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Abstract—Edge computing has gained attention in recent years
due to the adoption of many Internet of Things (IoT) applications
in domestic, industrial and wild settings. The resiliency and
reliability requirements of these applications vary from non-
critical (best delivery efforts) to safety-critical with time-bounded
guarantees. The network connectivity of IoT edge devices remains
the central critical component that needs to meet the time-
bounded Quality of Service (QoS) and fault-tolerance guarantees
of the applications. Therefore, in this work, we systematically
investigate how to meet IoT applications mixed-criticality QoS
requirements in multi-communication networks. We (i) present
the network resiliency requirements of IoT applications by
defining a system model (ii) analyse and evaluate the bandwidth,
latency, throughput, maximum packet size of many state-of-the-
art LPWAN technologies, such as Sigfox, LoRa, and LTE (CAT-
M1/NB-IoT) and Wi-Fi, (iii) implement and evaluate an adaptive
system Resilient Edge and Criticality-Aware Best Fit (CABF)
resource allocation algorithm to meet the application resiliency
requirements using Raspberry Pi 4 and Pycom FiPy development
board having five multi-communication networks. We present our
findings on how to achieve 100% of the best-effort high criticality
level message delivery using multi-communication networks.

Index Terms—Internet of Things (IoT), Wireless Networks,
Resiliency, Quality of Service (QoS), Low Power Wide Area
Networks, Wifi.

I. INTRODUCTION

IOT devices are everywhere sensing, collecting data and
providing information to make a better-informed decision

about the environment. Many safety-critical IoT applications
such as self-health monitoring through wearable IoT devices
connect to a mobile phone/local hub via Bluetooth, ZigBee or
Wi-Fi and further send the data to a cloud service or hospital
central processing system through Internet [1], [2].

In the event of a network-failure, e.g., power outage or
any other incidental connection failures, the Wi-Fi could
be disconnected temporarily, resulting in either data loss or
delayed data communication [3]. Depending on the time of
the day, it may take from one minute to several minutes to
regain connectivity to the Wi-Fi. On the other hand, according
to a survey [4], the average amount of broadband downtime
per year in the UK ranges from 25.4 hours to 168.9 hours.

However, for safety-critical applications, it is essential to
maintain resilient data connectivity at all time for the delivery
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of a time-critical message. The LPWAN technologies have
explicitly been designed to meet IoT application requirements.
They are built on existing cellular systems to provide improved
battery life, power efficiency and indoor and outdoor coverage
area [5] at an affordable cost. Availability of alternate low
power long-range network mediums at a meagre cost opens a
new horizon of opportunities.

However, LPWAN technologies also have challenges in
terms of limited bandwidth; the number of messages allowed
per day and payload size. On the other hand, IoT edge
application requirements are defined in terms of message
criticality (such as high/low priority), privacy settings, message
data length, message sending frequency and user trust on
a particular network. Based on the application requirements
and available network medium, application traffic can be
routed through a specific network medium. Further, in case
of a particular network medium unavailability or failure, the
application can be informed of the network state and can
decide on the suitability of the network and adapt accordingly.
For instance, assuming the application is sending data over
Wi-Fi and because of power failure Wi-Fi is disconnected, the
application can choose to send data over Long-Term Evolu-
tion (LTE)(LTE for Machines (LTE-M)/NarrowBand-IoT (NB-
IoT)), LoRa (Long Range), Sigfox and adapt parameters such
as payload size and frequency accordingly. Despite all the hype
and hope of LPWAN, it is not fully understood that if we
can achieve network resiliency at the Edge using LPWAN
and Wi-Fi for time-critical IoT applications [6], [3], [7].
Therefore in this work, we propose a hypothesis that using
LPWAN technologies and Wi-Fi, we can achieve network
resiliency at the edge IoT device by providing a capability to
choose a suitable network medium based on the application
requirements. For the implementation, we utilise affordable,
readily-available MicroPython enabled, multi-network micro-
controller Pycom FiPy board [8] providing connectivity to
Bluetooth, Wi-Fi, LoRa, LTE (CAT-M1/NB-IoT) and Sigfox.
Contributions:

• We present use cases for resiliency requirements of the
IoT edge networks;

• provide a detailed analysis of many state-of-the-art LP-
WAN technologies, such as Sigfox, LoRa, LTE (CAT-
M1/NB-IoT) and evaluate their bandwidth, latency,
throughput and maximum packet size using an experi-
ment;

• identify and compare resource management approaches
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that consider QoS requirements at multiple levels of
criticality;

• define an adaptive system Resilient Edge to meet the
application resiliency requirements using underlying LP-
WAN technologies;

• provide open-source implementation of Resilient Edge
and detailed insights considering hardware and network
limitations.

The remainder of this paper is organised as follows: § II
provides a technical background about the different LPWAN
technologies. In § III, we define the adaptive Resilient Edge to
meet the application resiliency requirements by providing two
example applications. In § IV, we formulate a criticality-aware
QoS allocation problem using Integer Linear Programming
(ILP) and bin packing algorithms. § V provides the imple-
mentation details of Resilient Edge prototype and evaluate the
baseline metrics. In § VI, we perform the evaluation of our
prototype and discuss hardware and network limitations. In
§ VII and § VIII, we present related work and conclusion,
respectively.

II. BACKGROUND

In this section, we provide a background on multi-mode
communication network technologies such as LPWAN tech-
nologies (LoRa, Sigfox, LTE (CAT-M1/NB-IoT)) and Wi-Fi
that we use to provide resilience through redundancy in the
Resilient Edge end-to-end system as shown in Figure 1. We
provide a brief introduction to the technology, its range, use-
case, security and energy-efficiency. We also provide various
performance metrics (max payload length, the possibility of
sending continuous data, latency, throughput, time to connect
and reconnect) stated and observed in the wild in § V-A.

A. LPWAN Technologies

LoRa: LoRa is an Radio frequency (RF) modulation tech-
nology for low-power, wide area networks (LPWANs) protocol
developed by Semtech. It has a range of up to 5 KM in urban
areas and up to 15 KM or more in rural areas (line of sight) [9].
LoRa is suitable for specific use cases having requirements
of long-range, low power, low cost, low bandwidth, secure
with coverage everywhere. For example, measuring water flow
using a water flow meter [10] sending data over LoRa.

A LoRa based network consists of end devices, gateways,
a network server, and application servers. End devices send
data to gateways (Up link (UL)) using single-hop LoRa or
Frequency-shift keying (FSK) communication. The gateways
send the data to the network server via a secured Internet
Protocol (IP) connection, which, in turn, passes it on to the
application server. Additionally, the network server can send
messages (either for network management or on behalf of the
application server) through the gateways to the end devices
(Down link (DL)). LoRa allows intermediate gateways to
relay messages between the end-devices to the network server,
which routes it to the associated application server. Commu-
nication between the end-devices and gateway is performed
on different frequencies and data rates, which is a trade-
off between message length, communication range [11]. The

data transfer from the end device to the application server is
encrypted using Advanced Encryption Standard (AES) [12].

From the energy-efficiency perspective, LoRa devices have
three classes [13]. Class A device can send data anytime
and opens two receive windows after one and two seconds
after an UL transmission. They are the most energy-efficient;
however, the DL is only available after transmission. Class
B is energy efficient with latency controlled DL. They utilize
time-synchronized beacons transmitted by the gateway to sync
up receive windows. Class C is not efficient in terms of
power as they keep the receive window open after transmis-
sion [14]. LoRa also implements Adaptive Data Rate (ADR)
by managing the data rate and RF output for each end-device
individually to maximize battery life and maintain network
capacity.

Sigfox: Sigfox uses publicly available and unlicensed bands
to exchange radio messages over the air (868-869 MHz and
902-928 MHz). It uses Ultra-Narrow Band (UNB) technology
combined with differential binary phase-shift keying (DBPSK)
and Gausian FSK (GFSK) modulation. It has a range of
approximately 10 km (urban), 40 km (rural). Sigfox mainly
caters to IoT applications allowing small messages. For ex-
ample, a letterbox sensor [15] sending a message to the user
on receiving a post.

The end-device sends the message to the base stations
(gateways), which forwards it to the Sigfox backend via a
backhaul (3G/4G/digital subscriber line (DSL)/Satellite). The
backend stores the messages to be retrieved by the end-user via
browser/Representational state transfer (REST) Application
Programming Interface (API) or set up a callback. For achiev-
ing high QoS, the end-device sends the message at a random
frequency and then sends two replicas on different frequency
and time (time and frequency diversity). The message can be
received by any number of base stations (spatial diversity).
However, Sigfox does not provide any authentication or en-
cryption for the message and device [12].

From an energy-saving perspective, the end-device does not
require pairing or sending synchronization messages to send
the message, thus increasing battery life [16].

LTE (CAT-M1/NB-IoT): NB-IoT is a 3rd Generation Part-
nership Project (3GPP) radio technology standard designed
for extended range operation, higher deployment density, and
in-building penetration. It utilizes 180 kHz bandwidth and is
deployed in-band, guard-band, or standalone mode. On the
other hand, LTE-M provides high latency communication,
support for extended coverage, LTE-M half-duplex mode/full-
duplex, short message service (SMS), coverage enhancement,
connected mode mobility [17]. Both NB-IoT and LTE-M have
a range of approx. 1 km (urban) and 10 km (rural) [12]. Both
follow 3GPP standards and have LTE encryption by default.

NB-IoT is suited for static, low throughput, and low power
applications. For example, Nortrace tracked sheep’s location
and well-being over mountainous regions using NB-IoT [18].
In contrast, LTE-M is best for applications requiring mobility,
voice, and SMS [19]. For example, Telstra tracks the location
of high-value, non-powered assets, such as shipping contain-
ers, semi-trailers, rail freight wagons, and large machinery
using LTE-M [20].
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Fig. 1: Resilient Edge End-to-end System.

From the energy-efficiency perspective, both include Power
Saving Mode (PSM) and Extended Discontinuous reception
(eDRX). PSM reduces the energy used by User Equipment
(UE) which defines how often and how long the UE will be
active to send and receive data. eDRX improve end-device
life for mobile-terminated traffic by switching off the receiver
circuit for a defined period [21].

Integration - LoRa/Sigfox: NB-IoT/LTE-M is an IP-based
network allowing data to be transferred to its associated cloud
server. However, in the case of the LoRa and Sigfox, data
is sent to The Things Network (TTN) console and Sigfox
backend, respectively. Currently, TTN console and Sigfox
backend provide multiple integration methods to retrieve data
such as AWS IoT, AllThingsTalk, Microsoft Azure IoT Hub,
HTTP, Emails, and other callbacks.

B. Wi-Fi

Mostly IoT devices have a low-cost, low-power system on
a chip micro-controller with integrated Wi-Fi and dual-mode
Bluetooth. Wi-Fi on IoT devices support different wireless
modes such as 802.11 b/g/n/e/i, provide automatic beacon
monitoring and scanning. The Pycom FiPy board used in our
prototype has a Wi-Fi radio system on chip with 1KM Wi-Fi
range.

III. SYSTEM MODEL AND MOTIVATING EXAMPLE

To better understand the network requirements of Resilient
Edge applications, we start by considering a use-case with
a concrete example. Figure 1 and 5 show an edge device
running two sample applications to support assisted living
facilities: one of the applications monitors the health of
the resident (HealthApp), the other monitors their residential
unit (HomeApp). In the real-world setting, the similar new
applications can be configured for the data rates defined
by the application QoS requirements and maximum network
bandwidth availability. To achieve continuous network connec-
tivity needed by these applications, we make use of a multi-
mode communication network (details are provided in the next
section).

We now present an abstract system model defining the
attributes of application data flows so that we can reason
about the QoS needs of each application, and about ways
to (partially) fulfill those needs under different scenarios and
different levels of multi-network connectivity. We propose
that the communication needs of specific applications must
be explicitly declared as message flows. An application can
declare an arbitrary number of message flows, and each mes-
sage flow represents a potentially infinite series of messages

TABLE I
Message flows on an edge device for assisted living facilities.

C: maximum message size (bytes)
T: minimum interval between subsequent message (seconds).

Criticality Level 1 2 3
Applications Message Flow τ C T C T C T
HealthApp 1 fall detection 1000 10 40 20 10 60

” 2 heart monitoring 1000 5 80 10 10 20
” 3 body temperature 30 30 10 120

HomeApp 4 sensor bedroom 40000 10 10 30
” 5 sensor bathroom 80 10 10 30
” 6 sensor lounge/kitchen 40000 10 10 30
” 7 sensor front door 40000 10 10 30
” 8 energy usage 40 3600

to be sent through one of the local network interfaces. To
allow application developers to quantitatively declare the QoS
needs for each message flow, we revisit the notion of mixed-
criticality communication proposed in [22] and support the
definition of QoS requirements at distinct levels of criticality.
As in [22], our goal is to allow the system to guarantee
a predefined level of service for all message flows during
normal operation, but also provide graceful degradation of
service in adverse circumstances by allowing the most critical
communication to be maintained. Unlike [22], however, we
are not interested in meeting hard real-time deadlines and will
instead use the notion of criticality-specific QoS requirements
to manage multi-network resources.

Our model allows system designers and administrators to
decide how many levels of criticality L = Lmax to support,
and then to allow the specification of the QoS requirements
of each message flow at each of those levels. The Resilient
Edge, as shown in Figure 1 is designed to support three
levels of criticality, and the Table I shows the QoS required
by each message flow at each level. The message flows in
Table I have been defined by taking a bottom to top approach.
We assume that high criticality level messages are necessary
to be delivered messages and are rare and have smaller
size. In this example, for message flow 1, when criticality
level 3 is requested and served, underlying network interface
guarantees a message delivery service with message size of
10 bytes with 60 seconds subsequent message interval. The
applications (designed by application developers) can request
any message size and message interval; however, the values
in our example reflect the prototype application data size and
are intuitively set by authors considering several state-of-the-
art IoT applications. Additionally, the message flows and the
requirements are driven by the network capacity available on
the edge device (e.g., FiPy[8] in our prototype).

We define L = 1 as the criticality level denoting normal
operation mode, so the QoS requirements at that level should
declare the largest communication volumes and injection rates
of each message flow to account for all critical and non-critical
traffic. QoS requirements at higher levels of criticality (L = 2
and L = 3) should only be declared for message flows that
carry critical data and should account only for the necessary
communication volumes and injection rates at each of those
levels. By declaring or not a QoS requirement at a given level,
application developers can explicitly distinguish the criticality
of each message flow, and to explicitly define a number of
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Fig. 2: System model summary with different applications with criticality, message size and frequency defined by application
developers and different network availability scenarios (Faded symbol represents network unavailability).

service degradation levels each of them can support.
We can now define a message flow τi as a tuple (Ai, Ci, Ti)

where Ai denotes the application to which the message flow
belongs to, Ci denotes the maximum message size (in bytes)
and Ti denotes the minimum interval between subsequent
messages of the flow (in seconds). The bandwidth utilisation
Ui of a flow τi can be calculated by the quotient Ci/Ti.

To support multiple criticality levels, Ci and Ti are defined
as arrays of length Lmax, so CL

i and TL
i denote, respectively,

the maximum message size and the minimum interval between
subsequent messages of τi at criticality level L.

In normal operation (i.e. L = 1), message flows declare their
most generous QoS requirements, with larger data volumes for
home monitoring (e.g. including camera snapshots in most
of them) and resident monitoring (e.g. detail accelerometer
data for fall detection, full electrocardiogram data for heartbeat
monitoring). The next criticality level (i.e. L = 2) allows the
declaration of degraded QoS levels, which in this example is
provided for all message flows except for the one monitoring
energy usage (which will not be forwarded by the edge
device in case of degraded service). Notice that the QoS
requirements declared for L = 2 show that monitoring will
be performed less often and less data will be provided (e.g.
simple movement detectors for home monitoring, average
temperature and heartbeat for health monitoring). Finally, only
two message flows declare QoS requirements at the highest
level of criticality (i.e. L = 3), representing the alarms for fall
or severe arrhythmia/cardiac arrest. In the case of degraded
service, all available resources should be used to provide those
two flows with their declared QoS requirements.

IV. MULTI-NETWORK RESOURCE MANAGEMENT

Given the system model proposed in Section III, we can
now formulate a criticality-aware QoS allocation problem.

A straightforward way to ensure QoS to the application
message flows is to prevent the over-utilisation of the network
interfaces they are assigned to. For example, by providing
criticality level L = 2 guarantees to all message flows of the
HealthApp application from Table I it would be possible to
allocate all of them to a LoRa network (as their compound

bandwidth utilisation would not exceed 6 bps), but the same
network would be over-utilised if flows operate at criticality
level L = 1 (where their compound bandwidth utilisation
would exceed 1700 bps).

We can therefore formulate the criticality-aware QoS al-
location problem as the choice, for each message flow of
each application, of its allowed criticality level of service and
its allocated network interface. Such problem is similar to a
Variable Size Bin Packing Problem (VSBPP) [23], but with a
fixed number of bins (i.e. the different networks, each of them
with their bandwidth and payload size limitations) and with a
choice of sizes for each element (i.e. the message flows, with
their choice of criticality level).

A. ILP Formulation

Similarly to the standard VSBPP, we can formulate our
problem with an ILP model. For the sake of simplicity, we
describe the size of bins and elements by their bandwidth
capacity and utilisation, respectively. We claim that an ex-
tension to a multi-dimensional formulation (i.e. that can also
capture maximum payload sizes, maximum number of daily
messages, etc.) is straightforward but left as future work. The
assumption is that the QoS requirements of all applications can
be satisfied provided there is enough bandwidth of one net-
work or combined bandwidth of multiple networks. However,
in practice, the network capacity is limited, and there would
be applications whose QoS requirements cannot be satisfied.

Let us then consider a set T of elements representing our
message flows τi, i = 1...n, each of them with a potential
choice of values UL

i representing the different bandwidth util-
isations CL

i /T
L
i at each level of criticality they are designed

to support (or ∞ if that flow does not specify service at a
given criticality level, e.g. energy usage flow at levels L = 2
and L = 3 in Table I).

Likewise, let us consider a set Γ of bins representing
our network interfaces γj , j = 1...m, each of them with a
bandwidth capacity Bj . Finally, we define a set of binary
variables xi,j,L ∈ {0, 1}, and assume that xi,j,L = 1 if
message flow τi is assigned to network γj and configured to
operate at criticality level L, or xi,j,L = 0 otherwise. Given
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the ranges 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ L ≤ Lmax we
will have at most n×m×Lmax binary variables for a given
problem.

To ensure the assignment of values to the binary variables
represent a valid solution to our problem, we must now
state a number of constraints. First, we make sure that a
message flow τi is allocated to a single network interface and
configured to operate at a single criticality level by stating

that
m∑
j=1

Lmax∑
L=1

xi,j,L = 1 for all 1 ≤ i ≤ n. Secondly, we

ensure that no network interface γj is overloaded by stating

that
n∑

i=1

Lmax∑
L=1

xi,j,L × UL
i ≤ Bj for all 1 ≤ j ≤ m.

Finally, we can state our maximisation objective function
as:

objective =

n∑
i=1

m∑
j=1

Lmax∑
L=1

xi,j,L × (1 + Lmax − L) (1)

The rationale behind the maximisation of the objective
is to configure message flows at the lowest possible levels
of criticality (i.e. lowest values for L), thus providing each
message flow with the most generous possible QoS, while
avoiding network overload. The unit added to the last term of
the equation is crucial to allow the objective to distinguish a
flow that is allocated at the highest criticality and one that is
not allocated at all.

An additional constraint could be formulated, in case all
message flows must be allocated to a network interface and

receive some level of service:
n∑

i=1

m∑
j=1

Lmax∑
L=1

xi,j,L = n. This is

not always necessary or desirable, as it may the intention of
application designers that, under limited network availability,
only a subset of the application message flows should be
provided service (e.g. in the example from Table I, under the
most stringent conditions at L = 3, only the fall detection
and heart monitoring message flows require service). In such
cases, such a constraint may be rewritten to ensure that
specific message flows are always allocated service, or even
be reformulated as part of the objective function, aiming to
maximise the number of message flows that are guaranteed
some level of service.

B. Bin-Packing Algorithms

While the formulation given in subsection IV-A can be
optimally solved by an ILP solver, it may not be reasonable
to expect that such a software package could be installed
and executed by resource-constrained edge devices such as
the ones considered in this work. We, therefore, propose the
use of simple bin-packing algorithms that are able to achieve
acceptable results with a much lower computational overhead.
In particular, we define a criticality-aware best fit (CABF)
algorithm and show its performance compared to classic first
fit, best fit, and worst fit algorithms (FF, BF, and WF) as well
as their decreasing variants (FFD, BFD, and WFD).

Since the classic algorithms are unaware of the different
criticality levels, we implemented two alternatives for each of
them, one that tries to fit message flows to networks at their

Algorithm 1: Criticality-Aware Best Fit (CABF)
Result: Set of 3-tuples indicating the allocated

network and configured criticality level for all
message flows that can be provided service

CABF (T ,Γ)
inputs : set T of message flows, set Γ of networks
output: set Q of 3-tuples q = (τi, γj , L)
Q← ∅;
for (l = Lmax; l > 0; l = l − 1) do

foreach (q ∈ Q | q(τ) ∈ Tl ∧ q(L) > l) do
Q← Q− q;
γreloc ← BestF it(q(τ), l,Γ);
if γreloc 6= ∅ then

q ← (τ, γreloc, l);

Q← Q+ q;

foreach (τnew ∈ Tl | τnew /∈ Q(τ)) do
γnew ← BestF it(τnew, l,Γ);
if γnew 6= ∅ then

Q← Q+ (τnew, γnew, l);

return Q;

highest level of criticality (i.e. H-FF, H-BF, H-WF and their
decreasing counterparts) and another that does the same with
the lowest defined criticality of each message flow (i.e. L-FF,
L-BF, L-WF and their decreasing counterparts).

Algorithm 1 describes the proposed CABF algorithm, which
takes as inputs the sets T of message flows and Γ of networks,
and outputs a set Q of 3-tuples q = (τi, γj , L), each of them
representing the allocation of a message flow τi to a network
γj at criticality level L. Algorithm 1 uses the following
notation: q(τ), q(γ) and q(L) denote the first, second and
third element of a 3-tuple q, and likewise Q(τ), Q(γ) and
Q(L) denote the sets of all first, second and third element of
the 3-tuples in Q; TL is the subset of T including all message
flows that are declared at a given criticality level L (as not all
flows must be declared for all levels); and BestF it(τ, L,Γ)
denotes a function which returns the network γ ∈ Γ which is
the best fit allocation for the message flow τ at its criticality
level L, or ∅ if τ does not fit in any of the networks in Γ,
taking into account the allocations already in Q.

The intuition behind the CABF algorithm is as follows.
It tries to allocate first the message flows defined at higher
criticalities, as shown by the outer for loop decreasing from
Lmax to 1. As it iterates over that loop towards lower criticality
levels, and before it allocates flows defined at the criticality
level of the current iteration, it first attempts to lower the
criticalities of flows allocated in the previous iterations. This
is shown by the first inner forall loop, which iterates over
tuples in Q with flows that have definitions at the criticality
level of the current iteration (i.e. q(τ) ∈ Tl). Within the
first inner forall loop, the algorithm removes the original
allocation from Q, then tries to find a network γreloc which
is the best fit for the flow using its lower criticality figures.
If the best-fit algorithm succeeds to find an allocation with
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TABLE II
Obtained criticality level (1 | 2 | 3) and network allocation

(* Wi-Fi | # Lora | + Sigfox) for motivating example
Message Flows % flows avg objective

1 2 3 4 5 6 7 8 served crit
Requested
crit level 1,2,3 1,2,3 1,2 1,2 1,2 1,2 1,2 1 level

Allocation
algorithms Allocated Criticality Level

L-FF 1* 1* 1* 1* 1* 1* 75 1 18
L-FFD 1# 1# 1* 1# 1* 1+ 75 1 18
H-FF 3* 3* 2* 2* 2* 2* 2* 1* 100 2.12 15
H-FFD 3* 3* 2* 2* 2* 2* 2* 1* 100 2.12 15
L-WF 1* 1* 1* 1* 1* 1* 75 1 18
L-WFD 1# 1# 1* 1# 1* 1+ 75 1 18
H-WF 3* 3* 2* 2* 2* 2* 2* 1* 100 2.12 15
H-WFD 3* 3* 2* 2* 2* 2* 2* 1* 100 2.12 15
L-BF 1# 1* 1+ 1* 1# 1+ 75 1 18
L-BFD 1# 1+ 1* 1# 1* 1+ 75 1 18
H-BF 3+ 3+ 2+ 2+ 2+ 2+ 2+ 1+ 100 2.12 15
H-BFD 3+ 3+ 2+ 2+ 2+ 2+ 2+ 1+ 100 2.12 15
CABF 2+ 1# 1+ 2+ 1# 1* 1* 1+ 100 1.25 22
CABFinv 1# 2# 1+ 2+ 1# 1* 1* 1+ 100 1.25 22
Optimal 1* 1* 1* 1* 1* 2* 2* 1* 100 1.25 22

the lower criticality values, a 3-tuple representing that new
allocation is added to Q. If it fails to find a network that is
able to accommodate the requirements at a lower criticality,
the original allocation is returned back to Q. Once the first
inner forall loop finishes, the second inner forall loop uses the
best-fit algorithm to allocate, when possible, all unallocated
message flows that have definitions at the criticality level of
the current iteration.

The proposed order of the two inner forall loops reflects
an assumption that flows that have definitions at higher levels
of criticality should always be given more resources if they
become available. This will not always be the case in every
application domain, and in many cases it may be better to first
use resources to provide some service to less-critical message
flows rather than improve the service to highly-critical ones.
Reversing the proposed order of the two inner forall loops
would achieve exactly that, therefore we name that variant
CABFinv .

C. Evaluation - Motivating Example

Table II shows the network allocations and choice of crit-
icality level for each of the message flows of the motivating
example described in Section III. The table shows allocations
produced by each of the baseline bin-packing algorithms, by
both variants of the proposed algorithm, and one solution
(out of many possible ones) produced by an optimal solver.
The allocations assume the availability of three networks with
bandwidths of 64000, 1760 and 48 bits per second, represent-
ing Wi-Fi, LoRa SF9 and Sigfox networks (but disregarding
maximum payload size or the number of daily messages), and
represented by the symbols ∗, # and +, respectively.

Both variations of the proposed algorithm are able to
produce optimal solutions in this example, providing service
to all flows, with all-but-two at their lowest criticality level
(which leads to an objective result of 22 according to Equation
1).

D. Evaluation - Synthetic Applications

To show the superiority of proposed algorithms over a
much larger number of examples, we created hundreds of

synthetic application models and compared the performance
of the proposed algorithms against all the baseline bin-packing
algorithms described in subsection IV-B. Each synthetic appli-
cation has a well-defined number of message flows nFlows,
and a number of available criticality levels nCrit. Just as in
the motivating example, message flows do not have their QoS
requirements defined at every level of criticality (as they may
be completely dropped in case of severe network degradation).
To model that, the generation of synthetic applications uses a
probability factor 0 < hC < 1 that determines if a given
message flow has a definition for any given criticality level
above normal operation (i.e. L > 1). The factor is re-applied
for each additional level of criticality, so for example a factor
hC = 0.8 means that a message flow has an 80% chance of
having a QoS definition for L=2, 64% chance for L=3, 51.2%
for L=4, and so on. A multiplicative factor 0 < multC < 1
is then used to generate the QoS requirements of the message
flow at a higher criticality level (by multiplying the period
T and maximum packet size C requirements defined at the
preceding level of criticality).

To perform our experiments, we generated four sets of 100
synthetic applications. All applications within the first set have
10 message flows each (nFlows = 10) and are therefore similar
to our motivating example, which has 8 flows. Applications
in the other three sets are much larger, with nFlows = 20,
40 and 80, respectively. The QoS requirements under normal
operation were generated for each message by uniformly
sampling a range of periods (5 to 120 seconds) and maximum
message sizes (7 to 260 kilobytes). The number of available
criticality levels nCrit was set to 4, the value for the hC factor
was set to 0.8, and the value of the factor multC was uniformly
sampled for each flow from an interval between 0.4 and 0.8.

Again, we assumed a platform with three networks with
available bandwidths of 64000, 1760 and 48 bits per second.

Once we generated all applications and their respective mes-
sage flows, we used each bin-packing algorithms described in
subsection IV-B to decide which network interface should be
allocated to each message flow, and which level of criticality
should be supported. For each allocation of each application,
we recorded two metrics:

• servP - the percentage of traffic flows of the application
that were provided some level of network service.

• avCL - the average criticality level that was supported for
the flows of the application.

The servP metric is straightforward: for an application with
nFlows=20, a servP value of 60% denotes that 12 of its
flows were allocated to a network interface. The avCL metric
is slightly more complex, as it has to be expressed as a
percentage of the highest criticality level supported by the
application (since not every application has flows with QoS
requirements defined at all possible levels of criticality). This
means that, for example, if an application has its flows defined
at 4 criticality levels, and the average criticality level assigned
to all its flows is 1.4 (i.e. the sum of the criticality level
assigned to each flow, divided by nFlows), the value of avCL
would be 35% (i.e. 1.4 is 35% of 4). If that same application
had the same average criticality of 1.4, but its flows only had
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Fig. 3: Experimental results for synthetically generated applications with (a) 10, (b) 20, (c) 40 and (d) 80 message flows each.

definitions up to 3 criticality levels, the value of avCL would
then be 46.66

Figure 3 shows four plots, one for each of the sets of 100
applications. The number of flows per application is shown
in the upper-left corner of each plot. The metric servP is
plotted against the x axis, and the metric avCL against the
Y axis. Every point in the plot represents one allocation of
an application of the set, and the shape of the point shows
which bin-packing algorithm was used for that particular
allocation. That means that each plot should have 1400 points
(100 applications allocated using 14 different bin-packing
algorithms), but in most cases that number of visible points
is much smaller because multiple allocations and multiple
applications actually have the same values for both metrics
and therefore overwrite one another on the plot.

In the optimal case, a bin-packing algorithm would produce
the highest possible value for the servP metric (meaning all
flows were provided some service) and the lowest possible
value for the avCL metric (meaning that flows were allocated
QoS service levels that were the closest possible to L=1, i.e.
normal operation). Given the large number of applications and
message flows considered in this evaluation, it was not feasible
to solve each case to optimality, so all the results achieved by
the proposed algorithms and baselines are a trade-off between
both metrics.

Therefore, the key findings of this experiment are obtained
by observing which bin-packing algorithms produced the best
allocations: those at the lower-right corner of the plot, with
the highest values for servP and the lowest values for avCL.

In the plot for the set with nFlows=10, we can see that

many algorithms were able to provide network service to 100%
of the flows of most applications, albeit at a high level of
criticality in the case of many of the H bin-packing variants
(i.e.blue and yellow markers). As expected, the L bin-packing
variants were able to allocate message flows at their lowest
criticality level (i.e. normal mode), but could only allocate a
small percentage of them before reaching the saturation of all
available network interfaces.

As we increase the number of message flows per application
(i.e. plots with nFlows=20 and 40), we can see that the
additional workload to be allocated pushes the results away
from the lower-right part of the plot: allocations either have
lower servP (i.e. fewer message flows are allowed access to
a network interface) or higher avCL (i.e. message flows are
allocated at higher levels of criticality, anf therefore more re-
strictive QoS levels). It is clearly noticeable, however, that the
two proposed algorithms CABF and CABFinv are consistently
producing the results that are closest to the optimal lower-right
corner.

With the largest applications (nFlows=80), we can see that
the proposed algorithms are the only ones that are able to
provide network service to more than half of the flows, for
some applications. In this scenario, it is also possible to
see clearly the distinct behaviours of CABF and CABFinv:
the former tries to allocate flows with more generous QoS
levels (i.e. lower criticality), while the latter puts emphasis on
providing service to as many flows.
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V. RESILIENT MULTI-NETWORK EDGE PLATFORM

This section describes a resilient multi-network edge plat-
form we have designed and implemented, aiming to validate
the concepts proposed in the previous sections over real off-
the-shelf hardware and using realistic network deployments.
Firstly, we describe the chosen hardware platform based on
a Raspberry Pi and a Pycom FyPy communication board.
The FyPy board supports multi-network connectivity over five
different networks Wi-Fi, Bluetooth, LoRa, Sigfox and LTE
(CAT-M1/NB-IoT). The Raspberry Pi, in turn, handles the
proposed multi-network resource management approaches. A
detailed description of the functionality of each board, and
their integration will be provided, as well as their inter-
operation with the cloud to perform realistic data transfer
scenarios. Additionally, we will provide details about key
performance metrics that show the strengths and weaknesses of
each type of network supported by the platform, namely max-
imum payload length, inter-message gap, latency, throughput,
connection and reconnection time. The detailed description
of our multi-network edge platform is then followed by a
practical evaluation, where we implement the proposed multi-
network resource management algorithms from Section IV.

Platform Overview

The Resilient Edge prototype setup is shown in Figures 4
and 5. A Raspberry Pi model 4 [24] (RPi) is interfaced with
Pycom FiPy [8]. RPi has Broadcom BCM2711, Quad-core
Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz with 4 GB
RAM, FiPy has an Xtensa® dual-core 32–bit LX6 micropro-
cessor and on-chip SRAM of 520KB and external SRAM 4MB
with an external flash of 8 MB. FiPy provides connectivity to
five different networks Wi-Fi, Bluetooth, LoRa, Sigfox and
LTE (CAT-M1/NB-IoT). More details about the interworking
of FiPy can be found in the FiPy datasheet [25]. The RPi Uni-
versal Asynchronous Receiver/Transmitter (UART) (GPIO14-
TXD/ GPIO15-RXD) is connected to the expansion board
pins (P3-TXD/P4-RXD) of FiPy to transfer the data from
the RPi to FiPy. We implemented and simulated the message
flow of HealthApp and HomeApp on RPi and multi-network
resource allocator on FiPy, respectively. To enable the data
transfer between RPi and FiPy, a message payload from the
applications is written to the RPi UART and read by FiPy
continuously. On FiPy, a python script checks the messages
received from the RPi, the network interface assigned to the
message flow, its criticality level, and attempt to send it via
that network interface.

Implementation details of RPi components: We utilise
Transmission Control Protocol (TCP)/IP serial bridge1 to
create a socket listening on port 8080 connecting to the UART
(/dev/ttyAMA0) to send and receive data to and from the
UART. Further, we utilise python select lib 2 to monitor sockets
for incoming data to be read and send outgoing data when
there is room in the buffer and utilise message queues to

1TCP/IP - serial bridge https://pyserial.readthedocs.io/en/latest/examples.
html#tcp-ip-serial-bridge

2Select - Waiting for I/O completion https://docs.python.org/3/library/
select.html

store the outgoing messages. To send and receive a message
over UART efficiently and without breaking, we add a header
with (:ML:<MessageLength>) at a start and a newline
’\n’ at the end. On both sides, RPi reading a socket and
FiPy reading the UART, we ensure that we have received
the full message. To simulate the message flows running on
the RPi, we utilise threads to write a message payload on
the socket with <MessageFlow Name, Criticality
level, the payload>. The thread sleeps for the period
specified by the message flow before sending the next mes-
sage. We store the statistics about the number of messages
sent by a particular message flow, acknowledgment or error
received.

The FiPy runs a multi-network resource allocator and sends
an allocation message back to the RPi stating which message
flows have been assigned with which criticality level. A
sample Message Flow Element Allocation (MFEA) message
is:

MFEA:[’PS’: 41, ’N’: ’Wi-Fi’, ’PE’: 10,
’MF’: ’Kitchen Sensor’, ’CL’: 1]
where PS is payload size, N is network assigned, PE
is the period (time in seconds) between two subsequent
messages, MF is message flow name, and CL is criticality
level assigned. If the network conditions at the FiPy are
changed, and a new MFEA message is received, the previous
thread sending the messages are stopped, and new threads
for sending a message with a particular criticality level and
period are launched.

Implementation details of FiPy components: On FiPy,
before assigning any network to a message flow, we need
to create a network "bin" of the available networks (Wi-
Fi, LTE (CAT-M1/NB-IoT), LoRa and Sigfox) and add the
corresponding network interfaces to the network "bins".
While doing so, we take into some limitations that are posed
by underlying hardware such as if Wi-Fi is available, we
do not add a network "bin" for LTE (CAT-M1/NB-IoT)
because in the current version of FiPy if both Wi-Fi and
LTE (CAT-M1/NB-IoT) are connected at the same time, FiPy
does not provide routing capabilities to direct the traffic [26].
If Wi-Fi is unavailable, then we connect via LTE (CAT-
M1/NB-IoT). Similarly, if the LoRa network is available, we
add LoRa to the network "bin". If LoRa is unavailable,
we add Sigfox, mainly because Sigfox and LoRa share the
same radio module. As part of the Multi-network resource
allocator - we implement variant Criticality-Aware Best Fit
(CABFinv) and set the initial parameters, and perform the
allocations of the message flows to the network interface.
After the allocations, we continuously read the UART for
the messages from the RPi. The messages from the RPi are
in the format of <MessageFlow Name, Criticality
Level, Payload>. On the FiPy, we check if the Message
Flow with criticality level has been assigned; if assigned, an
attempt to send the payload is made. If the message flow is not
allocated, an error message is sent back to RPi, mentioning
message flow is not allocated. Similarly, if the payload is
delivered, an ACK message is sent to the RPi; if not delivered,
an error message with not delivered is sent through UART.

https://pyserial.readthedocs.io/en/latest/examples.html#tcp-ip-serial-bridge
https://pyserial.readthedocs.io/en/latest/examples.html#tcp-ip-serial-bridge
https://docs.python.org/3/library/select.html
https://docs.python.org/3/library/select.html
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Fig. 4: Block diagram of current experimental setup.

Fig. 5: Current Experimental Setup.

FiPy provides multi-network connectivity, and powering on
all the network interfaces could result in significant power
consumption. With that in mind, currently, we initialize all
the network interfaces at the boot and connect to a specific
network based on network availability and conditions. For
instance, the NB-IoT connection is skipped if the Wi-Fi
network is available; if the LoRa network joins successfully,
the Sigfox socket is not created. Further, we have mentioned
the time (in seconds) for different technologies to connect
to the network (§ V-A) and time complexity and context
switching of the CABFinv algorithm (§ VI-B) that provides a
rough estimate on switching overhead if the IoT devices need
to switch between network interfaces and to turn on/off the
interface.

The multi-network resource meets the QoS requirements
of IoT applications by determining the different network
interfaces available and the communication parameters of
the selected technology (bandwidth). For instance, when a
network interface is defined (whether it is available or not),
we determine the bandwidth provided by that network. For
instance, LoRa starts the connection with adaptive Spreading
Factor (SF), i.e., it would start with SF7; if it did not connect
with SF7, it would try with SF8 and so on. Based on the
connection, we take the bandwidth of the connected SF.

Receiving messages on Cloud: To store the messages sent
by the FiPy (as shown in Fig. 4), we utilise Tornado - a

python web framework and asynchronous networking library
3 to run an HTTP server on a machine hosted on a cloud.
The HTTP server accepts HTTP POST messages and receives
them directly from the FiPy via Wi-Fi, TTN application server
via LoRa, Sigfox backend via Sigfox and Pybytes4 via NB-
IoT. When the message flow allocated interface is Wi-Fi, an
HTTP POST request is sent from FiPy to the cloud machine
using urequests micro-python library. When the
assigned interface for message flow is LoRa, Sigfox and NB-
IoT, the message is sent via the respective interface. On TTN
application server, Sigfox backend and Pybytes for NB-IoT,
we have configured the HTTP Integration as defined in § II-A.
HTTP integration sends the UL data received from FiPy to
our cloud machine. The HTTP server checks for the URI and
fetch the data from the post data and stores it in a influxdb
database.

A. Platform Metrics

For performance evaluation, we considered the following
metrics: maximum payload length, inter-message gap, latency,
throughput, time to connect and reconnect, and performed the
initial experiments to get the baseline results for each network
(LoRa, Sigfox, NB-IoT, Wi-Fi) before deploying the multi-
network resource allocator on FiPy. In Table III, we provide a
summary of the metrics found in these baseline experiments.
Application developers can decide on the suitable network
medium for the application based on the application require-
ments and the use-case. First, we provide how each network
compares with each other, followed by more information about
the experiment.

Maximum Payload Length: Maximum payload size deter-
mines how much information (in bytes) can be sent in one
message and helps to determine the suitability for an IoT
application. For LoRa, the max payload size varies from 51
bytes to 2225/242 bytes based on the configuration settings.
On the other hand, Sigfox allows an UL payload of up to
12 bytes and a limit of up to 140 messages per day bytes
payload with a limit of 4 messages per day DL. Most suitable
from the payload perspective, is NB-IoT/Wi-Fi. LTE Transport
block sizes (TBS) can support a maximum of 85 bytes DL
and 125 bytes UL. However, as TCP/UDP protocol is used in
Wi-Fi/NB-IoT, the payload is sent as multiple packets (the

3Tornado Web Server https://www.tornadoweb.org/en/stable/
4Pybytes https://docs.pycom.io/pybytes/
5The payload size is 222 bytes when the device is a repeater and requires

optional FOpt control field [27].

https://www.tornadoweb.org/en/stable/
https://docs.pycom.io/pybytes/
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TABLE III
Baseline metrics summary

Metrics LoRaWAN SigFox LTE (CAT-M1/NB-IoT) Wi-Fi

Max-payload length 1 - 222 bytes 1-12 bytes UDP/TCP/IP UDP/TCP/IP

Sending continuous data 0.165 ms 10.5 s 1-100 ms 1-100 ms

Latency 24 - 2800 ms + 1-100 secs 1 - 4.5 s 500 ms (avg) 8 ms (avg)

Throughput 250 - 11000 bps UL: 100 bps
DL: 600 bps

NB-IoT: UL: 66 kbps; DL: 26 kbps
LTE-M: DL: 300 kbps; UL: 380 kbps

Local: 3550 Kbps
Remote: 770 Kbps

Time to connect to network OTAA: 5.6 s
ABP (join not required) 1-100 ms With LTE Reset: 20 s

Without LTE Reset: 15.5 s 7.7 s

TABLE IV
LoraWAN airtime for max payload in Europe [28]

Configuration Bitrate
(bits/sec)

Max payload
size (bytes)

Time on Air
(ms)

Max
number of
messages/day

SF12/125 250 51 2793.5 12
SF11/125 kHz 440 51 1560.6 23
SF10/125 kHz 980 51 698.4 51
SF9/125 kHz 1760 115 676.9 53
SF8/125 kHz 3125 222 655.9 54
SF7/125 kHz 5470 222 368.9 97
SF7/250 kHz 11000 222 184.4 195

size and number of which depend on the path Maximum
Transmission Unit (MTU)). So, the payload length for NB-
IoT/Wi-Fi is bounded by the memory assignment capability
of the device.

Table IV represents the max payload sizes with max number
of messages per day at different SF/bandwidth and respective
airtime for LoRa [29]. We use TTN, a public community
network having a fair access policy [30] that limits the UL
airtime to 30 seconds per day per node and the DL messages
to 10 messages per day per node. The max number of
messages in Table IV is calculated based on the 1 percent duty
and the fair usage policy with maximum payload message.
Further, to utilize application payloads efficiently, LoRa best
practices [31] to limit application payloads can be referred.

Sigfox provides Link Quality Indicator (LQI) [32] based on
the Received Signal Strength Indicator (RSSI) and number of
base stations that received a message. However, as only four
DL messages per day are allowed, it is advisable to set up an
HTTP/Email callback to get service-related information.

Inter-message gap: We conducted this primitive experiment
to understand the limitation of the time between sending two
consecutive messages. For LoRa, on average it took 0.165 ms
to send a message. For Sigfox, in terms of sending a continuous
message on Pycom FiPy end-device, it takes around an average
of 10.5 s, with the minimum 9 s and maximum 12 s to send
a message on Sigfox in RC1 region with 100 bps. Suppose
the application priority is to send the messages fast. In that
case, sending a message via Wi-Fi and NB-IoT takes a few
milliseconds.

To experiment, for LoRa, we sent 40 messages with dif-
ferent payloads, ten messages with four SF options offered
by LoRa, i.e., (SF7 - 1 byte, SF12 - 1 byte, SF7 - 242
bytes, SF12 - 51 byte). For Sigfox, a message with a 12-
bytes payload takes 2.08 s over the air with a rate of 100 bps.
Further, the device emits a message on a random frequency

TABLE V
Sigfox Payload time approximate time provided by

Sigfox [33] and observed for Average, Good/Excellent
Quality at RC1 Region

Stated Observed Observed

Payload Length Approximate
(sec) Average (sec) Good/Excellent

(sec)
<1 bit 1.1 2 1
2 bit - 1 byte 1.2 1.6 2.0
2-4 byte 1.45 2.3 2.1
5-8 byte 1.75 4.5 2.5
9-12 byte 2 4.5 3

and then sends two replicas on different frequencies and
time [16]. We experimented with sending continuous data on
Sigfox of variable length starting from 1 byte to 12 bytes.
We measured the time before sending the message using
‘socket.send(msg)’ and after that. We sent 60 (5× 12)
messages, three times on average LQI, and one time each on
good and excellent LQI.

Latency: We define latency as the delay between transmit-
ting a packet and its arrival at its destination. It combines
transmission, propagation, and processing time at both ends.
For LoRa, TTN latency ranges between 24 ms (smallest
payload - fastest bit-rate) to 2800 ms (max-payload on slowest
bit-rate) from the end-device to the gateway. For Sigfox,
Table V provides the approximate time taken by the message
to reach Sigfox backend from the edge device provided by
Sigfox [33] and observed time taken by payload of different
sizes at different LQI (average/good/excellent) in RC1 region
for Sigfox. For NB-IoT, on average, it has a latency of 576 ms.
It is important to mention that when ping is used the first time,
the latency is high in the range of 10 s and then stabilises
slowly (after 5 − 10 pings) to the range of 500 − 800 ms.
From literature, NB-IoT latency ranges around 1− 10 s [34]
depending on normal coverage or extended coverage. Latency
in LTE-M is around 100 − 150 ms in normal coverage. For
Wi-Fi, latency has an average of 8.32 ms and 16.70 ms with a
standard deviation of 9.93 ms and 12.19 ms for the machine
in local and remote networks, respectively. Fig. 6 provides
latency of the Wi-Fi network when FiPy pings a machine in
the same local network and remotely in the cloud network.
The network latency of NB-IoT varies significantly compared
to the Wi-Fi.

For LoRa, the transit time from the gateway to the appli-
cation completely depends on the solution implemented. On
TTN and with a gateway connected through wired Ethernet,
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Fig. 6: Latency results for pinging a local machine and cloud
machine via Wi-Fi and gateway via NB-IoT network.

TABLE VI
Sigfox radio configuration [39]

Frequency (MHz) RC1/RC3/RC5 RC2/RC4
Uplink center 868.130/923.200/923.300 902.200/920.800

Downlink center 869.525/922.200/922.300 905.200/922.300
Uplink data rate (bit/s) 100 600

Downlink data rate (bit/s) 600 600

it will take tens of milliseconds (at the current load levels).
If the gateway uses a slow cellular connection, the delay will
increase. Further, up to a few seconds can add up based on the
selected callback mechanism (HTTP, AWS IoT, others). At a
high level, latency would be a sum of time-on-air, gateway to
network server network latency, duplication window, routing
services processing time, a selected callback to application
network latency. LoRa TTN fair usage policy only allows at
most 10 DL messages. If we also consider the DL latency,
one or two seconds could be added to the latency as there
are two receive windows after a UL message. For Sigfox, to
understand the latency, we calculated the time when we started
sending the message using the device and when it was received
at the Sigfox backend. We synced the end-device time using
Network Time Protocol (NTP) with pool.ntp.org server.
For NB-IoT, we connected to the NB-IoT Vodafone network
with Pycom provided subscriber identity module (SIM) [35]
having pycom.io Access Point Name (APN). We figured out
our IP Address using AT command ‘AT+CGCONTRDP’ and
sent around 100 ping requests to the gateway, which was three
hops away (calculated from TTL). For Wi-Fi, we connected
the end-device FiPy to the home Wi-Fi network and calculated
the latency by sending 100 uping [36], [37] requests to a local
machine in the same network and to a remote machine on a
cloud.

Throughput: This experiment measured the average
throughput (bits per second) achieved on each network indi-
vidually. For LoRa, bit-rate depends on the bandwidth and SF.
In Europe, the regional parameters [38] allow a bandwidth
of 125 KHz to 250 KHz and SF of 7 − 12 [27]. LoRa
data rates range from 0.3 Kbps to 50 Kbps [11]. For Sigfox,
Table VI provides UL and DL frequency and data rate for
different regions. Based on the Sigfox frequency, the data rate
could be determined. For NB-IoT, data rate [34] is 26 Kbps
in the DL, and 66 Kbps in the UL. LTE-M has approximately
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Fig. 7: Bandwidth results using iperf when running on local
network and cloud.

300 Kbps in DL and 380 Kbps in the UL in half-duplex.
On an average on the field, 100 to 150 Kbps are reached
in both directions. For Wi-Fi, bandwidth has an average of
3550.8 Kbps and 770.181 Kbps with a standard deviation of
157.19 Kbps and 71.86 Kbps when iperf3 is hosted locally
in the local network and cloud network, respectively. Fig. 7
provides the bandwidth of the Wi-Fi network when FiPy pings
and connects to the iperf server in the same local network
and remotely in the cloud network.

For our experiments, for NB-IoT, we are using Pycom
provided Vodafone SIM; the User Equipment (UE) can only
communicate to a white-listed IP address because of which
we were unable to host an instance of iperf on a server
and calculate throughput. For Wi-Fi, Pycom FiPy utilises
ESP32 which provides 20 Mbps TCP RX/TX in the test [40]
performed in the lab. The bandwidth and throughput was
calculated using uiperf3 [41].

Time to connect to the network: We conducted baseline
experiments to understand the connection time an end device
takes to join the different networks. It helps to estimate
switching overhead if the IoT devices need to switch from one
network technology to another. LoRa allows activation by two
methods Over-the-Air Activation (OTAA) and Activation by
Personalisation (ABP). OTAA took on an average 5.6 s with
a minimum 4 s to a maximum 7 s to join the network. On the
other hand, ABP provides hard-coded session keys and allows
the sending of data without joining. In case of an emergency
where the device tries to send only one message and is unsure
about the coverage of LoRa, the message can be sent using
maximum SF12 to have a maximum range. For Sigfox, creating
a socket for Sigfox taken an average of few ms. For NB-IoT,
we present the timings for the different methods in Table VII.

When the LTE modem is connected to the network first
time, it takes a significant amount of time to connect to the
network as it searches, registers itself to the network, it could
take approximately 15 mins to 60 mins to attach to the
network, whereas Wi-Fi takes approx 5.6 seconds to connect
to the specified network.

We conducted a baseline experiment for Lora to understand
the connection time an end device takes to join the LoRa
network through OTAA and repeated it 24 times. For NB-
IoT, we conducted experiments to measure the time taken for
initialisation, attach, connect, detach, disconnect, deinit and
modem reset. We performed two experiments - one when
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TABLE VII
NB-IoT connect times in seconds

NB-IoT Reset Init Attach Connect Disconnect Deattach Deinit
With Reset Avg 6.37 0 12.64 1.29 7.23 1.13 0.09

Min 6 0 11 1 7 0 0
Max 7 0 17 2 8 2 1

Without Reset Avg - 2.07 12.15 1.31 7.23 0.98 0.15
Min - 1 8 1 7 0 0
Max - 3 20 2 8 2 1

LTE modem is reset before initialisation and one without
the reset. LTE allows PSM by configuring the period how
often the device will connect and how long it will stay
actively connected. During the sleep, the LTE modem will
go into a low power state, but it will stay attached to the
network; thus, no time is spent for attaching after waking
up. For Wi-Fi, to understand the time taken to connect to
Wi-Fi, we calculated the time taken for Wi-Fi init, scan,
connect, disconnect, deinit. We experimented 80 times and
found that it takes approximately 2.1 seconds to scan the
Wi-Fi networks and approximately 5.6 seconds to connect to
the specified network. Wi-Fi init, disconnect, and deinit were
almost instantaneously in the range of milliseconds.

Time to reconnect to Wi-Fi, Internet: To understand how
much time an IoT device takes to reconnect with the Wi-Fi and
the internet. We connected a Smart Citizen Kit (SCK) [42],
Pycom FiPy to Home Wi-Fi, a machine via Ethernet to
the home router and turn-off-on the Wi-Fi. We created a
python script that pings the three hosts: the router, the IoT
device (SCK, FiPy), and the cloud machine (google.com) and
provided time between the device going offline and coming
online. It took approx 1 min 16 sec, 1 min 40 sec, 3 min 5
seconds to get the connectivity back to the router, IoT device,
and the internet.

VI. EVALUATION AND DISCUSSIONS

In § IV, we have shown that both variants of the proposed
resource management algorithm (CABF and CABFinv)
perform better than the baseline bin-packing algorithms we
considered. In this section, we implemented one of the vari-
ants, namely CABFinv , as part of a multi-network resource
allocator running over our Resilient Edge platform. We then
performed a number of experiments to evaluate the algorithm
performance over an edge-node prototype following the ex-
periment setup as shown in the Figures 4 and 5. The choice
of the CABFinv was made in order to try to provide service
to all message flows (rather than focus on increasing service
for the most critical flows, which would perhaps be the goal
in a real deployment) for the sake of demonstrability, i.e. so
we can show the sharing of the network interfaces by several
flows operating at different levels of criticality.

A. Criticality-aware allocation of network resources using
CABFinv

In this section, we show the performance of the proposed
CABFinv algorithm when allocating network resources to
application flows in a criticality-aware manner. We consider
the same application flows and QoS requirements presented
in Section § III and follow the approach described in Section

TABLE VIII
Obtained criticality level (1 | 2 | 3) and network allocation
(* Wi-Fi | # LoRa | + Sigfox | - NB-IoT) for motivating

example in FiPy
Message Flows % flows avg

1 2 3 4 5 6 7 8 served crit
Requested
Criticality level 1,2,3 1,2,3 1,2 1,2 1,2 1,2 1,2 1 level

Network
Interfaces Allocated Criticality Level

Wi-Fi 1 1 1 1 1 1 1 1 100 1
LoRa 1 1 1 2 1 2 1 1 100 1.25

NB-IoT 1 1 1 1 1 1 1 1 100 1
Sigfox 2 2 1 2 1 2 2 1 100 1.625

Wi-Fi + LoRa 1# 1# 1# 1* 1# 1* 1# 1# 100 1
Wi-Fi + Sigfox 1# 1# 1+ 1# 1+ 1# 1# 1+ 100 1
NB-IoT + LoRa 1* 1* 1* 1- 1* 1- 1* 1* 100 1
NB-IoT + Sigfox 1- 1- 1+ 1- 1+ 1- 1- 1+ 100 1

§ IV where application flows can request service at different
criticality levels from the multi-network resource allocator
running at FiPy. The multi-network resource allocator run-
ning CABFinv algorithm provides service according to those
requirements while considering the network availability condi-
tions, so in this experiment we consider a number of realistic
scenarios and evaluate the percentage of served requests and
the corresponding criticality levels they were assigned.

In this experiment we consider the four available networks
have following maximum bandwidths Wi-Fi (750 Kbps), NB-
IoT UL (55 Kbps), LoRa SF7-125KHz (5.47 Kbps) and
Sigfox UL (100 bps).

Table VIII shows the allocated criticality level, percentage
of flows served and average criticality level for the messages
flows defined in Table I. Each row of the table shows the
metrics obtained by running the CABFinv algorithm over a
different network scenario. Scenarios include situations such
as when only a single network is available (only Wi-Fi,
LoRa, NB-IoT or Sigfox) or when two different networks are
available (such as Wi-Fi or NB-IoT with LoRa and Sigfox).
When a high-bandwidth network such as Wi-Fi and NB-IoT
is available, we can see that CABFinv is able to assign
the lowest criticality level to all flows and to provide all
of them with service. We also observe that when only low-
bandwidth network interfaces are available (e.g. Sigfox), all
flows are still serviced but the average allocated criticality is
higher (i.e. flows are only allowed to use the network under
more constrained levels of service). Average criticality level
is calculated as the sum of all the assigned criticality level
divided by the number of message flow allocated.

Such results, which are based on a realistic scenario and
network bandwidths, consistently show the same outcomes
that were obtained in Section IV for our motivating example
and for the synthetic applications: the proposed algorithms
are superior to all baselines when one considers together the
ability to allocate bandwidth to message flows according to
their criticality and to the availability of multiple networks.
There are, of course, limitations with regard to the perfor-
mance of the proposed algorithms, our ability to fully exploit
its advantages over the current platform, and the algorithms’
ability to handle highly dynamic scenarios. We provide more
details and discussion in the following subsections.
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B. Time complexity and Context Switching of CABFinv al-
gorithm

We measured the running time of CABFinv algorithm on
the FiPy board and the RPi, repeated it ten times, and average
run on FiPy takes 1300ms whereas on RPi it takes 7.1ms.

When a networking event (such as Wi-Fi is disconnected),
the allocation algorithm CABFinv has to be executed again.
This results in time delay due to de-allocation of old message
flows and allocation of new message flows. During this time
delay, there’s a possibility that the RPi would have written a
message on the UART.

As there is a possibility that by the time, Message Flow
Element Allocation (MFEA) message was received by RPi,
the previous running threads (simulating message flows)
would have written few messages to the UART. To resolve
this, before doing the re-allocation, we send a message
<INFO:RE-ALLOC:INIT> to RPi that, we are going to do
the re-allocation, stop sending any message to the UART to
minimise the loss of messages. On receiving that message,
RPi pauses all the current threads of message flow. Further,
FiPy store the old allocations and until it receives an acknowl-
edgement message <INFO:RE-ALLOC:ACCEPTED> from
the RPi that it has received the MFEA, it keeps allocating
using previous allocation (except the network interface which
was lost).

In this case, we log the time, when RE-ALLOC:INIT mes-
sage was written to the UART by FiPy initiating re-allocation,
the time RPi received MFEA message flow allocation message
from FiPy, and the time taken by RPi to stop all previous
threads (which are simulating the message flows) and generate
new threads (as per new allocation). We calculated the time for
context switching as the time difference between re-allocation
init message written by FiPy and the re-allocation accept
message received by FiPy. This whole context switching takes
1.3 s to 1.5 s which includes stopping thread, creating new
threads, re-alloc init message, re-alloc MFEA time from RPi
to FiPy and re-alloc accept from FiPy to RPi.

C. Discussions

Our work also has certain limitations. Firstly, the CABF
algorithm currently does not handle network dynamics such
as a change in network bandwidth due to dynamic change of
wireless channel and link conditions. The preliminary decision
about the network capacity is based on the network availability
(whether the network is available or not), and the algorithm
calculates the network bandwidth at the start of the network
connection. Currently, it is difficult to generate or simulate net-
work problems during application communication to evaluate
the consequences on the flows (latency, loss, throughput). For
instance, currently, FiPy does not provide the Wi-Fi callback
function [43] and does not provide any way to know that Wi-
Fi is disconnected. In LTE, we can remove the SIM card
or the LTE antenna during a stable connection to simulate
network connectivity loss. However, removing SIM or antenna
is not officially recommended as they can cause damage to the
device. Regarding generating network loss in Lora and Sigfox,
both are stateless. FiPy provides a way to check if the device

has joined LoRaWAN; however, no way to find whether it
is still connected or not. Because of the above reasons, to
simulate the loss of Wi-Fi, we have manually set the Wi-Fi
bandwidth to zero and then called the re-allocation function.
The multi-network resource allocator successfully allocates
the message flows to the available network interfaces. From
the network bandwidth perspective (change in bandwidth due
to network conditions), a for loop that checks for the LoRa
SF, Wi-Fi, and NB-IoT bandwidth at regular intervals can be
implemented. However, it requires better support for threading.
We will eventually implement the features based on the device
support for Wi-Fi callback in the future.

Secondly, there are few device limitations. FiPy does not
provide Wi-Fi callback to indicate if the device got dis-
connected from the Wi-Fi network. Currently, when FiPy is
connected to both Wi-Fi and NB-IoT simultaneously, it does
not provide a way to define the network interface to be used for
sending the packet. Further FiPy team does not advise using
both networks simultaneously to simulate a WiFi-LTE bridge,
as it will be very slow and expensive [26].

Thirdly, currently, we take a set of message flows and
allocate them all together. Because of this, old message flows
are de-allocated and re-assigned with either the same or
different criticality levels. In future work, we will provide the
capability to allow an application to define a new message
flow and allocate it from the existing networks without de-
allocating and re-allocating the old ones.

Further, there are different industrial products [44], [45]
in the market that provide communication via multiple radio
interfaces (such as Wi-Fi, 4G, LoRa, LTE (CAT-M1/NB-IoT)).
However, either they provide only LoRa or LTE (CAT-M1/NB-
IoT) with Wi-Fi. Currently, we are only aware of FiPy that
provides multi-network connectivity for LoRa, LTE (CAT-
M1/NB-IoT), Sigfox, Wi-Fi, and Bluetooth. Further, our work
enables criticality-aware applications to send messages by allo-
cating resources (network) per the criticality level and network
availability. The transmission range of Wi-Fi and other WPAN
is different, and it is possible to assign the communication
resources to different types of traffic. There can be different
factors for consideration in the case of multiple radio devices,
e.g., bandwidth, delay, rate adaptation, IP support, and others.
Currently, our work considers bandwidth and availability to
ensure that applications can send messages as per the defined
criticality level.

With the development and popularization of 4G/5G net-
works, the IoT edge has also shown more possibilities in
IoT, VR, and AI intelligence. In this context, NB-IoT, LoRa,
and Sigfox provide low-bandwidth network communication
methods that are very limited. There might be a case where
LPWAN might seem insignificant. On the other hand, our work
targets critical edge applications that need to work even when
high-bandwidth networks are unavailable.

VII. RELATED WORK

This section presents related work that crosses the inter-
section of LPWAN, edge resilience, and ILP (Integer Linear
Programming) formulations for IoT and edge computing.
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Chaudhari et al. [46] provided a comprehensive survey on
various LPWAN technologies and presented these technolo-
gies concerning application requirements, such as coverage,
capacity, cost, low power, and deployment complexity, and
provided a comprehensive survey on both standard and non-
standard LPWAN technologies. Hossain et al. [47] presented
the comparison of different LPWAN technologies in terms of
cost structure and scalability and stated that a large rollout
with a single LPWAN technology is not cost-efficient.

Similarly, from the use case perspective, Santos et al. [48]
evaluated LPWAN technologies for air quality application
during “City of Things” project. Further, it also performed
anomaly detection for smart city applications using differ-
ent unsupervised and outlier detection algorithms. Roque et
al. [49] created a prototype to detect fire detection in outdoor
environments (forests) based on LPWAN networks (Sigfox)
and temperature and gas sensor measurements. Rubio-Aparicio
et al. [5] implemented an LPWAN residential water manage-
ment solution supported by hybrid IoT LoRa-Sigfox architec-
ture. All the above solutions provide resiliency by sending data
on Lora and Sigfox without guaranteeing applications’ QoS
requirements. The work aims to achieve network resiliency
by connecting the end devices with inadequate coverage to a
Lora-Sigfox Gateway device via LoRa and then forwarding
the data to a Sigfox network. These use-uses demonstrate
the use of LPWAN for meeting resiliency and low-power
communication requirements.

ILP formulations for resource provisioning are widely used
for many scheduling problems and are well studied in the
literature. For IoT applications, ILP has been used at the
gateway level. For example, Santos et al. [50] presents a MILP
(Mixed ILP) formulation for resource provisioning in Fog
computing, taking into account the Service Function Chain-
ing (SFC) concepts, different LPWAN technologies (LoRa,
IEEE 802.11 ah), and multiple optimization objectives. The
solution considers end-to-end systems into three segments -
sensors/things level, gateways/routers (Fog), and the cloud and
presents smart-city use-cases for garbage collection, air quality
monitoring, and closed-circuit television (CCTV) monitoring.
Tajiki et al. [51] used ILP to select a set of monitoring flow
injected into the network to infer a link delay vector and meet
the QoS for delay-sensitive applications in the network. Kim
et al. [52] use ILP formulation to create secure migration
policies for the communication between things (sensors) and
a trusted edge system providing authentication services in the
event of Denial-of-Service (DoS) attacks or failures, resulting
in resilient authentication and authorization for IoT. In com-
parison, our work shows that IPL can also be used at the IoT
device level to optimize the latency and resiliency of different
applications using a Multi-communication network.

From the QoS perspective, multiple research papers have
highlighted that the end-to-end perceived QoS on cloud-
edge continuum deployment environments depends on many
complex system factors [53], [54], [55].

Each abstraction (either vertical or horizontal) adds another
level of complexity and delays, affecting QoS. The delays can
depend on each edge node’s virtualization and containeriza-
tion techniques [56]. Additionally, many QoS (latency and

processing delays) metrics depend on the current load of the
local physical/virtual CPU/memory, network acceleration and
service invocation techniques [56], [57].

For example, Cicconetti et al. [54] identified four reference
execution models (external, in-edge, in-function, in-client) for
providing state to enable stateful applications on serverless
platforms deployed on the edge nodes. Similarly, Pfandzelter et
al. [58] and Feraudo et al. [59] designed a lightweight server-
less platform, tinyFaaS and Colearn middleware explicitly for
edge environments and IoT applications.

From the literature, it is evident that edge-enabled FaaS
scenarios with serverless support are emerging, and our work
is complementary to state-of-the-art work. It can be integrated
with middleware or service orchestration architecture by inter-
facing the Resilient Edge at the communication layer interface
or as the network functions virtualization (NFV) in Software-
Defined Networking (SDN) architecture.

From the perspective of improving resilience, Qin et
al. implemented Multinetwork INformation Architecture
(MINA) [60], [61] a reflective Observe Analyse Adapt (OAA)
middleware approach to manage dynamic and heterogeneous
multi-network (such as ZigBee, Bluetooth, PANs, MANETs,
3G/4G, WLAN) in pervasive environments to ensure reliable
communication for end applications. The paper presented
a formal analysis that can guide network administrators in
their decisions to proactively adapt network configurations
to achieve mission or application objectives. Compared to
this work in our paper, we analyzed seamless switching of
the networks on a hardware testbed to meet the resiliency
requirements. In our prototype we provided seamless switch-
ing while maintaining the critical application requirements
without overhead of virtualization and service orchestration
middleware. However, our solution could be easily integrated
to other intermediate middleware to support application critical
requirements while providing seamless network connectivity.

The SCALE2 [62] leveraged MINA and implemented a
multi-tier and multi-network approach to drive data flow from
IoT devices to cloud platforms. The authors implemented
a local Software-defined networking (SDN)-enabled the net-
work, which is adaptive to the network changes to which IoT
client devices are connected. This solution’s architecture and
deployment examples used separate adapters (device) for each
communication radio, thus needing another computing device
to run the SCALE client software. However, in our work,
we use all radios integrated on a single board to allow fast
switching between networks on the device level.

Wider aspects of resilience have been discussed in mission-
critical applications like autonomous driving, tactile health-
care, and public safety. For example, Modarresi et al. [63]
presented a graph-theoretical approach to model IoT systems
in smart homes with integrated heterogeneous networks and
explored resilience properties. Similarly, Chaterji et al. [64]
presents the resilience of Cyber Physical System (CPS) and
discusses two techniques resilience-by-design and resilience-
by-reaction. Harchol et al. [65] proposed a framework to
improve edge-computing resilience for session-oriented appli-
cations. They utilized message replay and checkpoint-based
mechanisms to make client-edge-server systems more tolerant
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to edge failures and client mobility. Carvalho et al. [66]
implement a replication mechanism LoRa-REP for replicating
critical messages on LoraWAN by sending them at different SF
and improving redundancy in LoRaWAN for mixed-criticality
scenarios.

The literature shows that different forms of replication and
redundancy mechanisms are used to achieve resilience in the
networks. However, none of those mentioned above work
used different LPWAN and Wi-Fi as seamless multi-network
infrastructure at the device and the Edge network to meet the
guaranteed message delivery.

Our work focuses on achieving network resiliency using
the LPWAN network on resource-constrained end devices
by providing the capability to the end device to evaluate
the application requirements and select the suitable network
medium while allowing graceful degradation of services in the
event of failures. Further, our work implements an ILP solver
in micro-python that can run on a resource-constrained device.
Also, multi-network connectivity has benefits in terms of
deployment in mission-critical applications (tactile healthcare,
public safety in smart cities). For mobility-based IoT like
autonomous driving, for example, if one type of network exists
in one area. In contrast, there is another network in another
geographical location, and the application can perform smooth
and seamless network switching.

VIII. CONCLUSION AND FUTURE WORK

The resiliency and reliability requirements of IoT ap-
plications vary from non-critical (best delivery efforts) to
safety-critical with time-bounded guarantees. In this work,
we systematically investigated how to meet these applications
mixed-criticality QoS requirements in multi-communication
networks.

We presented the network resiliency requirements of IoT
applications by defining a theoretical multi-network resource
system model and proposed and evaluated a list of resource
allocation algorithms and found Criticality-Aware Best Fit
(CABFinv) algorithm works better to meet high criticality
requirements of the example applications. The algorithm pro-
vides the best-effort QoS match by taking into considera-
tion the underlying dynamic multi-network environments. We
analysed and evaluated the bandwidth, latency, throughput,
maximum packet size of LPWAN technologies, such as Sig-
fox, LoRa, and NB-IoT and implemented and evaluated an
adaptive Resilient Edge system with Criticality-Aware Best Fit
(CABF) resource allocation to meet the application resiliency
requirements using underlying LPWAN technologies on RPi
and FiPy.

In the current implementation of Resilient Edge, we took
bandwidth and subsequent inter-message period into consid-
eration for defining criticality 6. In future, we would like to
extend multi-network resource allocator to include message

6Github repository:

https : //github.com/pooyadav/smartcity multimode networks

payload size, message transmission frequency, security, pri-
vacy and energy consumption parameters in the allocation
algorithm. The new allocator would provide applications more
flexibility to choose and optimise their resources and QoS for
a multi-communication network. In summary, we investigated
the limits and metrics required for the best-effort high critical-
ity resilience in multi-communication networks. We presented
our findings on how to achieve 100% of the best-effort high
criticality level message delivery using multi-communication
networks. Our work will help build reliable applications on
IoT Edge and provide solutions from the perspective of
communication networks to improve service quality and fault
tolerance on resource-constrained edge devices. It also opens
up new research directions to build reliable and trustworthy
IoT applications over robust and resilient IoT Edge.
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