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Abstract 

Particle-particle interactions impact the processability and performance of drug products. Faceted particulates 

exhibit distinct surface chemistries which affect their adhesion causing downstream processing challenges 

such as poor flow, punch sticking, and compaction. Currently there is a lack of tools to assist formulators in 

predicting these challenges based on particle properties. Here we present a methodology for navigating the 

energy landscape of inter-particle interactions. We used molecular mechanics to calculate the interactions 

between slabs of molecules representing distinct facets. The workflow enables a rapid assessment of the total 

energy landscape between interacting particles, providing insight into the effects of different surface 

chemistries and molecular topologies. Previously, the strongest interaction (lowest energy) was used to 
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calculate the propensity to adhere, but we demonstrate that this does not always predict an accurate description 

of the likely surface interactions.  We chose paracetamol to demonstrate the application of this methodology. 

The most cohesive facets were the (101) and (10-1). Comparing surface interactions between particles allows 

a ranking of the most energetically compatible surfaces. The significance of this ranking and understanding 

how the surface chemistry can impact inter-particle interactions is a step towards assisting formulation 

decisions, and improvements in product performance. 

Introduction 
Due to recent advances in manufacturing technology and encouraged by regulatory bodies1 the 

pharmaceutical companies are making significant investments in continuous processing2–4 in order to benefit 

from improved product quality, easier scale up and lower development costs.  

Continuous manufacturing, however, is much more sensitive to powder properties compared to the 

traditional batch manufacturing. Most critical to the seamless production of Oral Solid Dosage forms using 

continuous processing is the ability of the Drug Substance (DS) powder and Drug Product (DP) blend to flow 

well. The flowability of powders depends on a number of factors with particle shape and particle size being 

the first one to be optimised, usually via a trial and error approach. The effect of particle shape on powder 

flow arises from both the physical and chemical interactions of the particles. Particles shapes are characterised 

by a set of crystallographic faces which are defined by their miller indices and relative surface areas. The 

different faces can often exhibit a significant difference in their surface chemistry depending on the molecular 

and crystallographic symmetries present. The surface chemistry is manifested in the magnitude of the cohesive 

(API-API or excipient-i-excipient-i) and adhesive (API-excipient or excipient-i -excipient-j) particle 

interactions and has been reported to have a significant impact on powder processability including flowability, 

compaction, and punch sticking5–7. 

An effective way to anticipate or fix potential processing issues related to unfavourable particle 

cohesive/adhesive interactions is to adopt an in-silico crystal morphology screening to run “what-if” scenarios. 

A crystal engineering approach in accordance with the Materials Science Tetrahedron (MST) framework 8 can 

then also be employed to manipulate the morphology of the DS crystals and steer it toward one that provides 

more favourable particle-particle interactions.  
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Recent advances in computational hardware, improvements in the ab-initio calculations of the 

intermolecular interactions, and the availability of software with customizable workflow provide the 

pharmaceutical scientist with the ability to develop and implement their own models and computational 

workflows. This has led to a shift from the traditional trial and error by experimentation way of working  

Modern computational tools have made in silico workflows a viable option for the pharmaceutical scientist. 

These new workflows are becoming embedded into drug development workflows alongside traditional 

experimental techniques. This combined way of working is encouraged by regulatory bodies9 and backed by 

significant government funding.  

Models have been developed to investigate surface interactions using molecular probes10,11, using a 

systematic search method where a single probe molecule, having three translational and three rotational 

degrees of freedom, is placed on a 3D grid above a slab and the interaction energy between the two calculated 

at every grid point and rotation. This method has been applied in a study of the cohesive-adhesive balance 

(CAB) for inhalation formulations and has compared well to experimental results12. Whilst this systematic 

search method was useful in mapping the interaction between the two bodies, representing the second surface 

as a molecule omits contributing interactions from the bulk of the slab at slightly longer range, thus ignoring 

a large percentage of atoms that could impact the overall adhesion of the two surfaces. A potentially larger 

effect is the omission of molecules laterally, which will also interact with the opposing surface and influence 

the probability that a probe molecule could approach at that particular position in 3D space, or rotation. This 

effect has been shown in a systematic grid search of two nano-clusters of ascorbic acid and aspirin 11,13 where 

the corners and edges were identified as highly energetic binding sites. However, the size of each cluster was 

not large enough to ensure convergence of energy, showing that bulk interactions and/or longer range lateral 

interactions were a significant contribution to total interaction energy.  

In this work we present a computational model for the automated calculation of the interactions between 

pair of crystalline faces using four degrees of freedom. The model explicitly considers both surfaces of interest 

and thus overcomes some of the limitations inherent to estimating the interaction strength between two faces 

by using one face only and a single molecule as a proxy for the second face12 .  
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Alongside the model, we have also developed a tool to aid in the analysis and automation of the facet specific 

interaction energy mapping. We used paracetamol as a case study to illustrate how the model works.  
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Methodology  

Geometry Optimisation and Crystal Morphology 

The crystal structure of paracetamol (Para)14 was chosen as a case study and imported from the CSD 

(Cambridge Structural Database)15 (CSD Refcode HXACAN28).  All computational results were obtained 

using Dassault Systemes BIOVIA Materials Studio package16 . Geometry optimisation was performed using 

the Forcite module. The pairwise intermolecular calculations were carried out using the Dreiding forcefield 

with atomic point charges calculated by MOPAC17 using AM118 . Ewald summation was used for the 

electrostatic contribution with a buffer width of 0.5 Å and a limiting radius of 18.5 Å. A rigid body 

approximation was applied to the optimisations of the cell dimensions and hydrogen atom positions.  The fit 

of a forcefield was judged by the closeness between the calculated lattice energy and experimental enthalpy 

of sublimation for paracetamol form (I) (28.26 kcal mol-1)19 and the smallest deviation in geometry from the 

original structure (Supporting Information Table S1). 

The morphology of paracetamol was calculated using the attachment energy20 model within the Morphology 

module of Materials Studio with the same forcefield and summation parameters used in the geometry 

optimization step and a minimum d-spacing (dhkl) set to 0.8 Å. The anisotropy factor was calculated in order 

to approximate the saturation of unsatisfied surface intermolecular bonds21.  
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Surface-Surface Interaction Model 

 The workflow in Figure 1 describes the calculation of the interaction between two crystalline faces. 

Surfaces generated by the crystal morphology module were used to construct the interacting slabs. The 

interaction energy between the two slabs was calculated by minimising the energy between them. A systematic 

grid approach was taken to calculate the energy values for all XY positions. The probe surface was then rotated 

around the Z-axis and the processes repeated until all unique positions were calculated. No tilt is introduced 

into the probe or substrate surface, as such all calculations are carried out for parallel surfaces. To resolve 

lattice-mismatching across different systems, the surfaces-surface interactions were computed without the use 

of periodic boundary conditions. The code for this model can be found at this link 

(https://gitlab.com/AlexAMC/ssim). 

While the attachment energy model was used to generate a morphology for the process outlined above, the 

model proposed is independent of the input morphology and as such is extensible to other morphology 

methods or experimental morphologies. 

 

 

1. Generation of Interacting Layers  

Slabs were generated to represent crystalline facets. Differences in the lattice parameters of periodic slabs 

resulted in supercells containing interacting slabs being prohibitively large. For this reason, pseudo-periodic 

supercells were used.  

Figure 1- Workflow illustrating a high level overview of how the surface-surface interaction model (SSIM)

calculates the interaction between two surfaces.  
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 The construction and alignment of the pair of slabs representing the crystal surfaces of interest is outlined 

below and illustrated in Figure 2. The probe layer (Lp) and substrate layer (Ls) were generated from the faces 

calculated by the crystal morphology module as three-dimensional slabs. 

Step 1) – Super cells of LP and LS were created using the surfaces generated from the morphology prediction. 

LP requires dimensions of 3x3xT, where T is the number of unit cells required to achieve optimal thickness.  

Calculated surfaces were rotated to align with the XY plane and their origins overlayed to facilitate 

construction of slabs. Optimum T for a specific system is obtained by increasing the sab thickness at d-spacing 

increments.  

The thickness of the surface is measured from the cleave plane to the next equivalent plane. The default 

cleaving rules were applied for calculating the surface termination which states that atoms connected to 

molecules whose centroid are within the boundary are included in the slab.  

Figure 2 - Diagram illustrating the three steps required to construct the probing (LP) and substrate (LS) layers.
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While only one unit cell of LP (labelled LP_Center in Figure 2) was required to calculate the interaction per 

unit area, the extra atoms around the primary central cell were used to detect any collision against LS which 

might sit outside of the unit area.  

In order to reduce the computational time all atoms in the LP were fixed upon initial layer construction 

except those present in LP_Center. Pairwise interactions between fixed atoms does not contribute towards total 

energy calculations, as shown in Figure S1. The atoms present in the top d-spacing of LP were used for 

detecting collisions between slabs (labelled LP_Top in Figure 2, cells highlighted in green).  

The surface cell vectors US and VS were multiplied by the minimum number of repeating units to construct 

LS, an approximate square of the desired area set by convergence testing, Aset. The multiplication factor xd for 

each unit cell dimension (US and VS) being calculated for Aset and Ld is the length of unit cell dimensions (US 

and VS) and is shown in Equation 1. A square approximation was used to resolve edge effects caused by high 

aspect ratio unit cells. The reticular area of the unit cell and slab are recorded for both layers to be used during 

normalisation for analysis.  

xd = ��ASetLd �        Equation 1 

 

Step 2) - Due to the surface sampling method outlined below, the location of the initial starting point during 

construction for Lp and Ls is arbitrary. Both LP and LS were placed such that their origins overlapped. In order 

to ensure the two faces of interest were facing one another, the LP was vertically flipped.  

Step 3 )  Centroids of the top d-spacing of the two slabs were calculated (blue/orange dots in Figure 2). The 

two slabs were aligned in the XY plane and then separated along the Z-axis utilising the two centroids. The 

displacement distance DLP-LS was calculated using Equation 2, where xsep is the desired separation between 

the two slabs; TP and TS are the thicknesses of each slab. 𝐷𝐷𝑃𝑃−𝐿𝐿 = 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 + (
𝑇𝑇𝑃𝑃2 +

𝑇𝑇𝑆𝑆2 )      Equation 2 

Centroids for each slab were generated in the top layers, thus their position remaining constant during 

convergence testing of the slab thickness.  

The 3D grid for the LP translations was calculated by taking the largest US/UP and VS/VP vector from the 

two layers creating a grid large enough to encompass all unique points. 
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2. Interaction calculations 

The interaction energy between two surfaces is defined as the summation of the repulsive and attractive 

interactions between atoms from each surface. A larger/stronger interaction energy will be noted as one that 

is more negative in value from here on in.  

Once the slabs were constructed, the energy of LP was calculated in isolation with LP_Center unfixed, and 

LP_Top fixed. The isolated environment allows for the internal slab energies to be calculated (EP and ES), 

which were then used to calculate the interaction energy between the two slabs, as shown in Equation 3. The 

system energy (Esys) was calculated at every z-step during the scanning phase.  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 =  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠  −  (𝐸𝐸𝑃𝑃  +  𝐸𝐸𝑆𝑆)     Equation 3 

A flow chart of the steps used to calculate the interaction between two surfaces is shown in Figure 3. 

 To decrease the computational time, the state of the atoms being fixed had to be controlled. Two modes 

were implemented. Firstly, the “collision detection” mode where the atoms in LP_Center were fixed while 

those in LP_Top were unfixed to enable any collisions to be detected between the two slabs. Secondly, the 

“interaction calculation” mode where the LP_Center and LP_Top fixed states were swapped. Due to the time 

requirement of switching between fixed states of the atoms, calculations were ran in batches of “collision 

detection” and “interaction calculations” thus giving a 10 fold reduction in time (on 4-cores Intel i7-4770k 

3.8GHz). Illustration of the construction can be seen in Figure S1.  

In “collision detection” mode, the energy minimum search was performed in the Z-direction, utilising the 

steepest descent method (further description in Figure S3). The energy minima were found and their XYZ 

positions were stored. Once the process was completed for all XY positions, the energy of the system was 

calculated at each of the XYZ points with “interaction calculation” enabled. By calculating Eint between 

LP_Center and LS, edge effects were reduced, and the slab thickness was taken into account. After the energies 

were calculated, LP was rotated to the next rotation (R) position and the above process was repeated until all 

R positions had been calculated at which point the data was saved and the run terminated. 

Step sizes in the z-direction were computed dynamically in order to find the energy minimum for Eint. This 

allows for a minimum number of steps to be taken to reach the minima. Equation 4 describes how the step 
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size (δZ) is calculated by taking the energy difference between steps into account (δEint) and using a size 

constant (S) to control the smallest possible step size. Run termination occurs when δEint < 0.001 kcal mol-1 

and δZ < 0.001 Å. Further details of how this algorithm is implemented are detailed in Figure S3.  𝛿𝛿𝑍𝑍𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝛿𝛿𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝛿𝛿𝑍𝑍𝑖𝑖−1 103��      Equation 4 

All unique combinations of predicted non-equivalent facets with a reasonable % total facet area 

representation (>1%) were tested. It is important to note that the calculations were not repeated with an 

inversion of LP and LS due to a negligible energy difference when swapping the probing layer for the substrate 

layer, i.e. 10-1/110 ≈ 110/10-1 (as shown in Figure S4).  

Data Analysis  

Convergence data was processed separately using Origin Pro 201822 to fit the data. A python (3.6) tool has 

been developed to quickly, reliably, and consistently analyse the model output (gitlab.com/alexamc/ssimtool). 

Briefly, the SSIM Tool reads in the outputs of the SSIM calculations, converts the energy from kcal mol-1 to 

mJ m-2 (details in Equation S1), normalizes energies to the reticular area and handles the aggregation of 

datasets to allow for easier analysis of surface interactions. The tool also has built in graphing features allowing 

the users to plot energy distributions and spatial-energy data.   
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The Pandas23 and Seaborn24 python libraries were used to generate violin plots, heatmaps, and separation 

energy distributions.  

 

Convergence Data  

Convergence tests were carried out to ensure the distances and sizes used for all surfaces and limiting radii 

were satisfactory for an accurate representation of the forces involved since the comparisons made between 

facets are relative and not absolute. 

Limiting Radius  

In order to determine the limiting radius for calculating the atom-atom interactions the energy between two 

parallel surfaces was calculated whilst the limiting radius was increased. Due to the lack of a periodic 

Figure 3 - Flow chart illustrating the steps involved in the calculation of the interaction energy between two 

surfaces across multiple XYZR positions. 
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boundary, a large limiting radius of 80 Å was chosen based on the plateau of the interaction and electrostatic 

energy terms in Figure 4.  

 

Layers Area and Thickness 

LP was kept at a constant thickness of one d-spacing while the area of LS was changed from 985 Å2 to 10,905 

Å2 by incrementally increasing the number of repeating units using the Us and Vs parameters. Using a 

convergence tolerance of 0.1 kcal mol-1 for the difference in mean interaction energy between LS and LP across 

one set of X/Y scans,  Figure 5A shows the minimum size of LS, converging at approximately 3500 Å2. 

Convergence criteria are illustrated using dashed lines on each graph.  

With the selected area, the thickness of LS was increased while LP was kept constant. This tested the 

minimum required thickness for LS to account for most significant interactions.  

Figure 4 – Interaction energy of a system with a variable limiting radius, showing the behavior of different 

energy components. Illustration is provided to indicate which limiting radius the figure is referring to.  
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The thickness of LS was set to 36 Å (based on a convergence tolerance of 0.1 kcal mol-1), and LP thickness 

was varied, as shown in Figure 5. A thickness of 36 Å was selected for both probe and substrate layer, based 

on the convergence data shown in Figure 5B and 5C). This thickness works well for the neutrally charged 

single component paracetamol structure. However, it can be expected that for any charged systems, such as 

salts, a larger thickness may be required. Therefore, we recommend new convergence testing is carried out 

when working with new systems. 

  

Figure 5 - Convergence plot of: A) increasing the area of LS whilst LP thickness is kept constant; B) increasing

the thickness of LS whilst LP thickness is kept constant; C) increasing the thickness of LP whilst LS is kept at

constant thickness. Dashed lines show the convergence criteria of the interaction energy at 0.1 kcal mol-1. 
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Results and Discussions 
Before the interactions between crystal surfaces can been studied, the molecular organisation of the crystal, 

as well as the overall crystal morphology, must be generated, optimized, and validated. 

Lattice and Morphology  

The lattice energy of paracetamol form I, calculated with Dreiding and MOPAC as described in the 

Geometry Optimisation and Morphology Prediction section, was found to be -26.08 kcal mol-1, in good 

agreement with previously reported values for the enthalpy of sublimation (28.26 kcal mol-1)19. The 

contributions from each energy component were also calculated with 53.8% (-14.05 kcal mol-1) from van der 

Waals, 23.9% (-6.25 kcal mol-1) from electrostatics and 22.15% (-5.77 kcal mol-1) from H-bond interactions.  

The paracetamol morphology predicted with the attachment energy model exhibits a prismatic shape with 

dominant forms {011} and {101} accounting for 46% and 18% of the surface area of the crystal, respectively 

as shown in Table 1. The overall habit is similar to that reported elsewhere25,26 however extensive modelling 

work by Beyer et al. suggests that {110} is the slower growth facet26 and hence the major face. It is clear from 

the morphology data shown in Figure 6 that the {011} facets are substantially larger, covering 46.5% of total 

facet area, compared to the {002} facets which are much faster growing and represent less than 0.1% of the 

total facet area. It is important to note that these calculations are made in the absence of a solvent or any 

 

hkl Multiplicity dhkl 

Attachment 

Energy  

(kcal mol
-1) 

Slice Energy 

(kcal mol
-1) 

% Total facet 

area 

Anisotropy 

Factor % 

{  0  1  1} 4 7.206 -11.49 -15.76 46.528 60.43 

{  1  0  1} 2 5.811 -11.95 -15.30 18.368 58.67 

{  1  0 -1} 2 6.600 -13.31 -13.94 14.911 53.45 

{  0  2  0} 2 4.682 -13.45 -13.80 4.065 52.91 

{  1  1  0} 4 5.789 -14.23 -13.02 11.191 49.92 

{  1  1 -1} 4 5.395 -14.57 -12.68 4.861 48.62 

{  0  0  2} 2 5.642 -17.90 -9.35 0.075 35.85 

Table 1 Morphology prediction based on the attachment energy model. Showing the facets, the number of 

times they occur (multiplicity) and their associated morphological data. 
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supersaturation and thermal effects. These predictions assume vapor growth and are unlikely to be consistent 

with observed morphologies grown from solvents, though the major faces are present. As such, experimentally 

grown crystal habits might differ from the predicted morphology25.  

 

  

Figure 6 - The predicted morphology of paracetamol form I based on the attachment energy model. Also 

shown is the molecular structure at each surface. The most dominant facets are shown to be {011} and {101}. 

The black line on each facet indicates the Miller plane position defining the surface termination. 

 

{101} 

{110} 

{020} 

{011} 

{11-1} 

{10-1} 
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Surface-Surface Interactions 

The purpose of the surface-surface interaction model (SSIM) is to map the interaction of faceted organic 

crystals interacting cohesively (interactions occurring between similar materials) and adhesively (interactions 

occurring between different materials).  

To achieve this, interactions at the atomistic scale are calculated across all possible positions with three 

degrees of translational and one of rotational freedom (XYZR) thereby providing a comprehensive description 

of the interaction energy distribution between two parallel faces. The influence of functional groups on the 

surface-surface interactions can be seen for the most stable positions and more generally as a function of the 

orientation. This data can be used as an input to process models describing operations such as flow, 

mixing/blending, and granulation, where both the optimal interaction energies and the averaged interaction 

energies are significant. 

The following data (except the singular profile) was generated and analysed using the developed SSIMTool 

Python library which allows for consistent and fast data analysis.   
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Approach Profile  

Once all facet combinations have been calculated, several analyses can be performed. Firstly, single position 

(XYR) energy profiles as a function of the separation distance between the layers can be extracted, as shown 

in Figure 7. As the two surfaces approach each other, the interaction energy becomes more negative, indicating 

a dominating attractive region is reached, thereafter Pauli repulsive forces dominate. The bottom of the energy 

well is the energy minimum (Emin) where the optimum separation of the two layers is reached, and the depth 

of the energy well indicates the magnitude of the adhesive interaction, more negative being a stronger 

interaction. When using the Dreiding forcefield, the total interaction energy can be partitioned into its 

individual components: van der Waals, electrostatic, and H-bond interactions. This provides an indication of 

the relative importance of the different interactions between surfaces and can highlight areas where, for 

example, electrostatics dominate due to ion pairs interacting between two facets.  

 

Figure 7- Energy Profile of probing layer (paracetamol [011], LP) approaching substrate layer (paracetamol 

[011], LS) at origin offset (6,1) and rotation of 170°.. In this example, the total energy minimum occurs at 

~4.4 Å, representing the distance between the miller planes caused by a steric interaction of opposing more 

prominent surface groups. 
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Spatial Data  

As the model stores the energy minima for all of the XYR positions, it is possible to analyse the exact 

mapping of this spatial displacement between the two slabs. Figure 8 shows the interaction energy minimum 

(left) at every XY position in the scanned grid between the two surfaces of 011/10-1. Values of strong total 

energy (kcal mol-1) are represented in blue in Figure 8 (left) correlating with the red regions in Figure 8 (right), 

illustrating the small separation between the surfaces and thus indicating interlocking. At a specific rotation, 

the two surfaces are more likely to interlock when shifted by 4 Å in the Y-axis, illustrated by the inverse 

relationship between the total energy and LP z-axis displacement where the energy is significantly higher when 

LP is closer to the substrate. 

Distribution Data   

Plotting distributions of all energy minima calculated for specific facets, across all rotations with 5° 

increments and 1 Å grid spacing, gives an indication of which facets interact most strongly and what range of 

energies exist within the system. In order to visualise all the facets simultaneously, the distributions are 

displayed as violin plots. These vertically plotted distributions show the full spread of calculated interaction 

Figure 8 - Spatial energy plot showing the energy minima with every XY displacement of  LP for Para/Para- 

011/10-1 at a rotation of 30°, illustrating the separation function for the Total Energy of the interaction. Left) 

Total interaction energy at each XY position, with blue indicating a higher interaction energy. Right) The z-axis 

displacement of LP for each XY position, with red indicating small separations between the two slabs. 

Interdigitation of the opposing lattices allows a small separation which results in a high energy.  
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energies, from the average position out to the low probability minimum and maximum values. The violin plot 

for each facet is shown side by side on the same scale for direct comparison. 

Figure 9 – A) Violin plots of Paracetamol with Paracetamol facet interaction distributions. Vertically plotted 

kernel density estimate plots show the Total Energy (blue) alongside the van der Waals energy component 

(orange). The distributions for each facet have been sorted by descending interaction energy based on the 

median energy. Dashed lines represent the mean and quartiles of the distributions. B) The component energies 

of the total interaction energy are displayed as Electrostatic (blue) and Van der Waals (orange) for the 5 

strongest interacting surface pairs.   

A) 

B) 
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 Figure 9A shows the different energy distributions across all facet pairs of Para/Para interactions. The total 

interaction energy (blue) is plotted alongside van der Waals energy (orange) to illustrate what proportion of 

the total energy is composed of vdW interactions. The vdW interactions accounts for more than 80% of the 

total interaction energy due to the fact both layers are neutral in charge (a graph illustrating this can be seen 

in Figure S5).  

The 10-1/10-1, 011/011 and other homogeneous facet (like facets) pairings have a broad spread of 

interactions, -6 to -304 mJ m-2 and -12 to -139 mJ m-2 respectively. Such ranges are to be expected for like 

faces since at a particular point on the grid the interaction energy can be close to that of the energy of the 

lattice as the two surfaces align in such a way that a partial lattice continuation exists.  

Figure 9B illustrates the range of energy from the contributing components. At the minimum, the 

contributing energies are balanced to achieve the lowest energy. As expected, the electrostatic component 

encompasses both attractive and repulsive values. The 10-1/10-1 surface shows an asymmetric distribution 

with the majority of electrostatic values calculated as attractive.  This can be explained by the interaction 

between the carbonyl and hydroxyl groups present on this surface, as seen in Figure 6.   

Previous approaches12 to understanding particle-particle interactions have utilised a single energy point 

characterisation, with the strongest interaction value used to describe the interaction between the two systems 

(i.e. a crystal face and single molecular probe as a proxy for the second face). The logic behind this approach 

is that from a thermodynamic point of view the systems will favor the lowest energy position (a 3D energy 

well). This single point representing the strongest interaction would be equivalent to the most negative (lowest) 

point on the violin plot distributions in Figure 9. Whilst overall there is a general correlation with the average 

interaction energy of facets from left to right, the individual values of strongest interaction energy vary 

significantly from facet to facet.  

Whilst the single energy point approach is valid for individual molecules adhering to surfaces, as they are 

not immediately integrated into the lattice but migrate over the crystal face until they find a favorable site for 

attachment, it is not applicable to the interactions of particles due to their significantly larger size and complex 

surface structure leading to an atomically rough surface that can cause steric hindrance and reduce the 

accessible contact area. Due to computational constraints we describe surfaces as pristine infinite repeats of a 
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unit cell. The reality is that the real faces of crystals are often also topographically rough. The roughness at 

this larger scale is caused by the specific growth mechanism for each individual face leading to surfaces with 

steps and kinks. At the still larger macroscopic scale, collision between individual crystals or between the 

crystal with the impeller lead to crystal breakage and thus macroscopically rough surfaces.  Therefore, using 

a single energy point to describe the characteristic surface-surface interactions between individual particles in 

a powder could lead to overestimating the strength of the interactions. For example, such an energy point can 

be found with the  strongest Para/Para interaction between 10-1/10-1, circled in orange in Figure 10.  

Briefly, Figure 10 allows us to assess the distribution of interaction energy (right histogram), z-displacement 

of LP (top histogram) and the relationship between the two. Zero displacement refers to when the two planes 

that define the surface termination are at the starting position, where the separation between the planes is 0 Å 

along the z-axis. Values that are observed towards the bottom left indicate a strong interaction energy and 

close proximity between the two surfaces.  

As described previously, it is possible to align the slabs in such a way to get a pseudo-continuation of the 

crystal structure. Utilising the data sets described above it is possible to explain this result. Figure 10 also 

indicates the presence of a few positions that are outside the normal distribution of interaction energy, in 

particular the point that occurs at -300 mJ m-2 while the median value is -55 mJ m-2. While this is an extreme 

example and would be described as an outlier considering it is part of 5,000 data points, it helps illustrate the 

point as these instances will exist for all homogenous surface interactions.  
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The linear regression fit shows us the relationship between the displacement of LP and interaction energy. 

Typically, the interaction energy will be stronger when the displacement is smaller, and this is determined by 

the topological compatibility of the opposing surfaces. As the surfaces move closer, resulting in higher surface 

contact, the interaction energy increases.  

Figure 10 - Energy-separation plot of the Para10-1/10-1 face interactions. The histogram on the right hand axis 

shows the distribution of interaction energy, whereas the top horizontal distribution highlights the density of the 

displacements for LP. A linear regression (black line) is fitted across the whole dataset to check for any 

correlation between the two values. Each energy at a given z-displacement is from a XY translation and Z 

rotation position. The orange circle highlights the strongest interaction outside the normal distribution of energy 

and displacement, which relates to a pseudo-continuation of the crystal structure. 
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Energy-Separation Data  

Most surface-surface interactions are driven by a distance component, where surfaces that can interlock or 

achieve a small separation have a stronger interaction energy due to their ability to form more contact points; 

the topology of the surface has a significant impact on the interaction energies. 

However, in some instances an increase in interaction energy can be seen when the slab separation remains 

constant. We conject that the increase in energy is attributed to the compatibility in surface chemistries. This 

effect can be plotted using energy-separation diagrams as seen in Figure 11. 

Plotting the displacement of LP with its associated minimum energy value, it is possible to determine if 

topological or chemical features predominantly drive the interaction energies between two surfaces. In  Figure 

11, Para 020/020 shows an increase in interaction energy as the displacement is reduced, demonstrated by the 

wide distribution at the top of the plot. Para 10-1/11-1 shows a similar range of interaction energies, but the 

displacement of LP is distributed around 3 Å, demonstrated this time by a narrow distribution.  

Approximating the difference in energy per difference in displacement allows us to demonstrate the impact 

of the surface chemistry. For the 020/020 facets a total energy of δ ∼ 17 mJ m-2 Å-1 can be calculated whereas 

the 10-1/11-1 facets result in δ ~ 130 mJ m-2 Å-1.   

Figure 11 - The distribution of energy minima for homogeneous (left) and heterogeneous (right) surface pairs. 
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Fitting a linear regression allows for a quantitative comparison to be carried out across the dataset. When a 

topological feature dominates the interactions, the R2 value is higher (0.865 for Para 020/020) whereas for a 

more chemically driven interaction the opposite is true (0.077 for Para 10-1/11-1). With a reliable linear fit 

the gradient can indicate the magnitude of the increase in energy as a function of the displacement; the larger 

the gradient, the higher the interaction energy will be when the two layers are closer.  

Surfaces with higher atomistic roughness tend to have lower interaction energies due to their reduced 

accessible surface area. However, in the presence of some specific surface features such as grooves or channels 

the range of interaction energies has a large spread due to surfaces interlocking at specific rotations. Plotting 

the mean and median values of the interaction energy minima across different rotations for the Para10-1/10-

Figure 12 - Minima energy distribution for x, y spatial points whilst scanning through different rotations of LP. 

Showing the specific point (x = 0, y= 10, R = 0) at which the energy is much larger than the rest of the scans.  

R - 0 ° R - 45 ° 
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1, as shown in Figure 12, it is possible to identify a rotation at which there is a large singular interaction energy 

due to the large difference in the median and mean, indicative of an asymmetric distribution.  

The spatial data gives the coordinates of the LP with the interaction energy, which can be used to visualise 

the two layers and their exact positions as shown in Figure 13. The aromatic ring chain in LP (highlighted 

yellow) can be seen continuing through the matching chain (blue) in LS. However, the structure in Figure 13B) 

shows that it is not a complete lattice as a mirror plane exists along the y-axis, illustrated by the mirrored 

highlights on the interface.  

Ranking Interactions 

The average interaction energy along with the associated standard error for each probe is shown in Figure 

14 (tabulated data can be found in Table S2), plotted against the anisotropy factor (Table 1). The anisotropy 

factor describes the degree of saturation of the intermolecular bonds on the surface and thus can be associated 

Figure 13 - Position of  Para 10-1/10-1 at points (0,10,0 of x, y, r) as highlighted in Figure 12. A) Shows LP 

interacting with LS along the x-axis. Highlighted in blue are the aromatic ring chains within LS aligned with the 

same groups in LP (yellow). B) View along the y-axis, showing the mirror symmetry of the two slabs along the x-

axis. Both figures illustrate how the single position can exhibit a continuation of the lattice from the bulk. 
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with the potential activity of the surface. Para 10-1 has the highest average energy against all other facets but 

also the largest standard error indicative of the wider distributions. 

 Previous work21,27–30 has suggested the use of the anisotropy factor to indicate which surfaces might interact 

more with other facets. However, SSIM suggests that there is more to the puzzle. Whilst there is some 

agreement, with both SSIM and anisotropy factor ranking {011} as the least interactive surface, the order of 

ranking is not consistent between the two models. Figure 14 shows the poor correlation between the two data 

sets. The {10-1}and {101} forms are calculated as the strongest interacting surfaces, -45.8 mJ m-2 and -45.3 

mJ m-2  respectively. By contrast, the anisotropy factor ranks the {11-1} to be the most interactive (48.62%), 

whilst {10-1} and {101} as fourth and fifth most interactive. SSIM calculates the {11-1} to be third most 

interactive surface.   

These results suggest that calculating surface-surface interactions across two crystal surfaces at all 

translational offsets and rotations can give a better indication of the cohesive particle properties within a 

particulate powder mixture. As this framework is designed to operate through the graphical interface as well 

Figure 14 - Comparing the anisotropy factor calculated from the morphology prediction against the average 

interaction energy (mJ m-2). The linear fit (blue line) shows the poor correlation between the two datasets.  
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as scripts it is possible to automate inputs and use it on high performance computes, resulting in a high 

throughput calculation which can rank particle cohesive/adhesive behavior.  

Furthermore, it is possible to weight the energies with the area representation, calculated from the 

morphology, to account for the probability of contact. Since smaller facets are less likely to interact than larger 

ones, multiplying the sizes of the facets as a percentage of the total particle size will yield expected interaction 

energy between two particles for each facet. With access to experimental data this tool can be tailored to model 

specific morphology and particle size distributions to ascertain the powders’ cohesive or adhesive behavior.  

Calculating the surface-surface interactions for a given number of facets found on two particles can inform 

other modelling techniques such as those used to model powder behavior and bulk properties. Quantified 

information about one particles affinity for another could be used to assess relationships in large systems.  

Understanding the propensity for surfaces to interact with one another can offer vital information for 

controlling downstream processing within solid form formulations. Properties such as powder cohesivity 

impact agglomeration, punch sticking, drug delivery (particularly for inhalation formulations), and 

flowability. Whilst this model simulates systems under vacuum, it is possible to extend the application to 

include solvents that would represent systems at different humidity. Here we have presented the first step in 

quantifying the particle behavior using an automated system.   

Conclusions 
We have shown the development of a computational framework that employs molecular mechanics in the 

calculation of surface-surface interaction energy distributions via a systematic method with four degrees of 

freedom. With the accompanying analysis tool the data can be accessed and processed to offer insight into the 

surface interactions through different plot types. Interaction energies between surfaces are considered in terms 

of distributions, providing a more holistic picture of all possible interaction configurations.  

Using this method it is possible to get an overview of how all facets might interact between two particles to 

understand the cohesive and adhesive properties of a powder. The tool allows for the analysis of two specific 

surfaces in isolation, providing information about the relative importance of topological and chemical effects.  

 Distribution plots allow for an overview of each facet pair interaction, whilst the energy separation diagrams 

describe whether chemical or topological features drive the interactions. Utilising the spatial data, it is possible 
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to understand how the surface features of the two slabs complement each other and interlock to form strong 

interactions. Collating all the average data between all facets, it is possible to rank the facets in terms of their 

average interaction energy, weighted by surface representation, to understand how the particle would interact 

in general. Furthermore, this can be extended with the use of experimental data to describe the surface 

representation.  

Using paracetamol as a test case, we have highlighted the importance of using distributions to describe the 

surface interactions and the pitfalls of using a single energy from a single surface configuration. Previous 

methods sought to use the lowest energy point (strongest interaction) to describe the propensity to adhere. 

Here we demonstrate that the lowest energy (strongest interaction) does not offer an accurate description of 

the likely surface interactions. We have described how the anisotropy factor does offer some agreement with 

the SSIM results, however, for paracetamol/paracetamol interactions the anisotropy factor does not account 

for topological induced steric hindrance of incoming surfaces and thus wrongfully ranks the most interactive 

surface  

The presented method can be used to rapidly understand the influence of particle-particle interactions on 

pharmaceutical formulation, manufacturing, and product performance, reducing the time and resources 

required to deliver a drug to market.   
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A surface-surface model was developed, in conjunction with an analysis tool, to compute possible particle-particle 

interactions between single organic crystals. We show how the tools can be used to find surface chemistry 

contributions, specific surface affinities, and roughness driven interactions, providing data for particle engineering 

problems.  
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