(L)p := StabG(Qp)(Lp) ∀ primes p,

and let

M̃a,b(K̂(L)) := M(Wa,b, K̂(L)).

We also define a slightly smaller subgroup K̂(L)
+

by

K̂(L)
+

p :=

{
StabG(Qp)(Lp) for p ∤ D;

StabG(Qp)(Lp)+ for p ♣ D,

where StabG(Qp)(Lp)+ is the subgroup of index 2 in StabG(Qp)(Lp) that is
the kernel of θp, with θp as in Definition 7.6. Then we define

M̃a,b(K̂(L)
+

) := M(Wa,b, K̂(L)
+

).

Theorem 8.2. There is an isomorphism

M̃a,b(K̂(L)
+

) ≃ Ma,b(K̂(D)),

equivariant for the right-translation action of SO(V ⊗Af ) on the left-hand-side and
the isomorphic GU(2, B ⊗ Af )/A×

f on the right-hand-side. For p ♣ D, the action of

the involution StabG(Qp)(Lp)/StabG(Qp)(Lp)+ on the left matches that on the right

of W +
pn (for pn ∥ D+) or ωp (for p ♣ D−).

Proof. This is a direct consequence of Propositions 7.4(2), 7.5(2) and 7.7. □

Remark 8.3. Ladd [Lad18, Theorem 1] addressed the case D = p by a different
approach, proving that the left-hand-side injects into the right-hand-side.

Remark 8.4. We extended the representations Wa,b of SO(V ) to representations

of O(V ) by making the element −I5 ∈ O(V ) − SO(V ) act trivially. Extending f̃ ∈

M̃a,b(K̂(L)) to O(V ⊗Af ) by f̃(−I5g) := f̃(g), and noting that −I5 ∈ StabO(Vp)(Lp),

we see that M̃a,b(K̂(L)) remains the same if everywhere in the definition we substitute
O(V ) (and O(V ⊗ Af ) etc.) for SO(V ) (and SO(V ⊗ Af ) etc.).

Proposition 8.5. For p ∤ D, the Hecke operators T (p) and T1(p2) on Ma,b(K̂(D))

correspond to the p-neighbour and p2-neighbour Hecke operators on M̃a,b(K̂(L)
+

),
in the sense of [GV14, Theorem 5.11].

Proof. (1) The Hecke operator usually denoted T (p) or T1(p) is associated to the
double coset K0,p diag(p, 1, p, 1) K0,p. Note that Ψ : GU(2, Bp) ≃ GSp2(Qp)
maps diag(p, 1, p, 1) to the usual diag(p, p, 1, 1). Acting by conjugation on
Up,

diag(p, 1, p, 1) :




t

(
d −b

−c a

)

(
a b
c d

)
s


 7→




t

(
d −pb

−c/p a

)

(
a pb

c/p d

)
s


 .
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In the language of §8.1, (t0, t1, t2) = (p, p, p), (s1, s2) = (t1t2t−1
0 , t1t−1

2 ) =
(p, 1), and

diag(p, 1, p, 1) : (t, s, a, b, c, d) 7→ (t, s, a, pb, p−1c, d).

Thus (passing to the 5-dimensional quotient) T (p) on Ma,b(K̂(D)) corre-
sponds to

StabO(Vp)(Lp) diag(1, 1, p, p−1, 1) StabO(Vp)(Lp)

on M̃a,b(K̂(L)
+

), which is the p-neighbour operator as in [GV14, Theorem
5.11].

(2) Similarly if (t0, t1, t2) = (p2, 1, p) then (s1, s2) = (p−1, p−1), and we see that

the operator T1(p2) on Ma,b(K̂(D)) corresponds to the p2-neighbour Hecke

operator on M̃a,b(K̂(L)
+

), in the sense of [GV14, Theorem 5.11] (which
might also reasonably be called “(p, p)-neighbour operator”).

□

Given a positive divisor d ♣ D with gcd(d, D/d) = 1, we may define a character

θd : K̂(L) → ¶±1♢ by

θd♣
K̂(L)p

=

{
id. if p ∤ d;

θp if p ♣ d.

We define a subspace M̃a,b(K̂(L)
+

)θd of M̃a,b(K̂(L)
+

) by

M̃a,b(K̂(L)
+

)θd := ¶f̃ ∈ M̃a,b(K̂(L)
+

) : f(gk) = θd(k)f(g)

∀g ∈ SO(V ⊗ Af ), k ∈ K̂(L)♢.

Under the isomorphism of Theorem 8.2, clearly this corresponds to the subspace

of Ma,b(K̂(D)) on which W +
pn or ωp acts as −1 precisely for p ♣ d.

Corollary 8.6. Keeping the previous notation, there is a natural isomorphism

Ma,b(K̂(D)) ≃
⊕

d♣D

gcd(d,D/d)=1

M̃a,b(K̂(L)
+

)θd .

If there is no p such that ordp(d) is even, in particular if d is square-free, then θd

may be extended to SO(V ⊗Af ), since locally at p ♣ d it is χ ◦ ν, as in Remark 7.10.
Thus we may define a representation Wa,b ⊗ θd of SO(V ⊗ A), with SO(V ⊗ R) ≃
SO5(R) acting on the Wa,b factor. This restricts to give a representation of the
diagonally embedded SO(V ).

Proposition 8.7. Suppose that d is a positive divisor of D with gcd(d, D/d) = 1,
and that there is no p such that ordp(d) is even. Then

M̃a,b(K̂(L)
+

)θd ≃ M(Wa,b ⊗ θd, K̂(L)).

Proof. An element of M(Wa,b ⊗ θd, K̂(L)) is a function f : SO(V ⊗ Af ) → Wa,b

such that for γ ∈ SO(V ), g ∈ SO(V ⊗ Af ) and k ∈ K̂(L),

f(γgk) = θd(γ)γ · f(g).
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An element of M̃a,b(K̂(L)
+

)θd is a function f̃ : SO(V ⊗ Af ) → Wa,b such that for

γ ∈ SO(V ), g ∈ SO(V ⊗ Af ) and k ∈ K̂(L),

f̃(γgk) = θd(k)γ · f(g).

f̃(g) := θd(g)f(g) gives the isomorphism we seek. □

9. From algebraic modular forms for GU(2, B) to Siegel modular
forms of paramodular level

For any positive integer N , let

P (N) :=




Z NZ Z Z
Z Z Z 1

N Z
Z NZ Z Z

NZ NZ NZ Z


 ∩ Sp2(Q)

be the paramodular group of level N . For integers k ≥ 1, j ≥ 0, let ρk,j :

GL2(C) → Aut(Vk,j) be the detk ⊗Symj representation. Let Sk,j(P (N)) be the
space of holomorphic functions F : H2 → Vk,j , satisfying a cuspidality condition,
and

F ((AZ + B)(CZ + D)−1) = ρk,j(CZ + D)(F (Z)) ∀ ( A B
C D ) ∈ P (N).

Note that such space is trivially zero if j is odd, since

(−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)
∈ P (N) for

all N . For this reason, we restrict to the case j even.
Although it is not true that P (pn) is contained in P (pm) for n > m, there is still

a theory of oldforms and newforms for automorphic forms on GSp2, as studied in
[RS07] (in particular, the formula for the number of oldforms given in Theorem
7.5.6).

In a series of articles, Ibukiyama and some coauthors (see [IK17] and also
[Ibu19, Ibu18]) stated a series of conjectures relating automorphic forms on GU(2, B)
and GSp2. The conjectures were proven by Rösner and Weissauer in a recent article
[RW21], using the trace formula. A somewhat less general result was obtained
independently by van Hoften [vH21] using very different, algebro-geometric tools.
Although the original conjecture (and the proof) was made for square-free levels
D = D−, a more general version holds. In [IK17] the authors consider a quaternion
algebra ramified at all primes dividing D and at infinity, (taking as open compact

subgroup the one corresponding to D+ = 1), and relate the spaces Ma,b(K̂(D)) and
Sb+3,a−b(P (D)).

9.1. Generalisation of Ibukiyama-Kitayama conjecture. For M ♣ N with
gcd(M, N/M) = 1, let SM-new

k (N) denote the space of cusp forms for Γ0(N) (genus-
1) that are new at M . We keep the notation of previous sections, i.e. D = D+D−

where D− is square-free. The contribution of the Yoshida and Saito-Kurokawa lifts
to the algebraic modular forms for GU(2, B) is given in Propositions 9.1 and 9.4
below. To cover the general case, the statements are necessarily complicated. To
warm up, the reader may wish to read [RW21, Propositions 12.1, 12.2], for the
simpler statements in the case D+ = 1.

Proposition 9.1 (Yoshida lifts). Fix a pair of positive integers d+, c+ with d+c+ ♣
D+. There is an injective embedding, sending eigenforms to eigenforms (in both
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cases, for Hecke operators at primes not dividing the level, Atkin-Lehner involutions
at primes dividing the level, where the level depends on the form),

ι :
⊕

d−♣D−

ω(d−) odd

Snew
2+a−b(d−d+) × Snew

4+a+b

(
D−

d−
c+

)
→֒ Ma,b(K̂(D−d+c+))

The oldforms in Ma,b(K̂(D)) generated from the ι(g, h) by applying Roberts and

Schmidt’s level-raising operators θ, θ′ and η, at primes dividing D+

d+c+
, (or the new-

forms ι(g, h) if D+

d+c+
= 1), span (as we vary d+ and c+) the subspace Ma,b(K̂(D))Y

of all forms of Yoshida type, i.e. the span of K̂(D)-fixed vectors in endoscopic
automorphic representations.

Furthermore, for eigenforms g and h the spinor L-function LD−d+c+(s, ι(g, h), spin)

of ι(g, h) is given by LD−d+c+(s − b − 1, g)LD−d+c+(s, h), where the superscript in-
dicates that Euler factors at primes dividing D−d+c+ are omitted.

Proof. The proof of [RW21, Proposition 12.1] (based on results of Chan and Gan
([CG15]) applies to our more general context, but there D+ = 1 so there is no
d+, c+ or oldforms. Let πι(g,h) be the associated automorphic representation of
GU(2, B ⊗ A).

In the notation of [CG15, 2.2, 2.4], π
ι(g,h)
p is π−+

ϕ for p ♣ d−, π+−
ϕ for p ♣ D−

d−
,

and π
ι(g,h)
∞ is π−+. Since ω(d−) is odd and ω

(
D−

d−

)
is even, the product of the ±±

pairs over all places is trivial, hence [CG15, Theorem 3.1] (Arthur’s multiplicity

formula) gives the existence of πι(g,h). Note that for primes p ∤ D−, π
ι(g,h)
p is π+

ϕ in

the notation of [CG15, 2.1], or even π++
ϕ in the notation of [CG15, 2.3], and does

not contribute to the product. (When there are two elements in the L-packet, we
must choose the generic one, to have paramodular fixed vectors, cf. [SS13, Remark
3.5].)

We need to know that the paramodular level of π
ι(g,h)
p (i.e. the least n such that

it has non-zero K+
pn -invariants, necessarily 1-dimensional) is pordp(d+c+), for primes

p ∤ D−, so that ι(g, h) ∈ Ma,b(K̂(D−d+c+)). This follows from the fact that the L-

parameter of π
ι(g,h)
p is a kind of direct sum of those of πg

p and πh
p (representations of

GL2(Qp)), from the behaviour of ϵ-factors under the local Langlands correspondence,
and the relation between paramodular level and ϵ-factors, for generic representations,
which is [RS07, Corollary 7.5.5]. □

Example 9.2. Let D− = 5, D+ = 77 and (a, b) = (0, 0). Then the only non-zero
contributions come from taking d− = 5, d+ ∈ ¶1, 7, 11, 77♢ and c+ = D+/d+.
The algorithm described in [RT20] computes the space M0,0(385) corresponding
to the genus of quinary forms with Hasse-Witt invariant −1 only at the prime 5.
There are four rational Yoshida lifts, corresponding to the pairs of modular forms:
(35.2.a.b, 11.4.a.a), (35.2.a.a, 11.4.a.a), (55.2.a.a, 7.4.a.a) and (55.2.a.b, 7.4.a.a).

There are precisely two newforms in S2(Γ0(35)), labelled 35.2.a.a and 35.2.a.b
and two newforms in S2(Γ0(55)), labelled 55.2.a.a and 55.2.a.b. There is a unique
form in S4(Γ0(7)) labelled 7.4.a.a and one form in S4(Γ0(11)) labelled 11.4.a.a. All
other combinations of spaces involve one that is trivial.



34 NEIL DUMMIGAN, ARIEL PACETTI, GUSTAVO RAMA, AND GONZALO TORNARÍA

Lemma 9.3. Consider an eigenform f ∈ Mb,b(K̂(D)) whose associated automorphic
representation πf of GU(2, B ⊗ A) is CAP associated to the Siegel parabolic. In
the notation of [Gan08], πf belongs to a global A-packet Aτ,χ, where τ is a cuspidal
automorphic representation of GL2(A) with trivial central character, and χ is a
quadratic character of A×/Q×. Then χ is trivial.

Proof. This is modelled on the proof (in the case GSp2(A)) of [Sch20, Proposition
5.2(i)], where τ is µ and χ is σ. (In [RS07, §5.5], τ is π and χ is σ.)

At any split prime p, πf
p is the unique irreducible quotient of a representation

denoted ν1/2τp ⋊ ν−1/2χp, induced from a Siegel parabolic. At a non-split prime

p ♣ D−, πf
p is the unique irreducible quotient of a representation denoted ν1/2JL(τp)⋊

ν−1/2χp, induced from a parabolic with Levi subgroup B×
p × Q×

p . Considering the

action of an element (id., u) of the Levi subgroup, where u ∈ Z×
p , it is easy to show

that πf
p cannot have a non-zero K̂(D)p-fixed vector unless χp is unramified, and

the only χ such that all χp are unramified is the trivial character. □

Let S
D−

d−
-new,−(−1)ω(d−)

2b+4 (Γ0(D/d−) be the subspace of S
D−

d−
-new,−(−1)ω(d−)

2b+4 (Γ0(D/d−)
spanned by eigenforms with the same Atkin-Lehner eigenvalues, at all primes dividing
D+, as the newforms they come from. For more, see around [RS06, (23)].

Proposition 9.4 (Saito-Kurokawa lifts). For each positive divisor d− of D− there
is an injective embedding

ιd− : S
D−

d−
-new,−(−1)ω(d−)

2b+4 (Γ0(D/d−)) →֒ Mb,b(K̂(D))

Furthermore, the span of the images of the ιd−
is precisely the subspace Mb,b(K̂(D))SK

of forms of Saito-Kurokawa type, i.e. spanned by K̂(D)-fixed vectors in automorphic
representations that are CAP for the Siegel parabolic subgroup.

If h ∈ S
D−

d−
-new,−(−1)ω(d−)

2b+4 (Γ0 (D/d−)) is an eigenform (of Hecke operators for

p ∤ D
d−

, Atkin-Lehner involutions for p ♣ D
d−

), then ιd−
(h) is an eigenform (for Hecke

operators at p ∤ D, Atkin-Lehner involutions at p ♣ D). The spinor L-function
LD(s, ιd−(h), spin) of ιd−

(h) is given by ζD(s − b − 2)ζD(s − b − 1)LD(s, h), where
the superscript D indicates that Eulers factors at primes p ♣ D are omitted.

Proof. This may be proved in very much the same way as [RW21, Proposition 12.2].
(The part about the span of the images follows from a theorem of E. Sayag [Gan08,
Theorem 6.9].) The difference is that on both left and right, forms need not be
D+-new, whereas in [RW21, Proposition 12.2], D+ = 1.

Any eigenform on the left comes from some newform g ∈ S
new,−(−1)ω(d−)

2b+4

(
Γ0

(
D−

d−

D+

d+

))
,

for some positive divisor d+ of D+. The sign −(−1)ω(d−) is by definition required to
be the global sign in the functional equation of the L-function associated to g. Using
Gan’s Saito-Kurokawa lifting [Gan08] as in [RW21, Proposition 12.2], we obtain

an eigenform G ∈ Mb,b

(
K̂ (D/d+)

)
. In fact D+/d+ is precisely the paramodular

level of the cuspidal automorphic representation πG of GU(2, B ⊗ A) attached to G.
This means that for all split primes, p ∤ D−, the least n such that πG

p has non-zero

K+
pn -invariants (necessarily 1-dimensional) is ordp(D+/d+). This is precisely [RS07,

Proposition 5.5.5(i)], bearing in mind that at split places Gan’s Saito-Kurokawa
lifting is locally the local Saito-Kurokawa lifting of [RS07, §5.5].
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On the left we can obtain, from g, oldforms in S
D−

d−
-new,−(−1)ω(d−)

2b+4 (Γ0(D/d−)).
Recall that we are taking only those with the same Atkin-Lehner eigenvalues as g for

primes dividing D+. On the right we can obtain from G oldforms in Mb,b(K̂(D)), by
applying Roberts and Schmidt’s operators θ and η at primes dividing d+. Including
their third level-raising operator θ′ would not produce anything linearly independent
of what one obtains using θ and η, since by [RS07, Theorem 5.5.9], θ and θ′

act the same (up to ±) on paramodular-fixed vectors in local representations of
Saito-Kurokawa type.

In fact, by Lemma 9.3 and [RS07, Theorem 5.5.9(iv)], the sign is +, i.e. θ and θ′

act the same, and the oldforms coming from G as above have the same Atkin-Lehner
eigenvalues as G. As explained in the discussion preceding [RS06, Theorem 6.3], the
oldforms coming from g can be exactly paired with those coming from G. Although
the argument there was applied to Siegel modular forms, it applies just the same,
being local at split primes. □

Example 9.5. Let us continue the previous example. Let D− = 5 and D+ = 77.
Taking d− = 1 implies computing the space S5-new,−

4 (385). The newforms of the

different spaces are Snew,−
4 (5) = ¶5.4.a.a♢, Snew,−

4 (35) = ¶35.4.a.a♢, Snew,−
4 (55) = ∅

and Snew,−
4 (385) = ¶385.4.a.b, 385.4.a.e, 385.4.a.h, 385.4.a.i, 385.4.a.j, 385.4.a.l♢.

Taking d− = 5 implies computing spaces of forms of level not divisible by 5
and sign +1 in their functional equation. The newforms of the different spaces are
Snew,+

4 (1) = ∅, Snew,+
4 (7) = ¶7.4.a.a♢, Snew,+

4 (11) = ¶11.4.a.a♢ and Snew,+
4 (77) =

¶77.4.a.a, 77.4.a.d, 77.4.a.e♢. All such forms contribute to the space M0,0(K̂(385)).

Recall that S denotes the finite set of finite places at which the definite quaternion
algebra is non-split. For a finite p /∈ S we have GU(2, Bp) ≃ GSp2(Qp). Let

f ∈ M(a,b)(K̂(D)) be a Hecke eigenform, generating an automorphic representation
πf of GU(2, B ⊗ A). An automorphic representation π′ of GSp2(A) is said to be
weakly equivalent to πf if the representations π′

p and πf,p of GSp2(Qp) are isomorphic
for all finite p outside some finite set T ⊇ S. If πf is weakly equivalent to some
π′ that is an irreducible constituent of something parabolically induced from a
proper Levi subgroup, but not to a cuspidal such π′, then we shall say that f is
of Eisenstein type. We may call the subspace spanned by such f the Eisenstein

subspace M(a,b)(K̂(D))Eis.

Let M(a,b)(K̂(D))G denote the subspace of M(a,b)(K̂(D) orthogonal to all Yoshida
lifts, to all Saito-Kurokawa lifts, and to all forms of Eisenstein type. Here we are
using a natural inner product, with respect to which Hecke operators are self-adjoint.

Let SD−-new
k,j (P (D))G denote the subspace of forms (among those D−-new in the

sense of Roberts and Schmidt) that are orthogonal to all Saito-Kurokawa lifts. When
j > 0 there are no Saito-Kurokawa lifts, and this is the whole space. Then we have
the following natural generalisation of the conjecture of Ibukiyama-Kitayama proved
in [RW21, Proposition 12.3]. The subscript “G” stands for “general type”, and will
be justified in the course of the proof.

Theorem 9.6. There is a linear isomorphism, sending eigenforms to eigenforms
(for Hecke operators at p ∤ D, Atkin-Lehner involutions at p ♣ D), and preserving
L-functions (with Euler factors at primes dividing D omitted):

SD−-new
b+3,a−b(P (D))G ≃ Ma,b(K̂(D))G.
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Proof. This may be proved following [RW21, Proposition 12.3], though since for us
ω(D−) is odd, the large part of their proof dealing with their Conjecture 7.5 is not
needed here.

There are no forms of Yoshida type on the left, as explained at the beginning
of the proof of [RW21, Theorem 12.3], or on the right, by definition. By [Sch20,
Proposition 5.1], there cannot be forms that are CAP with respect to the Borel or
Klingen parabolic subgroups. This leaves only forms of general type, neither CAP
nor endoscopic (nor Eisenstein).

For forms of general type we apply [RW21, Theorem 11.4] as in [RW21, Proposi-
tion 12.3]. Again, the difference is that on both sides there may be forms that are not

D+-new. Consider an eigenform f in Ma,b(K̂(D/d+))G (where d+ is some positive
divisor of D+), with paramodular level exactly D+/d+, and associated automorphic
representation πf of GU(2, B ⊗ A). Applying [RW21, Theorem 11.4] gives us an

eigenform F ∈ SD−-new
b+3,a−b(P (D/d+))G, with exact paramodular level D/d+, and

associated cuspidal automorphic representation πF of GSp2(A). The arguments
of [RW21, Proposition 12.3] prove this paramodular level for primes dividing D−,
but it also holds at other primes p, simply because πf

p ≃ πF
p as representations of

GSp2(Qp), even for p ♣ D+. Note that although [RW21, Theorem 11.4(2)] only says
that πf

p and πF
p are in the same L-packet, they have to be generic in order to have

paramodular-fixed vectors, cf. [SS13, Remark 3.5], and then [RW21, Proposition
10.1] tells us that the L-packet contains a unique generic representation.

Then the oldforms in Ma,b(K̂(D))G and SD−-new
b+3,a−b(P (D))G generated from f and

F respectively, by applying Roberts and Schmidt’s level-raising operators θ, θ′ and
η at primes p ♣ d+, exactly correspond, again because πf

p ≃ πF
p . □

Remark 9.7. Under a different convention, we could leave in the D−-new Saito-

Kurokawa lifts on both sides (thus having simply SD−-new
b+3,a−b(P (D)) on the left), and

they would correspond to each other.

In order to understand the right-hand-side of the isomorphism better, we need to

have a closer look at the subspace M(a,b)(K̂(D))Eis of M(a,b)(K̂(D)), one of those

“removed” in passing to M(a,b)(K̂(D))G.

Proposition 9.8. (1) If a = b = 0 (so k = 3, j = 0) then the constant functions
are of Eisenstein type.

(2) If D− = p, a prime number, then Ma,b(K̂(D))Eis is trivial, for any a > b > 0

(i.e. j > 0, k > 3). If D = D− = p then Ma,b(K̂(D))Eis is trivial, for any
a ≥ b ≥ 0 except (a, b) = (0, 0), (i.e. j ≥ 0, k ≥ 3, except (k, j) = (3, 0)).

(3) If D = D− then the constant functions span M(0,0)(K̂(D))Eis.

(4) If D = D− and either a = b > 0 (i.e. j = 0, k > 3) or a > b ≥ 2 (i.e.

j > 0, k ≥ 5) then M(a,b)(K̂(D))Eis is trivial.

Proof. (1) Here πf is trivial, and so is π′, which then occurs in the representation
parabolically induced from the trivial character of a maximal torus.

(2) This is part of [vH21, Theorem 8.2.1 (2), (3)].
(3) , (4) As observed by Weissauer, these follow from [IK17, Main Theorem

1.2], which shows that in Theorem 9.7 (i.e. [RW21, Proposition 12.3] when
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D = D−), the dimensions of the two sides match without having to have

removed anything Eisenstein from M(a,b)(K̂(D)).
□

Conjecturally [IK17, Main Theorem 1.2], hence also Ma,b(K̂(D))Eis = ¶0♢ should
hold for any (a, b) ̸= (0, 0) (i.e. k ≥ 3 and (k, j) ̸= (3, 0)). We expect also that both
can be generalised to the case D+ > 1 (i.e. D ≠ D−), without having to assume
D− = p.

Theorem 9.9. Keeping the previous notation, let D = D+D−. Then

SD−-new
b+3,a−b(P (D))G ≃

⊕

d♣D

gcd(d,D/d)=1

M̃a,b(K̂(L)
+

)θd

G .

Proof. Follows from Corollary 8.6 and Theorem 9.7. □

In particular, this proves Conjecture 15 in [RT20].

Remark 9.10. Theorem 9.10 provides the partial solution to the basis problem
announced in the introduction when the level of the paramodular form is divisible
by a prime to the first power, in the sense that there is an efficient method to
compute bases for the spaces of orthogonal modular forms that appear on the
right hand side of the isomorphism, as well as the action of Hecke operators on
them. If N is a positive integer such that there exists p with vp(N) = 1, then the
space of paramodular newforms of level N can be computed in this sense using the
decomposition N = p (N/p), i.e. looking at a special positive definite quinary form
of discriminant 2N with Hasse-Witt invariant −1 at p, and Eichler invariant +1 at
all primes dividing N/p as described in Section 6.1.

10. Atkin-Lehner eigenvalues

Recall from Corollary 8.6 the decomposition

Ma,b(K̂(D)) ≃
⊕

d♣D

gcd(d,D/d)=1

M̃a,b(K̂(L)
+

)θd .

We know that the left hand side can contain eigenforms of Saito-Kurokawa type
(if a = b), Yoshida type and general type. We now wish to identify, for each of

these types, what we have in a given M̃a,b(K̂(L)
+

)θd , in terms of the Atkin-Lehner
eigenvalues of associated modular forms. In this section, as already in the previous
section, we freely apply the isomorphism Ψ : GU(2, Bp) ≃ GSp2(Qp) at split p, and
do not distinguish between W +

pn and Wpn .

Theorem 10.1. Let Ma,b(K̂(D)) be a space of GU(2, B) algebraic modular forms
as in §8.2. In particular D = D−D+, with gcd(D−, D+) = 1 and D− square-free,

ω(D−) odd. Consider f ∈ Ma,b(K̂(D)), a Hecke eigenform for T (p) and T1(p2) (all
p ∤ D), Wpn (pn ∥ D+) and ωp (p ♣ D−). For p ♣ D let ep denote the eigenvalue of
Wpn or ωp on f .
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(1) If f ∈ Ma,b(K̂(D))G, with corresponding F ∈ SD−-new
b+3,a−b(P (D))G, with eigen-

values wp of Wpn on F (where n depends on p, with pn ∥ D), then

ep =

{
wp if p ♣ D+;

−wp if p ♣ D−.

(2) If f ∈ Ma,b(K̂(D))SK, say f = ιd−(h) for some h ∈ S
D−

d−
-new,−(−1)ω(d−)

2b+4 (Γ0(D/d−)).
Let ϵp be the local sign at p attached to h, in particular ϵp is the eigenvalue

of a GL2 Atkin-Lehner operator when p ♣ D
d−

, and is 1 for other p. Then

ep =

{
ϵp if p ♣ d−D+;

−ϵp if p ♣ D−

d−
.

(3) If f ′ = ι(g, h) ∈ Ma,b(K̂(D−d+c+))Y , as in Proposition 9.1, then the
eigenvalue of Wpn on f ′, for p ♣ D+ is a product of local signs ϵp(g)ϵp(h),
while that of ωp for p ♣ D− is −ϵp(g)ϵp(h).

Oldforms in Ma,b(K̂(D))Y may be produced from f ′ by (possibly repeated)

application of Roberts and Schmidt’s level-raising operators θ, θ′ (at p ♣ D+

d+c+
)

and η (at p when p2 ♣ D+

d+c+
). Application of η, θ + θ′ or θ − θ′ takes (Atkin-

Lehner) eigenforms to eigenforms, with a change of sign in the case of
θ − θ′.

Proof. (1) First suppose that f ∈ Ma,b(K̂(D))G. Let πF be the cuspidal
automorphic representation of GSp2(A) associated with F , and πf the
automorphic representation of GU(2, B ⊗ A) attached to f . For p ♣ D+,
πf

p ≃ πF
p , so ep = wp. For p ♣ D−, we need to show that ωp acts on f by

−wp.
As in the proof of [RW21, Proposition 12.3], πF

p is of type IIa, in the

notation (from [RS07]) used there. The local component πF
p (for p ♣ D−)

is of type IIa, i.e. χ StGL2
⋊ σ, for some unramified characters σ, χ of Q×

p ,

with χ2 ̸= ν±1, χ ≠ ν±3/2, where ν is an unramified character of Q×
p with

ν(p) = p−1. (Here we switch temporarily to the notation of [RS07], [Sch17],
so ν here is what would have been χ−1 in the notation of Remark 7.10, not
the spinor norm.) The fact that σ and χ must be unramified follows from
the fact that p ♣♣ D, and the ‘N ’ column of [RS07, Table A.14]. By [RS07,
Table A.12], the eigenvalue of Wp acting on F is wp = −(χσ)(p). Note that
the ambiguous comment above [RS07, Table A.15] suggests this might not
be correct, but it is referring to the ±-signs under the dimensions of the
fixed spaces, not the entries in the Atkin-Lehner eigenvalue column. This is
clearer in [Sch05, §1.3].

The local component of πf
p , viewed as a representation of GU(1, 1, Bp), is

of the type called IIaG in [Sch17, table in A.4]. It is χ 1B× ⋊σ, for the same
χ and σ as above. For π ∈ Bp with π2 = −p, the Atkin-Lehner element in
GU(1, 1, Bp) is

ω′
p =

(
0 p
1 0

)
=

(
π 0
0 π

)(
0 −π

π−1 0

)
,
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with

(
0 −π

π−1 0

)
∈ K−(p), so

(
π 0
0 π

)
is an acceptable alternative Atkin-

Lehner element. It now follows from [Sch17, after Lemma A.2] that ωp acts
on the K−

p -fixed line in πf
p as multiplication by (χσ)(p) = −wp.

(2) Suppose that f ∈ Ma,b(K̂(D))SK, with f = ιd−
(h) for some eigenform

h ∈ S
D−

d−
-new,−(−1)ω(d−)

2b+4 (Γ0(D/d−)), ϵp the local sign at p attached to h, or
rather to the newform g from which it comes.

Suppose that p ♣ D−. As in the proof of [RW21, Proposition 12.2], the

representation πf
p of GU(1, 1, Bp) could be IIaG (if p ♣ d−), or VbG or VIcG

(if p ♣ D−

d−
).

We have already seen that in the case that πf
p ≃ χ 1B× ⋊ σ, of type IIaG,

ep = (χσ)(p). As in [RS07, Proposition 5.5.1(i)], there is an associated
representation of GSp2(Qp), of type IIb, which is χ 1GL2 ⋊ σ. The σ here
is the same as the σ in the tables at the end of [RS07], but it corresponds
to the χ−1σ in [RS07, Proposition 5.5.1(i)], where χ is the same. If we call
the σ in [RS07, Proposition 5.5.1(i)] “σ′” instead, then ep = σ′(p). In fact

σ′ is trivial, by Lemma 9.3. On the other hand, ϵp = 1, since p ∤ D
d−

. Hence
ep = ϵp.

Next consider the case that πf
p is VbG, so it is L(ν1/2ξ 1B× , ν−1/2σ) in

the notation of [Sch17, Proposition A.1], and is a quotient of the induced
representation ν1/2ξ 1B× ⋊ ν−1/2σ. This is for characters ξ, σ of Q×

p , with
ξ non-trivial quadratic. Arguing as in the proof of Lemma 9.3 (considering
also elements of B×

p with unit norm), we see that ξ and σ are unramified.
(Alternatively, in the next paragraph we can apply p ♣♣ D and the ‘N ’
column of [RS07, Table A.14].) Consider h : GU(1, 1, Bp) → V a vector in

the space of the induced representation ν1/2ξ 1B× ⋊ ν−1/2σ, mapping to a
K−

p -fixed vector in L(ν1/2ξ 1B× , ν−1/2σ), and normalised so that h(id.) = 1.

The eigenvalue of ω′
p is h (( π 0

0 π )), where π ∈ Bp with π2 = −p. Letting
a = π, λ = p, this is

h
((

a 0
0 λ a−1

))
= ν1/2ξ(aa) ν−1/2σ(λ) = ξ(p)σ(p) = −σ(p),

where ξ(p) = −1 because ξ is non-trivial, quadratic and unramified. This
computation is of exactly the same type that may be used to prove that ωp

acts as (χσ)(p) in the case IIaG. In the case VbG we have simply substituted
ν1/2ξ for χ and ν−1/2σ for σ.

There is a corresponding representation of GSp2(Qp) of type Vb, which

is L(ν1/2ξStGL2
, ν−1/2σ), and by [RS07, Table A.12], the eigenvalue of Wp

on a K+
p -fixed vector is σ(p). Since this local representation is of Saito-

Kurokawa type (for the same newform g), this is ϵp, by [RS07, Proposition
5.5.8(i)]. Hence ep = −σ(p) = −ϵp, as required.

Finally, suppose that πf
p is VIcG, which is ν1/2 1B× ⋊ ν−1/2σ, with σ

unramified. Then similarly ep = σ(p). There is a corresponding representa-

tion of GSp2(Qp) of type VIc, which is L(ν1/2StGL2 , ν−1/2σ), and by [RS07,
Table A.12], the eigenvalue of Wp on a K+

p -fixed vector is −σ(p). Since
this local representation is of Saito-Kurokawa type (for the same newform
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g), this is ϵp, by [RS07, Proposition 5.5.8(i)]. Hence ep = σ(p) = −ϵp, as
required.

(3) The first part, in the case that p ♣ D+, follows from the fact that the

L-parameter of π
ι(g,h)
p is a kind of direct sum of those of πg

p and πh
p (rep-

resentations of GL2(Qp)), from the behaviour of ϵ-factors under the local
Langlands correspondence, and the relation between Atkin-Lehner eigen-
values and ϵ-factors, for generic representations of GSp2(Qp), which is

[RS07, Corollary 7.5.5]. In the case p ♣ D−, the representation π
ι(g,h)
p of

GU(1, 1,Qp) is of type IIaG (as in the proof of [RW21, Proposition 12.3]).
The corresponding representation of GSp2(Qp) of type IIa has the same
L-parameter (cf. [JLR12, Table 1]), and we may argue as in the proof of
(1) to obtain the sign-change in the Atkin-Lehner eigenvalue.

The second part follows from the fact that (being a bit sloppy over the
distinction between different Atkin-Lehner involutions at different levels),
Atkin-Lehner involutions commute with η and intertwine θ and θ′ with each
other. (This is in [RS06, §4] or [RS07, §3.2].) That none of η, θ + θ′ or θ −θ′

will produce 0 follows from the linear independence in [RS07, Theorem
7.5.6]. (See also following [RS07, (5.49)].)

□

Remark 10.2. Returning to the decomposition

Ma,b(K̂(D)) ≃
⊕

d♣D

gcd(d,D/d)=1

M̃a,b(K̂(L)
+

)θd ,

given an eigenform f ∈ Ma,b(K̂(D)) as in Theorem 10.1, we want to know for

which d the corresponding f̃ lies in M̃a,b(K̂(L)
+

)θd . We already know that this is
characterised by p ♣ d ⇐⇒ ep = −1, and the theorem, which tells us the ep for all
primes p ♣ D, thus determines d.

Example 10.3. (1) is illustrated by [RT20, Example 9], where D = D− = 61. Here
there is F ∈ S3,0(P (61))G with w61 = −1 (as in [PY15, §8, Example 1]), while for

the associated f ∈ M0,0(K̂(61)), e61 = +1, hence for f̃ ∈ M̃0,0(K̂(61)
+

), d = 1.

Remark 10.4. The second part of (3) applies equally to the production of oldforms
from newforms in (1). For the linear independence, apply [RS07, Theorem 7.5.8],
that πf

p is generic because it is tempered. For D− = 61, D+ = 5, oldforms with
both signs for e5, both coming from the newform in the previous remark, are D2

and E1 in [RT20, Table 3]. As expected, d = 1 when e5 = +1 (for D2), while d = 5
when e5 = −1 (for E1).

Example 10.5. For the squarefree D = 5 · 61, (2) is illustrated by A3, C4, D8 and
G2 in [RT20, Table 3], while (3) is illustrated by D5 and F1 in [RT20, Table 3]. In
reading that table, beware that the Atkin-Lehner eigenvalues are not in the column
“A-L”, but they can be deduced from the values of d.

Remark 10.6. In the case that D = D− = p, not yet published work of T.

Ibukiyama provides formulas for the dimensions of the subspaces of Ma,b(K̂(p)) on
which ep = ±1. He has very recently applied our theorem to deduce the answer to
the corresponding question for spaces of paramodular forms [Ibu22].
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11. Applications to congruences

Theorem 11.1. Let F ∈ Sk,j(P (N))G be a new Hecke eigenform, with k ≥ 3. For

any prime number ℓ, there exists a 4-dimensional Qℓ-vector space V , a continuous
representation

ρF : Gal(Q/Q) → Aut
Qℓ

(V ),

and a Galois-equivariant symplectic pairing

⟨·, ·⟩ : V × V → Qℓ(3 − 2k − j),

such that for each prime p ∤ ℓN it is unramified, with det(I − ρF (Frob−1
p )p−s) the

reciprocal of the Euler factor at p in the spin L-function of F . In particular, for
p ∤ ℓN , tr(ρF (Frob−1

p )) is the Hecke eigenvalue λF (p) of the Hecke operator T (p) on
F .

The Hodge-Tate weights of ρF ♣Gal(Qℓ/Qℓ) are 0, k − 2, j + k − 1 and j + 2k − 3. If

ℓ ∤ N then ρF ♣Gal(Qℓ/Qℓ) is crystalline, and the Artin conductor of ρF is N .

This comes from the work of many mathematicians, and is summarised in [Mok14,
Theorem 3.1, Remark 3.3(3)]. (The part about the conductor follows from the
local-global compatibility.) It is part of a more general theorem, about cohomological
automorphic representations of GSp2(AF ), with F a totally real field. This uses
a lifting to GL4(AF ), and the ℓ-adic cohomology of Shimura varieties for unitary
groups. But in the case F = Q, much of it had been proved by Weissauer [Wei05,
Theorem I], [Wei08], using the ℓ-adic cohomology of Siegel modular three-folds. See
the remarks at the ends of Sections 2.4 and 3.1 of [Wei21] on the status of the
theorem for F totally real, and that the complete theorem is secure in the case
F = Q.

Since we assume that k ≥ 3, ℓ ≥ 5, and since also ρF ♣Gal(Qℓ/Qℓ) is de Rham, it is

known that ρF is irreducible, as in [Wei21, Theorem 1.1(i) and §2.4]. If we choose
a Gal(Q/Q)-invariant Zℓ-lattice then reduce modulo the maximal ideal, we get a
representation ρF of Gal(Q/Q) on a 4-dimensional Fℓ-vector space. For some ℓ it
may be reducible, in which case it depends on the choice of invariant lattice, but its
irreducible composition factors are independent of the choice.

If θ on W is a composition factor of ρF then so is Hom
Fℓ[Gal(Q/Q)](W,Fℓ(3−2k−j)),

i.e. θ∗(3 − 2k − j). If ℓ > j + 2k − 2 and ℓ ∤ N then the Hodge-Tate weights can
be detected on ρF , via its associated Fontaine-Lafaille module [FL82]. They come
in twisted dual pairs ¶0, j + 2k − 3♢ and ¶k − 2, j + k − 1♢. It follows that if N is
square-free, then any 1-dimensional composition factor must be unramified away
from ℓ, to avoid it and its twisted dual partner (which is different) contributing a
square factor to the conductor.

Therefore, for ℓ > j + 2k − 2, ℓ ∤ N and N square-free, the only possible
pairs of 1-dimensional composition factors of ρF are ¶Fℓ,Fℓ(3 − 2k − j)♢ and
¶Fℓ(2 − k),Fℓ(1 − k − j)♢. It follows that if ρF is reducible, the possibilities for its
composition factors are as follows.

(1) ¶ρg,Fℓ(2 − k),Fℓ(1 − k − j)♢, where ρg is a 2-dimensional representation
attached to a cuspidal Hecke eigenform for Γ0(N), of weight j + 2k − 2.

(2) ¶ρg(2 − k),Fℓ,Fℓ(3 − 2k − j)♢, where ρg is a 2-dimensional representation
attached to a cuspidal Hecke eigenform for Γ0(N), of weight j + 2.
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(3) ¶ρg, ρh(2 − k)♢, 2-dimensional representations attached to cuspidal Hecke
eigenforms g of weight j + 2k − 2, h of weight j + 2, of levels Γ0(M) and
Γ0(N/M) for some M ♣ N .

(4) ¶Fℓ,Fℓ(2 − k),Fℓ(1 − k − j),Fℓ(3 − 2k − j)♢.
(5) ¶ρ, ρ∨(3 − 2k − j)♢, with 2-dimensional ρ, Hodge-Tate weights ¶0, j + k − 1♢

or ¶0, k − 2♢.

In cases (2) and (3) we have used the theorem of Khare and Wintenberger [KW09a,
KW09b] and Kisin [Kis09], that an odd, irreducible representation of Gal(Q/Q)
with coefficients in Fℓ is modular, proved also by Dieulefait in the case that ℓN
is odd [Die12]. The oddness of the two-dimensional factors in these cases is an
easy consequence of the fact that j is even. Given that N is square-free, case (5)
(“related 2-dimensional constituents” in [Die02, §4.2]) could only happen if ρ has
Artin conductor 1, which is unlikely in our situation, where N > 1 because it is
divisible by the discriminant of a definite quaternion algebra.

These reducibilities (in the first four cases) translate into congruences of Hecke
eigenvalues as follows, for all primes p ∤ ℓN . The instances we prove are actually for
all p ∤ N .

(1) λF (p) ≡ ap(g) + pk−2 + pj+k−1 (mod λ), with g a cuspidal Hecke eigenform
for Γ0(N), of weight j + 2k − 2.

(2) λF (p) ≡ pk−2ap(g)+1+pj+2k−3 (mod λ), with g a cuspidal Hecke eigenform
for Γ0(N), of weight j + 2.

(3) λF (p) ≡ ap(g) + pk−2ap(h), with cuspidal Hecke eigenforms g of weight
j + 2k − 2, h of weight j + 2, of levels Γ0(M) and Γ0(N/M) for some M ♣ N .

(4) λF (p) ≡ 1 + pk−2 + pj+k−1 + pj+2k−3 (mod λ).

Here, λ is a divisor of ℓ in a sufficiently large extension of Q. Unless the conductor
of ρF happens to be a proper divisor of the conductor of ρF , g in (1) and (2), and
g, h in (3), will be newforms. This will certainly be the case in the instances of such
congruences that we prove, which will be of types (1) and (2), though the proof
relies on viewing them as like type (3), except with ρh or ρg (respectively) reducible.

The strategy for proving instances of such congruences is as follows. Assuming
N is exactly divisible by at least one prime, we choose a square-free divisor D−

of N with ω(D−) odd, and apply Theorem 9.7 for suitable D = D−D+ with
gcd(D−, D+) = 1 and N ♣ D. So we take F (or some oldform derived from F if

N ̸= D) in SD−-new
k,j (P (D))G, and corresponding f ∈ Mj+k−3,k−3(K̂(D))G. For

p ∤ D, the Hecke eigenvalue λF (p), the left-hand-side of the congruence, is the same
as the eigenvalue of T (p) on f .

The aim is to arrange for there to be another Hecke eigenform f1 ∈ Mj+k−3,k−3(K̂(D))
such that the right-hand-side is the eigenvalue of T (p) on f1, or is at least congruent
to it modulo λ. If we can then observe a congruence (mod λ) between the vectors f

and f1 inside Mj+k−3,k−3(K̂(D)) (with respect to the natural integral structure on
the coefficient module Wj+k−3,k−3) then the desired congruence of Hecke eigenvalues
follows, at least for p ∤ D. (In fact this gives us a congruence of Hecke eigenvalues
also for T1(p2), not just for T (p).)

We further arrange for f and f1 to have matching Atkin-Lehner eigenvalues for
p ♣ D. Then in practice we actually prove the congruence between corresponding

f̃ and f̃1 in M̃j+k−3,k−3(K̂(L)
+

)θd , for some suitable d ♣ D with gcd(d, D/d) = 1,
determined by Theorem 10.1. Actually, except in the first following section, we
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shall see some interesting departures from the simple strategy outlined above, with

the involvement of additional eigenforms in M̃j+k−3,k−3(K̂(L)
+

)θd , or even of two
spaces for different genera of lattices.

11.1. Congruences between forms of Saito-Kurokawa and general types.

First we look at case (1), in the sub-case j = 0, with a newform g ∈ S2k−2(Γ0(N)).
If the sign in the functional equation of L(g, s) is (−1)ω(N), and q is an auxiliary
prime when ω(N) is even, then for p ∤ N (or p ∤ Nq), ap(g) + pk−2 + pk−1 is the
Hecke eigenvalue of T (p) on the Saito-Kurokawa lift

ĝ =

{
ι1(g) if ω(N) is odd;

ιq(g) if ω(N) is even.

In Proposition 9.4, D = D− = N or Nq, and d− = 1 or q. We seek then a

congruence between f̃ and ˜̂g in Mk−3,k−3(K̂(L)
+

)θd , for suitable d, where f̃ comes
from a newform F ∈ Sk(P (N))G := Sk,0(P (N))G.

11.1.1. Example with N = 61, k = 3, ℓ = 43. The space S4(Γ0(61)) (61.4.a) is
15-dimensional, spanned by a newform g (61.4.a.a) with Hecke eigenvalues in a
number field E of degree 6, and a newform whose coefficient field has degree 9.
The sign in the functional equation of L(g, s) is ϵ61 = −1. Consequently there
exists a 6-dimensional subspace of Saito-Kurokawa lifts, of g and its conjugates,
inside S3(P (61)). In [PY15, §8, Example 1], Poor and Yuen refer to this as the
subspace of Gritsenko lifts of associated Jacobi forms. They show that S3(P (61))
is 7-dimensional, with S3(P (61))G spanned by a Hecke eigenform F with rational
Fourier coefficients and Atkin-Lehner eigenvalue w61 = −1. They also prove (with
appropriate scaling) a mod 43 congruence of Fourier coefficients between F and
some Gritsenko lift (not a Hecke eigenform). It is easy to deduce from this a
congruence of Hecke eigenvalues (or even of Fourier coefficients) between F and the
Saito-Kurokawa lift SK(g), modulo some prime divisor λ of 43 in E, as in [Dum22,
Example 5.7]. It is (for all primes p ̸= 61)

λF (p) ≡ ap(g) + p + p2 (mod λ).

We can recover this as a congruence of Hecke eigenvalues between associated f

and ĝ in M0,0(K̂(61)), with D = D− = 61, d− = 1. (Note that, unlike the method
of Poor and Yuen, ours does not lead to a congruence of Fourier coefficients.) By
Theorem 10.1, ω61 has eigenvalue e61 = 1 on both f and ĝ. So both f̃ and ˜̂g find

themselves inside M̃0,0(K̂(L)
+

)θ1 (cf. Remark 10.2). In fact, as noted in Example

10.3, the space M̃0,0(K̂(L)
+

)θ1 was computed in [RT20, Example 9]. Computing

with integral coefficients, the congruence between the suitably scaled eigenvectors f̃
and ˜̂g may be observed directly.

We computed in Sage [Sag21], using the package quinary_module_l.sage, which
may be found in [Ram20b]. The quadratic form q is associated to a special lattice
of determinant 2D, with D = 61. All the quinary forms used in this article, like
those tabulated in http://www.cmat.edu.uy/cnt/omf5/, were obtained via a box
search.

sage: q = QuadraticForm(ZZ, 5, [1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0,

1, 0, 8])

sage: qmod = quinary_module(q)
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sage: T2 = qmod.Tp_d(2, 1)

sage: T2

[7 4 4 0 0 0 0 0]

[1 4 3 3 3 1 0 0]

[1 3 3 0 0 0 2 6]

[0 2 0 5 0 2 2 4]

[0 6 0 0 1 0 4 4]

[0 1 0 3 0 9 0 2]

[0 0 4 6 4 0 1 0]

[0 0 3 3 1 1 0 7]

sage: T2.fcp()

(x - 15) * (x + 7) * (x^6 - 29*x^5 + 322*x^4 - 1714*x^3 + 4471*x^2 -

5205*x + 2026)

sage: v61 = (T2 + 7).right_kernel().0

sage: v61

(0, 6, -6, -4, -12, 0, 12, 3)

sage: K.<a> = NumberField(T2.fcp()[2][0])

sage: vSK = (T2 - a).right_kernel().0

sage: vSK*= denominator(vSK)

sage: I = K.ideal([43, a + 7])

sage: R = K.residual_field(I)

sage: (v61 - 4*vSK).change_ring(R) == 0

True

Note that we are able to use the single Hecke operator T (2) to decompose the space
into simple Hecke submodules.

Generalising a construction of Ribet, as in [BL21, §11], the invariant Z43-lattice
in V may be chosen in such a way that inside ρF we get a non-trivial extension of
F43(−1) by ρg, hence of F43 by ρg(1). This leads to a non-zero element in a certain
Selmer group, which by the Bloch-Kato conjecture should lead to divisibility by λ
of a suitably normalised algebraic part LN

alg(3, g) (Euler factors at primes dividing

N omitted). Note that 3 is paired with 1 by the functional equation with respect
to s and 4 − s. More generally, j + k is paired with k − 2. Using the command
LRatio in the Magma computer package [BCP97], one readily checks that in fact
43 ♣ NmE/Q(Lalg(3, g)).

A general theorem of Brown and Li, Corollary 6.14 in [BL21], proves a mod λ
congruence of Hecke eigenvalues between SK(g) (g ∈ S2k−2(Γ0(N)− a newform)
and a Hecke eigenform F ∈ Sk(P (N))G, from divisibility by λ of Lalg(k, g), under
various conditions. These include that k ≥ 6, so it does not apply here.

11.1.2. Example with N = 89, k = 3, ℓ = 29. As in the previous example, we can
prove a congruence between the Hecke eigenvalues of the classical modular form g
with label 89.4.a.c (whose coefficient field has degree 6) and a paramodular form
in S3(P (89))G. More precisely, the space S3(P (89)) decomposes as the sum of 4
eigenspaces, 3 of degree 1 and 1 of degree 6. This can be proved as before using the
Hecke operator T (2).

Because the degree of E, the coefficient field of g, is 6 we conclude that the
eigenspace of degree 6 in S3(P (89)) must correspond to a Saito-Kurokawa lift of g.
Of the other 3 eigenspaces, two correspond to Saito-Kurokawa lifts, which we can
identify by looking at their eigenvalues. The third one, spanned by F , must be in
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S3(P (89))G. Note that, whereas when N = 61 we already knew the existence of F ,
by work of Poor and Yuen, here, computing with algebraic modular forms only, we
are guaranteed its existence by Theorem 9.7 combined with Proposition 9.9(3).

Using the same argument as in the previous example, we have proved the following.

Theorem 11.2. The following congruence holds for all primes p ̸= 89:

λF (p) ≡ ap(g) + p + p2 (mod λ),

where λ is a prime divisor of 29 in E.

Note that once again, 29 ♣ NmE/Q(Lalg(3, g)) = 348/11.

11.2. Harder’s conjecture for paramodular level: examples of Fretwell. Still
in case (1), we suppose now that j > 0. Then the right hand side ap(g)+pk−2+pj+k−1

is no longer the Hecke eigenvalue of T (p) on some element of Sk,j(P (N)). Still, one
may conjecture that if ℓ > j + 2k − 2 and λ divides Lalg(j + k, g) then there exists
a Hecke eigenform F ∈ Sk,j(P (N))G satisfying the congruence

λF (p) ≡ ap(g) + pk−2 + pj+k−1 (mod λ).

This conjecture was made by Harder in the case N = 1 [Har08] and an instance
(k, j, ℓ) = (10, 4, 41) was proved by Chenevier and Lannes [CL19], using algebraic
modular forms, with constant coefficients, for orthogonal groups of even unimodular
lattices of rank 24. Further examples in the case N = 1 have been proved by
methods farther removed from those we use here. Ibukiyama [Ibu14] proved an
example (k, j, l) = (5, 18, 43), subject to his conjecture on a Shimura correspondence
in degree 2, which was subsequently proved by Ishimoto [Ish22]. Recently Atobe,
Chida, Ibukiyama, Katsurada and Yamauchi [ACI+21] have reproved the case
(k, j, l) = (10, 4, 41) and added two further instances, namely (k, j, l) = (14, 4, 4289)
and (4, 24, 97). They deduce these from congruences between (vector-valued) degree-
4 Klingen-Eisenstein series (of Saito-Kurokawa lifts) and cuspidal lifts, proved using
differential operators and pullback formulas.

For N = 2, 3, 5, 7, Fretwell [Fre18] found experimental evidence for several in-
stances of such congruences, in each case checking it for a few small values of
p. He computed Hecke eigenvalues by computing traces of Hecke operators on
1-dimensional spaces of algebraic modular forms for GU(2, B), with B a definite
quaternion algebra over Q, ramified at N . In Theorem 11.3 below, we prove an
instance of a congruence of the same type, but for larger N . Three further examples
we have proved, noted in §11.2.2, include one of Fretwell’s.

11.2.1. Example with N = 19, k = 3, j = 2, ℓ = 7. Notice that ℓ > j + 2k − 2, just.
Consider the newform g ∈ S6(Γ0(19)), with rational Hecke eigenvalues and ϵ19 = −1
(19.6.a.a)). Its Fourier expansion starts as

g = q − 6q2 + 4q3 + 4q4 + 54q5 − 24q6 + . . . .

Using the command LRatio in the Magma computer package [BCP97], one checks
that 7 ♣ Lalg(5, g)), so we expect a Hecke eigenform F ∈ S3,2(P (19))G with

(28) λF (p) ≡ ap(g) + p + p4 (mod 7),

for all primes p ∤ 7 · 19.

Theorem 11.3. The congruence (28) holds for all p ̸= 19.
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Proof. We may view the right-hand-side as ap(g) + p(1 + p3), which looks like the
Hecke eigenvalue of a Yoshida lift of g and an Eisenstein series of weight 4 and level
1. Though there is no such thing, we can replace the Eisenstein series by a cuspidal
Hecke eigenform h of weight 4 and prime level q, chosen to have the same Hecke
eigenvalues mod 7. Such an h exists as long as q4 ≡ 1 (mod 7). This is an instance
of a general theorem on congruences “of local origin”, conjectured by Harder [Har13]
and proved independently in [DF14, Theorem 1.1] and by Billerey and Menares
[BM16]. In the case at hand, the smallest q that works is q = 13, and we can find
the form h (13.4.a.a) in the LMFDB [LMF21], with ϵ13 = −1,

h = q − 5q2 − 7q3 + 17q4 − 7q5 + 35q6 + . . . .

By Proposition 9.1, with a = 2, b = 0, d− = D− = 13, c+ = D+ = 19, we have

f1 = ι(h, g) ∈ M2,0(K̂(13 · 19)). By Theorem 10.1, ω13 and W19 have eigenvalues

e13 = 1, e19 = −1 on f1. Hence the corresponding f̃1 lives in M̃2,0(K̂(L1)
+

)θ19 ,
where L1 is the lattice associated to D− = 13 and D+ = 19.

With D = D− = 19, one finds that the space M̃2,0(K̂(L)
+

)θ1 (with a different L
for D = 19) is 1-dimensional, spanned by an eigenform corresponding by Theorem
9.7 to our target F ∈ S3,2(P (19))G, with w19 = −1 by Theorem 10.1. Following
Remark 10.4 (and switching to D− = 19, D+ = 13), we can manufacture an

associated oldform f ∈ M2,0(K̂(19 · 13)) with e19 = 1, e13 = −1, whose associated f̃

is in M̃2,0(K̂(L2)
+

)θ13 , where L2 corresponds to D− = 19, D+ = 13.

The space M̃2,0(K̂(L1)
+

)θ19 (working with coefficients in a Q-vector space) de-
composes as A1 ⊕ A2 ⊕ A3 where A1 corresponds to the Yoshida lift f1, A2 to
the Yoshida lift of the forms 13.4.a.a and 19.6.a.d. We wish to show that the
29-dimensional Q-vector space A3 (irreducible as a Hecke module) corresponds to a
paramodular newform of level 13 · 19 for k = 3, j = 2, and its Galois conjugates.

This will follow from Theorem 9.7 if we can show that M2,0(K̂(13 · 19))Eis is trivial,

so that A3 survives into M2,0(K̂(13 · 19))G. (Note also that it cannot be 19-old,
since one finds that dim S3,2(P (13)) = 0.)

To show this, we cannot use Proposition 9.9(3), since D+ > 1 (and j > 0, k < 5).
But we can use a similar idea with the aid of some computation. Using [IK17,
Main Theorem 1.1] we find that dim S3,2(P (13 · 19)) = 189. We have to remove a
2-dimensional space of 13-old forms coming from F , and since j > 0 there are no
Saito-Kurokawa lifts to remove, so dim S13-new

3,2 (P (13 · 19))G = 187. By Theorem

9.7, this is a lower bound for dim M̃2,0(K̂(L1)
+

) − dim M̃2,0(K̂(L1)
+

)Y (where Y

denotes Yoshida lifts), with equality if and only if M2,0(K̂(13 · 19))Eis is trivial. But

by computation we find that dim M̃2,0(K̂(L1)
+

) − dim M̃2,0(K̂(L1)
+

)Y is indeed
187, with contributions 66, 30, 29 and 62 from d = 1, 13, 19 and 13 · 19, respectively.

The space M̃2,0(K̂(L2)
+

)θ13 decomposes as B1 ⊕B2 ⊕B3 where B1 corresponds to

the oldform f̃ , B2 to the Yoshida lift of the forms 19.4.a.a and 13.6.a.b. Lastly, the 29-
dimensional space B3 must be isomorphic (as a Hecke module) to A3, corresponding
to the same paramodular newform of level 13 · 19 for k = 3, j = 2.

If we work with coefficients in Z-modules rather than Q-vector spaces, we do not
get direct sum decompositions. The space A1 is included in A3 modulo 7, and B1

is included in B3 modulo 7. In fact, the isomorphism of A3 to B3 sends A1 to B1
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modulo 7. We conclude that the eigenvalues of f̃ and f1 must be the same modulo
7. This would be for all p ∤ 19 · 13, but we may check the congruence for p = 13 by
hand, or by choosing a different q, as remarked below. □

The computations for this theorem were done using a package similar to that
used in the previous example, but implemented in Pari/GP [PAR18], where we
implemented the representations in general. This also can be found in [Ram20b].

The next three primes q such that q4 ≡ 1 (mod 7) are q = 29, 41 and 43. We
checked that the same congruence can be proved in the same fashion using any of
these q in place of q = 13. Note in particular that in all such cases there exists a
congruence modulo 7 between the paramodular form F and a paramodular newform
of level 19 · q. This naturally raises the following question.

Question 11.4 (level-raising). Consider a new Hecke eigenform F ∈ Sk,j(P (N))G

such that (for some ℓ > j + 2k − 2) ρF is reducible of type (1). Is it true that
for any prime q such that qj+2 ≡ 1 (mod ℓ), there exists a new Hecke eigenform
H ∈ Sk,j(P (qN))G such that ρH has the same composition factors as ρF ?

Note that ρF is reducible, so although we call this “level-raising”, it should
perhaps be viewed as more closely analogous to [BM16], [DF14] or [Yoo19] than to
well-known results of Diamond and Ribet on level-raising for residually irreducible
representations [Rib84], [Dia91].

11.2.2. Further examples. With the above approach we only succeeded in proving
one of the examples of Fretwell. The reason is that our method is very efficient for
small values of j, in which case the dimension of Wj+k−3,k−3 (especially for small
k) can be manageably small, cf. Theorem 8.1.

The example we could handle is when N = 5, k = 7, j = 2, and ℓ = 61. Let
g ∈ S14(Γ0(5)) be the newform with LMFDB label 5.14.a.b and coefficient field E
of degree 3. Computing the newform in Magma (via the use of modular symbols),
one can verify that the algebraic value Lalg(9, g) equals 58712500 = 22 · 55 · 7 · 11 · 61.
Let F ∈ S7,2(P (5))G.

Theorem 11.5. The following congruence holds, for all primes p ̸= 5:

λF (p) ≡ ap(g) + p3 + p8 (mod λ)

where λ is a prime in E that divides 61.

Proof. Take the form h ∈ S4(Γ0(11)) of label 11.4.a.a to construct the Yoshida lift,
and proceed as in the proof of Theorem 11.3. Note that 114 ≡ 1 (mod 61). □

We also proved the following additional two examples.

Theorem 11.6. In the previous notation, let N = 42, k = 3, j = 2, and ℓ = 13.
Let g be the newform 42.6.a.d and F the paramodular form in S3,2(P (42)). Then
the value Lalg(g, 5) = 13 and for all primes p ∤ 42,

λF (p) ≡ ap(g) + p + p4 (mod 13).

Proof. The algebraic value can be computed with Magma. To prove the other claim,
proceed as in the previous examples, using the form 5.4.a.a to construct the Yoshida
lift. The only difference with the other examples is that since the primes 2, 3, 5 and
7 all divide qN , we have to decompose the space using T (11), whereas in earlier
examples we always used T (2). □
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Theorem 11.7. In the previous notation, let N = 13, k = 3, j = 4, and ℓ = 11.
Let g be the newform 13.6.a.a and F the paramodular form in S3,4(P (13))G. Then
Lalg(g, 7) = 220/119 and for all primes p ̸= 13,

λF (p) ≡ ap(g) + p + p6 (mod 11).

Proof. Take the form 23.6.a.a to construct the Yoshida lift. □

11.3. Proof of a congruence of Buzzard and Golyshev. We turn now to case
(2). We already saw, in §11.1.1, a congruence, modulo a divisor of 43, involving
F ∈ S3(P (61))G and g ∈ S4(Γ0(61)). Around the end of 2010, V. Golyshev
conjectured the existence of a second congruence for F , beyond the one involving
43, then K. Buzzard found it experimentally, having realised the possibility of it
involving weight 2 rather than weight 4, and computations of A. Mellit provided
further support. The congruence is

(29) λF (p) ≡ 1 + p3 + pap(g) (mod λ),

where g ∈ S2(Γ0(61)) (61.2.a.b) is a newform with cubic coefficient field E, ϵ61 = −1,
and λ is a prime divisor of 19 in E.

If this is true then inside ρF we get a non-trivial extension of F19 by ρg(−1)
(ρg(2 − k) in general), which is connected by the Bloch-Kato conjecture to L(3, g)
(L(j + k) in general), but since this is a non-critical value (not in the range 1 ≤ s ≤
(j + 2) − 1) we cannot detect the factor computationally.

Theorem 11.8. The congruence (29) holds, for all primes p ̸= 61.

Proof. To prove the congruence, we interpret 1 + p3 + pap(g) as congruent mod λ
to ap(h) + pap(g), where h ∈ S4(Γ0(q)) is a newform congruent mod λ to the level 1
Eisenstein series of weight 4, with q4 ≡ 1 (mod 19). The smallest q we can use is
q = 37, and h is 37.4.a.a, with ϵ37 = −1. Since h has coefficient field of degree 4,
we need to replace E by its compositum with this field, and λ by a suitable divisor
of the original.

By Proposition 9.1, with a = 0, b = 0, d− = D− = 61, c− = D+ = 37, we have

f1 = ι(g, h) ∈ M0,0(K̂(61 · 37)). By Theorem 10.1, ω61 and W37 have eigenvalues

e61 = +1, e37 = −1 on f1. Hence the corresponding f̃1 lives in M̃0,0(K̂(L)
+

)θ37 .
Using Theorem 10.1 (w61 = −1 =⇒ e61 = +1) and Remark 10.4, we may produce

an oldform f associated to F , with f̃ in the same M̃0,0(K̂(L)
+

)θ37 .

If we compute the Hecke operator T (2) restricted to M̃0,0(K̂(L)
+

)θ37 , its charac-
teristic polynomial factors as (x + 7) · p2(x) · p3(x), where p2 and p3 are irreducible
of degree 12 and 211 respectively. Working with Z-coefficients, let C1, C2, C3 be

Z-submodules of M̃0,0(K̂(L)
+

)θ37 killed by T (2) + 7, p2(T (2)) and p3(T (2)), respec-

tively. The space C1 corresponds to f̃ , C2 to f̃1 (and its Galois conjugacy class)
and C3 likewise to a paramodular newform of level 37 · 61 for k = 3, j = 0. (Strictly
speaking, we do not know that C3 corresponds to a newform, since Proposition
9.9(3) applies only when D+ = 1, but this proof of the congruence works anyway,
without having to know it.)

The kernel of T (2)+7 on M̃0,0(K̂(L)
+

)θ37⊗F19 has dimension 2. In M̃0,0(K̂(L)
+

)θ37⊗
Z19 we find four T (2)-eigenspaces with eigenvalues congruent to −7 modulo 19, all
rank-one and therefore common eigenspaces for all the T (p) and T1(p2) (p ∤ 61 · 37).
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The line C1 ⊗Z19 has eigenvalue −7, inside C2 ⊗Z19 we have a line with eigenvalue
−7 + 10 · 19 + 8 · 192 + · · · , inside C3 ⊗ Z19 eigenvalues −7 + 15 · 19 + 2 · 192 + · · ·
and −7 + 18 · 19 + 10 · 192 + · · · .

We find that when we take four eigenvectors spanning these eigenspaces, and
reduce them mod 19, say to ¶v1, v2, v3, v4♢, which lie in the aforementioned 2-

dimensional kernel of T (2) + 7 on M̃0,0(K̂(L)
+

)θ37 ⊗F19, no two of them is collinear.
Now for any p ∤ 61 · 37, consider the eigenvalues µ1, µ2, µ3, µ4 ∈ F19 of T (p) acting
on v1, v2, v3, v4 respectively. If µ1 ̸= µ2 then v3, being in neither the µ1-eigenspace
nor the µ2-eigenspace, would not be an eigenvector. This kind of contradiction
shows that all four vectors lie in a single 2-dimensional simultaneous eigenspace for
all the T (p) and T1(p2) (p ∤ 61 · 37). This implies the congruence we were to prove.
(It may be checked by hand for the auxiliary prime p = 37.) □

Remark 11.9. The fact that the simultaneous eigenspace is not 1-dimensional may
be viewed as a “multiplicity-one failure”, analogous to that discovered by Ribet and
Yoo for certain Eisenstein ideals at composite level [Yoo16, Example 4.7, Remark
4.11].

The above computations were also performed using the Pari/GP package. Note
that our paramodular form has reducible residual representation modulo 19, and is
congruent to a newform of paramodular level 61 · q (with q = 37). The next q such
that q4 ≡ 1 (mod 19) is q = 113. This is rather large to reprove the congruence.

11.3.1. Example for N = 89, ℓ = 5. As in the case of N = 61, we also have a
“second” congruence for N = 89, involving a modular form of weight 2. Let g1, g2

be the classical modular forms of level 89, weight 2 and sign −1 in their L-functions,
with LMFDB labels 89.2.a.b and 89.2.a.c respectively. Their coefficient fields have
degree 1 and 5 respectively, and we denote by E the second one. It is easy to prove
in Sage that

ap(g1) ≡ ap(g2) (mod λ)

where λ is a prime dividing 5 in E, using the class CuspForms and the method
Hecke_matrix to compute the Hecke matrix at 2 and prove the congruence for the
corresponding eigenspaces.

Using the same method as before we have proved the following.

Theorem 11.10. The following congruences hold, for all primes p ̸= 89:

λF (p) ≡ pap(g1) + 1 + p3 (mod 5);

λF (p) ≡ pap(g2) + 1 + p3 (mod λ),

where λ is a prime divisor of 5 in E.

Proof. Take q = 7, d− = 1, D− = 89 and D+ = 7, and proceed as with the previous
example using the form h ∈ S4(Γ0(7)) of label 7.4.a.a to construct the Yoshida
lift. □

In this case all primes q ≠ 5 satisfy q4 ≡ 1 (mod 5). We checked that there exists
a congruence modulo 5 of the paramodular form F of level 89 and a paramodular
newform of level 89 · q for q = 2, 3, 7, 11. So once again, the following seems a very
natural question.
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Question 11.11. Consider a new Hecke eigenform F ∈ Sk,j(P (N))G such that (for
some ℓ > j + 2k − 2) ρF is reducible of type (2). Is it true that for any prime q such
that qj+2k−2 ≡ 1 (mod ℓ), there exists a new Hecke eigenform H ∈ Sk,j(P (qN))G

such that ρH has the same composition factors as ρF ?

Remark 11.12. It is actually only those q with q4 ≡ 1 (mod 52) (such as q = 7)
that are useful for proving the congruences in Theorem 11.10. This is because the
general condition for existence of h ∈ Sκ(Γ0(q)) congruent to Eκ (mod λ) (with
even κ ≥ 4 and ℓ > 3) is that ordℓ

(
Bκ

2κ (qκ − 1)
)

> 0. We only have to worry about
ℓ dividing the denominator of the first factor when ℓ ♣ κ or (von Staudt-Clausen)
(ℓ − 1) ♣ κ (so not when ℓ > κ + 1), but in the case at hand ℓ = 5 and κ = 4, so
(ℓ − 1) = κ and ord5B4 = −1.
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