
This is a repository copy of Fast tube model predictive control for driverless cars using
linear data-driven models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/194181/

Version: Accepted Version

Article:

Vicente, B.A.H., Trodden, P.A. orcid.org/0000-0002-8787-7432 and Anderson, S.R.
orcid.org/0000-0002-7452-5681 (2022) Fast tube model predictive control for driverless
cars using linear data-driven models. IEEE Transactions on Control Systems Technology,
31 (3). pp. 1395-1410. ISSN 1063-6536

https://doi.org/10.1109/tcst.2022.3224089

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Fast Tube Model Predictive Control for Driverless

Cars using Linear Data-Driven Models
Bernardo A. Hernandez Vicente, Paul A. Trodden and Sean R. Anderson

Abstract—Model predictive control (MPC) has been widely
applied to different aspects of autonomous driving, typically
employing nonlinear physically derived models for prediction.
However, feedback control systems inherently correct for model
errors, thus in many applications it is sufficient to use a linear
time-invariant (LTI) model for control design, especially when
using robust control methods. This philosophy of approach
appears to have been neglected in current driverless car research,
and is the research gap that we aim to address here. Namely,
instead of deriving meticulous nonlinear physical models of
vehicle dynamics, and solving a correspondingly complex optimal
control problem, we identify a low-order data-driven LTI model
and handle its uncertainty via robust linear MPC methods. We
develop a two-step control scheme for driverless cars based
on tube MPC (TMPC), which introduces structural robustness,
ensuring constraint compliance despite modelling error in the
data-driven prediction model. Furthermore, we employ fast
optimisation methods designed to exploit the special structure
of the linear MPC problem. We evaluate the proposed control
scheme using a vehicle model identified from real-world data,
and simulations in IPGCarmaker, where the model of the vehicle
under control is inherently nonlinear and uses detailed 3D physics.
Our results show that an LTI model can be effectively employed
for the task of lane-keeping, that TMPC can prevent lane
departure and possible collisions due to model uncertainty, and
that linear models allow for several algorithmic improvements
that can decrease computation time by an order of magnitude
compared to naive MPC implementations.

Index Terms—Autonomous driving, linear MPC, data-driven
MPC, lane-keeping, robust control, fast MPC.

I. INTRODUCTION

Fully autonomous driving has the potential to greatly reduce

travel time, emissions and accidents, which is why efforts to

deploy (semi) autonomous vehicles in the past two decades

have steeply increased [1], [2]. The design of a reliable control

system is of paramount importance to guarantee safety of the

vehicle and its passengers [3], and several control techniques

have been proven successful at some aspect of autonomous

driving [4]–[7]. Among them, model predictive control (MPC)

is appealing due to its intrinsic handling of multivariable

systems, constraints, and its inherent robustness [8]. Indeed,

MPC has been shown to successfully handle varied autonomous

driving requirements [9]–[11].

MPC controllers for driverless cars fall into different classes

depending on the goal of the controller, which in turn defines

Bernardo A. Hernandez Vicente is with the Department of
Mechanical Engineering, University of Concepcion, Chile (e-mail:
behernandez@udec.cl). Paul A. Trodden and Sean R. Anderson
are with the Department of Automatic Control and Systems
Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
(e-mail: bahernandezv@gmail.com; {p.trodden;
s.anderson} @sheffield.ac.uk).

the type of vehicle model used to make predictions. If the

objective is to design high-level path planner–followers then

several authors [9], [12], [13] rely on kinematic models which

ignore the transient dynamics and provide a simple framework

to design controllers for a range of vehicles. Since they act

in higher layers, these MPC controllers usually require low-

level controllers to drive the physical vehicle actuators. The

simplicity of kinematic models, even if they are nonlinear as

in [13] or time-varying as in [9], allows for the design of

MPC controllers with strong theoretical guarantees despite the

presence of constraints.

Dynamic models are usually required for the purpose of low-

level vehicle control, and most authors employ nonlinear phys-

ically derived dynamic models for use in either nonlinear MPC

(NMPC) or linear time-varying MPC (LTV-MPC) schemes. In

[14], for example, nonlinear models of the lateral dynamics are

used in NMPC to perform lane change manoeuvres, whilst in

[11], [15] NMPC is used with a nonlinear four-wheel dynamic

model to solve the tracking problem. A similar architecture

is found in [10], [16] where NMPC is used for kinematic

path planning with obstacle avoidance. In order to reduce the

complexity of the MPC problem, yet capture the entire driving

envelope, several authors use LTV models, including lateral-

only dynamics [17], [18], and lateral–longitudinal dynamics

[19]. Parameter estimation modules are included in [18], [19]

to track model variations; however, the changing nature of

the MPC’s prediction model results in that, even for a fixed

reference, theoretical guarantees are entirely forgone.

Although prevalent, the use of nonlinear dynamical models—

and furthermore physically derived models—poses several

challenges in the design and deployment of MPC controllers

for driverless cars. A nonlinear prediction model results in

the optimisation associated with the MPC controller being

a nonlinear (nonconvex) program [20], which may pose

unachievable computational demands for its on-line solution.

Moreover, the accuracy of the prediction model plays a major

role on the performance and theoretical guarantees of MPC

controllers [21] and, although inherent robustness due to

feedback may be present, uncertainties in nonlinear models may

result in large prediction errors if unaccounted for [18]. NMPC

and LTV-MPC techniques with explicitly built-in robustness

provide mitigation for the latter, and have been devised for the

purpose of autonomous driving [22], [23]; however, they are

tailored to specific model structures and are more complex than

their linear counterparts, both in the design and implementation

stages. Furthermore, most robust MPC controllers require some

knowledge about the magnitude of the modelling uncertainty.

For physically derived models this implies generating a measure

of confidence for each model parameter, which may require

2

large-scale testing (for a single vehicle) [22] and extensive

a-priori knowledge.

While nonlinear physical models are the current prevailing

choice in MPC for driverless cars, linear time-invariant (LTI)

identified models have a track record of successful use in a

wide range of control applications, particularly in the industrial

and process control domains. Much of this success is built

on the fact that LTI models are often sufficiently accurate

for control purposes even if the true dynamics are nonlinear,

which itself may be a consequence of the tacit observation

that feedback control is linearizing [24]. However, the use

of data-driven models in autonomous driving applications is

uncommon [25], [26], particularly in the context of MPC [27].

Physically derived linear models share many drawbacks of their

nonlinear counterparts when it comes to assessing their fidelity,

particularly since linearisation may skew a-priori knowledge.

Data-driven LTI models, on the other hand, are built to fit

the available data, hence their accuracy depends on model

design choices rather than (the lack of) a-priori knowledge

[28]. Moreover, we have recently demonstrated that vehicle

dynamics can be well described using data-driven LTI models

in comparison to nonlinear and linearised physical models [29].

In this paper, therefore, we propose a novel two-step MPC

controller for the purpose of lane-keeping, fitted with an

LTI data-driven model for predicting vehicle dynamics. Our

proposed controller performs both high-level path-planning

using spatial-based optimal control and low-level vehicle

dynamics control using linear tube MPC (TMPC) [30]. Our

architecture is similar in structure to that in [10], [11], [16],

but with several key differences. First and foremost, we use

the approach in [29] to identify an LTI dynamic model of the

vehicle in velocity space for the MPC predictions. By using

LTI models for MPC predictions we are able to tackle some of

the challenges previously discussed. We take modelling error

explicitly into account via built-in robustness in the form of

TMPC, and we develop the TMPC optimisation algorithm for

low-level vehicle control based on the fast MPC principles

described in [31], which we apply here to TMPC.

To demonstrate the effectiveness of our proposed method we

conduct simulation experiments on dynamic models derived

from real-world car data and also using simulation in IPGCar-

Maker [32]. These experiments show that (i) the LTI data-driven

models are sufficiently accurate for the task of path-following

in normal driving conditions and may provide an alternative to

nonlinear solutions; (ii) the use of TMPC (as opposed to MPC)

can prevent departure from the lane, and potentially avoid

collisions; (iii) the use of fast TMPC can decrease computation

time by an order of magnitude, which provides a good baseline

for future deployment on target hardware.

The rest of the paper is organized as follows. The objective

and scope of the controller are discussed in Section II, followed

by a description of the kinematic and data-driven models

employed. Section III describes our proposed controller in

detail, including a brief account of TMPC. In Sections IV–

VI we present the modelling results and discuss in detail the

performance of our proposed controller, both with respect to

the control objectives and its computational capabilities. We

finalise with some directions for future work in Section VII.

II. CONTROL ARCHITECTURE AND SCOPE

In this paper we aim to solve the lane-keeping problem for

an autonomous road vehicle. More precisely, we seek to design

a control system that provides low-level control actions in

order to keep the vehicle as close to the lane centre as possible,

while travelling at a desired speed and respecting comfort and

safety constraints normally associated with road driving.

We propose a two-step controller to achieve this aim. The first

step generates references for the vehicle in the velocity space,

using a simple kinematic model in a curvilinear coordinate

frame. The second step provides tracking of this reference,

using a linear robust MPC controller fitted with an LTI data-

driven model of the vehicle’s dynamics. The latter is also

expressed in the velocity space, meaning that its outputs are

the velocities (linear and angular) of the vehicle’s centre of

gravity (CoG). The choice of velocity space follows previous

work showcasing its prediction capabilities [29].

The architecture of our proposed control system is depicted

in Figure 1. We assume we obtain measurements for the

vehicle’s velocity, yaw rate, and global position, which are

preprocessed to obtain the position of the car in a curvilinear

frame of reference. We also assume that some information

about the road’s shape is known a-priori, which is a common

assumption in path-following algorithms [9], [10], [13], [15].

In the remainder of this section we introduce the models that

are going to be used by both steps of our controller, and the

methods by which they are obtained.

A. Curvilinear kinematic model

The first step of our controller employs a simple kinematic

model of the vehicle’s CoG described in a curvilinear reference

frame with its axes oriented alongside the lane’s centre line

(also known as Frenet reference frame). This allows for a

simple description of the distance to centre of the lane, which

is one of our main regulation objectives and hence will drive

the reference generation.

The reference frame is depicted in Figure 2, where s(t) is the

distance travelled along the curve, yd(t) is the perpendicular

distance to the curve, and the pair (V (t), ψ(t)) describe the

vehicle’s CoG velocity in magnitude and orientation. The

variable γ(s) is the path’s curvature (or heading) with respect

to some fixed reference frame (X,Y), and we assume it is

perfectly known.

Define ω (t) as the vehicle’s yaw rate, and ˙ and ′ as

derivatives with respect to t and s respectively. In the curvilinear

frame of reference the kinematic model of the vehicle is

described by

ṡ (t) =
V (t) cos (ψ(t)− γ (s (t)))

1− yd(t)γ′ (s (t))
(1a)

ẏd (t) = V (t) sin (ψ(t)− γ (s (t))) (1b)

ψ̇ (t) = ω (t) . (1c)

In this paper, as in [10], we use Bezier curves to obtain an

analytical description for γ(·) and its derivative. Note however

that, given the nature of our data, we test our path-following

algorithm against real world roads, hence we employ Bezier

curves of different orders as necessary.

3

Lane-keeping algorithm

Step 0

GPS to

curvilinear

Step 1

Reference

generation

Road data
Step 2

Reference tracking

via TMPC
−

Reference

velocities

Plant
L

o
w

lev
el

co
n
tro

l
actio

n
s

Measurements

Figure 1. Architecture of the two-step lane-keeping controller. The first step generates velocity references, which are then tracked via TMPC in the second step

(x, y)

V
ψ

s

γ(s)yd

X

Y

Figure 2. Curvilinear reference frame employed for reference generation.

B. Data-driven LTI model

In the following we describe our selection of data-driven

model and the estimation procedure (the data employed is

depicted in Section IV-A). We propose to use a black-box

linear model in state space form, that is

ẋ(t) = Ax(t) +Bu(t) + µ(t) (2a)

y(t) = Cx(t) + ν(t) (2b)

where x ∈ R
n is the state, u ∈ R

m is the input, y ∈ R
p

is the output, ν ∈ R
p is the measurement noise, µ ∈ R

n is

the process noise and the matrices A,B,C are of appropriate

dimension. The output vector is composed of the variables we

are interested in regulating to reference values, which in this

case are linear velocity in the plane V (t) and yaw rate ψ̇(t).
As inputs we choose a subset of the low-level inputs available

for autonomous driving: pedals (gas and brake), engine torque

and steering wheel. We also include road slope as an input in

the modelling stage to reduce model uncertainty, but we do

not use it for regulation in the MPC context.

The states of the model (contained in x) do not necessarily

have any physical meaning and are defined via a subspace

identification method to best fit the available data: the number

of states, n, is a design variable, and should be kept small to

avoid overfitting. Finally, the process noise µ represents the

uncertainty in our model, and allows to capture the effects the

nonlinearities on the system. In a physical modelling context

this term can be parametrised as is done in [17]. Our data-

driven approach does not allow for such parametrisation, thus

we asses the impact of µ in prediction via simulation.

The model in (2) is continuous time, but for the purpose

of estimating its parameters we use uniformly sampled data

with sampling frequency Fs, total samples Nd and sampling

times tk with k ∈ [0, Nd]; the sampling details are described

in Section IV-A. We estimate the state space matrices in

(2) in two steps. First we employ a closed-form subspace

identification method [33] to obtain a set of matrices A◦, B◦
and C◦ that produce a simulated output, say ŷ, that best fits

the data in a least-squares sense [33]. The second step consists

of a refinement of the parameters in A◦, B◦ and C◦ via the

following nonlinear optimisation:

min
θ

Nd
∑

k=1

(y(tk)− ŷ(tk, θ))
⊤
Υ(y(tk)− ŷ(tk, θ)) , (3)

where θ is a vector that contains all the parameters in A◦, B◦
and C◦, and Υ is a weight used to normalize the different

outputs. The optimisation (3) is nonlinear in the parameters,

despite (2) being a linear model, because no model is given to

the noise ν [33].

The performance of the data-driven models is assessed via

a normalised fit metric associated to the cost in (3):

F = 100 (1− ||yi−ŷi||2/||yi−ȳi||2) ,

where the subindex i implies elementwise operations, the bold

variables represent the entire time series and the bar denotes a

mean value. A value of F = 100% indicates a perfect fit. We

also analysed the variance accounted for metric (VAF)

V = 100 (1− var(yi−ŷi)/var(yi)) ,

for which a value of V = 100% indicates that the model is

able to explain the entire variance of the measurements. This,

however, is not expected since we do not include a model for

measurement noise and hence cannot expect to explain it.

Remark 1. TMPC for linear models is a mature technique that

enjoys an array of theoretical guarantees provided the model

meets certain conditions. In particular, we require the pair

(A,B) to be stabilisable and the noise/disturbances affecting the

model to be bounded. The closed-form subspace identification

method is implemented with a constraint that forces A to be

stable, as we do not expect instability given our input/output

pairs, but we can only guarantee boundedness of the uncertainty

in a probabilistic sense, which we discuss in Section IV-C.

C. Nonlinear physics-based model

In order to properly frame our contribution, we will also

discuss the performance of our controller with respect to

4

nonlinear MPC, fitted with a nonlinear physical model for

prediction (as is prevalent in the literature [15], [22], [34]). To

represent the nonlinear dynamics of the vehicle, we implement a

coupled (longitudinal–lateral) four-wheeled model as described

in [29] (referred to as NLPM henceforth). The key features of

the NLPM are one-way coupling from longitudinal to lateral

dynamics and the use of the magic formula for tyre force

estimation. The unknown parameters of the NLPM are fitted

following the procedure described in Section II-B.

III. TMPC FOR ROBUST PATH-FOLLOWING

A. Reference generation

The first step of our controller defines the references in the

velocity space. To do so we employ the kinematic model in

(1) to predict the vehicle’s movement and optimise its velocity

and yaw rate in order to minimise its deviation from the path

and adhere to the required velocity specifications. At this stage,

V (t) and ψ̇(t) act as inputs for the kinematic model, so to

optimise them we propose the following MPC-like discrete

optimisation problem to be solved in a receding horizon fashion

at each sampling time t:

PNc
(V (t), ω(t), s(t), yd(t), ψ(t)) :

min
V (t),ω(t)

JNc
(V (t),ω(t), V (t), ω(t), s(t), yd(t), ψ(t))

(4)

where V (t) and ω(t) are the predicted velocity and yaw

rate profiles made at sampling instant t, that is V (t) =
[V (t+ Ts|t), V (t+ 2Ts|t), . . . , V (t+NgTs|t)]

⊤
, Ng is the

prediction horizon, Ts the sampling time and the notation

(k|t) indicates prediction k made at time t. Optimisation (4) is

subject to constraints that include a forward Euler discretisation

of the kinematic equations (1), initial conditions for the states

s(t), yd(t), ψ(t) and initial condition for the inputs V (t), ω(t).
The latter explains why V (t|t) is missing from V (t), since it

is defined by measurements and not available for optimisation.

The kinematic model is nonlinear, hence (4) is a nonlinear

program (NLP). To reduce computational complexity, we

employ the concept of move-blocking MPC [35]. The prediction

horizon is evenly divided in Nc blocks during which the optimi-

sation variables V (k|t) and ω(k|t) remain constant. Formally,

given i ∈ [1, Nc] and N̄ = Ng/Nc, then (V (k|t), ω(k|t)) =
(

V̄i, ω̄i

)

for all k ∈
[

t+ (1 + (i− 1)N̄)Ts, t+ iN̄Ts
]

.

The cost function in (4) is defined as

Jg (V (t),ω(t), V (t), ω(t), s(t), yd(t), ψ(t)) =
t+NgTs
∑

k=t

(

Qyy
2
d(k|t) +Qẏ ẏ

2
d(k|t) +Qṡ (ṡ(k|t)− Vg)

2
) (5)

where Qy, Qẏ and Qṡ are weights. In the cost function (5),

the first term penalises lateral deviations from the path, the

second term promotes the vehicle’s alignment with the path,

and the third term penalises deviations from a target velocity

Vg. Finally, the optimised variables are defined by V
⋆(t) =

[V ⋆(t+ Ts|t), V
⋆(t+ 2Ts|t), . . . , V

⋆(t+NgTs|t)]
⊤

. In what

follows, we refer to (4)–(5) as a receding horizon nonlinear

optimal control problem (RHNOCP).

Given a fixed horizon Ng, dividing it into fewer blocks

reduces the complexity of the RHNOCP, however it may result

in poor performance and lose of manoeuvrability. Consider

the extreme case where Nc = 1, if large changes in the path’s

curvature are present over the prediction horizon, a single value

of yaw rate applied across the entire horizon could result in

inaccurate tracking of the path. A small number of blocks

should be paired with short prediction horizons, however this

could result in sharp corners being first encountered in the

planning horizon only when the vehicle is in close proximity to

them, not allowing enough time for the vehicle to slow down

appropriately. To tackle these issues and allow for reduced

complexity of the optimisation, we propose to modulate the

target velocity Vg with respect to the change in curvature of

the oncoming road further from the prediction capabilities of

the optimisation horizon. The modulated velocity is defined by

Vf (s) =

{

e−α(s)/ᾱVg, e−α(s)/ᾱVg ≥ vg

vg, otherwise,

where α(s) is the total change in curvature throughout a fixed

and arbitrary length of road ahead of the current position of

the vehicle, ᾱ is an arbitrary amount of allowable curvature

change within this length of road, and vg is an arbitrarily

defined minimum required velocity.

The RHNOCP is similar to the approach described in [10]

for reference generation, but with some key differences. The

approach in [10] implements an explicit method to solve

the reference generation problem, placing the emphasis on

the inclusion of collision avoidance (non-convex) constraints.

Nevertheless, the explicit solution is inherently suboptimal,

and the subsequent reference tracking is implemented via

proportional controllers over a bicycle vehicle model. We,

on the other hand, do not consider collision avoidance and

employ the move-blocking MPC paradigm, which allows longer

prediction horizons and the use of general purpose solvers. The

latter, in turn, permits the following:

• To introduce input feedback in the reference generation. In-

deed, although linear velocity and yaw rate are considered

inputs of the kinematic model, they are indeed the dynamic

response of the vehicle, hence their value at the current

sampling time is not manipulable. We acknowledge and

handle this via the inclusion of initial condition constraints

in (4) for V (t) and ω(t), thereby enhancing the kinematic

model with some degree of inertia.

• To initialize the vehicle at arbitrary conditions (position

and velocity), and with any target velocity, unlike [10]

whose bespoke optimisation algorithm requires initializa-

tion on the path, at rest, and with a null target velocity.

B. Solution of the RHNOCP

To solve the RHNOCP we employ the nonlinear program-

ming (NLP) solver known as IPOPT [36], via one of its

MATLAB interfaces [37]. IPOPT is a general purpose solver

that implements an interior point line search method to find a

local solution of the NLP. In the context of the RHNOCP (4),

i.e. without constraints, the implementation of IPOPT requires

the user to provide the value of the cost (5), its gradient and

Hessian, at each iteration of the solver. We estimate the gradient

5

of (5) numerically, while the Hessian is estimated via a Quasi-

Newton method native to IPOPT. IPOPT employs different

termination criteria to decide whether the current iteration

corresponds to a local minima, including iteration number and

tolerances on various indicators such as cost function change.

The specific values used are presented in Section V.

Remark 2. The RHNOCP has no hard constraints, nor terminal

ingredients, which are common in MPC. Thus there is no

guarantees on the behaviour of the optimal cost function, i.e.

whether the optimised trajectory (ψ(t), yd(t), s(t)) remains

close to the lane’s centre. Formal guarantees are currently

under investigation, however we do observe an acceptable

tracking behaviour in simulation.

C. Reference tracking via TMPC

In the second step of our controller we track the refer-

ences defined by the RHNOCP. To do so we implement the

structurally robust MPC controller known as TMPC, which

is able to take into account external perturbations that may

affect the car and also the modelling error inherent to the data-

driven model used to make the predictions. For completeness,

we now recall some standard definitions and present a brief

description of the TMPC optimal control problem applied in

our framework, but the reader is referred to [38, Chapter 3]

for a detailed description of the technique. In what follows “⊕”

denotes the Minkowski sum of sets and “⊖” the Pontryagin

set subtraction [39].
Note that we describe the TMPC technique in a state-

feedback setting, although the prediction models introduced

in Section II-B are in output-feedback form. We do this to

simplify the exposition by reducing notation, nevertheless the

extension to output-feedback is easily achieved by including a

suitable state estimation technique (such as the Kalman Filter),

and following the methodology described in [40]. Furthermore,

when processing the data through our modelling approach we

find a good trade-off between simplicity and match to dynamics

in a low order model, for which the outputs are the states (see

Section IV). By choosing such model we remove the need for

state estimation and the additional machinery in TMPC to deal

with estimation error.

Definition 1 (Positive invariant (PI) set). A set T ⊂ R
n is a

PI set for the dynamics x(t+ 1) = ĀKx(t) if ĀKT ⊆ T.

Definition 2 (Robust PI (RPI) set). A set S ⊂ R
n is an RPI set

for the dynamics x(t+ 1) = ĀKx(t) + w(t) with w(t) ∈W

if ĀKS⊕W ⊆ S.

Consider a discrete time version of (2)

x(t+ 1) = Adx(t) +Bdu(t) + w(t) (6)

where Ad and Bd depend on A, B and the discretisation time

Ts, and w(t) is composed of the modelling uncertainties and

measurement noise. Furthermore, suppose that states and inputs

are subject to constraints in the form of compact and convex

sets X ⊂ R
n and U ⊂ R

m respectively, and the disturbances are

bounded inside a compact and convex set W ⊂ R
n. Consider

now an undisturbed representation of (6)

z(t+ 1) = Adz(t) +Bdv(t),

and a certain steady state pair (zss, vss) that is to be tracked.

The resulting error system is

ẑ(t+ 1) = Adẑ(t) +Bdv̂(t), (7)

where ẑ(t) = z(t)− zss and v̂(t) = v(t)− vss. Note that the

model matrices (Ad, Bd) are uncertain, thus the computation

of vss—for given a target zss—also carries uncertainty. The

control law employed to regulate the disturbed plant is

u(t) = κ̂(x(t), ẑ(t)) = κ (ẑ(t))+vss+KT (x(t)− z(t)) , (8)

where KT is stabilizing for (Ad, Bd) and κ (z(t)) is the

receding horizon control law that stems from a nominal MPC

controller designed to regulate the error model in (7), subject to

tightened and translated versions of the constraints represented

by the sets Z ⊂ R
n and V ⊂ R

m.

The optimal control problem (OCP) to be solved at each

sampling time is defined as:

PN (ẑ(t)) : min
v̂
JN (ẑ, v̂) (9)

subject to (for k = t, . . . , t+N − 1):

ẑ(k + 1|t) = Adẑ(k|t) +Bdv̂(k|t) (10a)

(ẑ(k|t), v̂(k|t)) ∈ (Z⊖ {zss} × V⊖ {vss}) (10b)

ẑ(N |t) ∈ Zf (zss, vss) . (10c)

where the cost function JN (ẑ, v̂) is defined as the usual

quadratic cost with terminal penalty

JN (ẑ, v̂) = lf (ẑ(t+N |t)) +
t+N−1
∑

k=t

l (ẑ(k|t), v̂(k|t))

with

l (ẑ(k|t), v̂(k|t)) = ẑ(k|t)TQẑ(k|t) + v̂(k|t)TRv̂(k|t) (11a)

lf (ẑ(t+N |t)) = ẑ(t+N |t)TP ẑ(t+N |t), (11b)

In (11) Q, R and P are respectively the state, input and

terminal penalties. The controller’s prediction horizon is N
and the optimization variable v̂ represents the sequence

of control actions throughout the prediction horizon, i.e.

v̂ = {v̂(t|t), v̂(t+ 1|t), . . . , v̂(t+N − 1|t)}. The solution to

(9)–(10) is a sequence of optimal inputs v
∗(ẑ(t)), the set

ZN (zss, vss) is the set of all states ẑ such that such a solution

exists for a given pair (zss, vss), and the implicit nominal

control law is defined as the first control action of the optimal

sequence κ (ẑ(t)) = v̂∗(t|t).

D. Fast tube model predictive control

The optimisation problem of standard MPC implementations

is typically formulated as a quadratic program (QP), which can

be slow to solve using general purpose methods. A collection

of methods for fast MPC is demonstrated in [31], including

(i) exploiting the structure of the MPC problem to reduce the

computational complexity from cubic, O(N3), to linear, O(N),
in the planning horizon N , (ii) warm-starting the optimisation,

where the control solution from the previous time-step is used

to initialise the current time-step, and (iii) early termination of

the optimisation.

6

One of the advantages of linear TMPC is that its associated

optimisation problem (9)–(10) is comparable to that of standard

MPC, and hence the methods in [31] can be exploited in our

setup. The approach is based on an infeasible start primal barrier

method, where the OCP defined in (9)–(10) is formulated as a

QP with a barrier to replace the inequality constraints, leading

to the approximate problem

min
z

z
⊤Hz + λφ (z)

subject to Γz = b

where

z = (v̂(k), ẑ(k + 1), . . . , v̂(k +N − 1), ẑ(k +N))

H = blkdiag {R,Q,R,Q, · · · , R, P}

Γ =

−B I 0 0 . . . 0 0 0
0 −A −B I . . . 0 0 0
0 0 0 −A . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . I 0 0
0 0 0 0 . . . −A −B I

b = (Aẑ(k), 0, . . . , 0)
⊤
,

and where λ is a barrier parameter and φ (z) is a log

barrier function. This barrier method approximates the original

optimisation problem, and converges to the optimal solution

as the parameter λ approaches zero.

Wang and Boyd [31] propose a solution to the primal barrier

method defined above using an infeasible start Newton method,

and demonstrate how to exploit the structure in H and Γ in a

fast Newton update that has linear computational complexity

in the horizon N (precise details are omitted here for brevity).

A further step enables an even greater computational saving:

a typical primal barrier method is solved for a decreasing

sequence of λ values, however they show it is possible to use

just a single value of λ without loss of performance (provided

some offline tuning of λ). This turns each MPC step into a

Newton process, for which it is possible to leverage warm-

starts, where the control solution from the previous time-step

is used to initialise the current one. The use of warm-starts

can reduce the number of Newton iterations per MPC step by

an order of magnitude.

The final part of the process is to use early termination via

a fixed iteration limit for the Newton method. Although the

optimisation is then not necessarily solved to optimality, this

does not appear to degrade the control solution. The explanation

for this is likely due to the fact that MPC is largely a planning

exercise, where future control inputs are discarded. Hence,

solving the optimisation to full accuracy places an emphasis

on optimizing future control inputs that are never used.

When all these steps for fast TMPC are combined, the

solution of the TMPC problem can be obtained orders of

magnitude faster than a naive implementation (with the speed-

up largely depending on the size of the horizon N). These steps

are critical to obtaining a computationally efficient controller,

enabling the practical implementation of TMPC in driverless

cars where the control loops operate at relatively high sample

rates. Note also that the use of LTI data-driven models of

vehicle dynamics, as proposed here, enables us to leverage the

efficient solution of the approximate primal barrier method.

E. Stability of the fast TMPC

The following result summarizes the main properties of the

TMPC controller described above.

Assumption 1. The steady state pair (zss, vss) is such that

Z⊖{zss}, V⊖{vss} and Zf (zss, vss) have non-empty interiors,

and Zn (zss, vss) 6= ∅. The set S ⊂ R
n is an RPI set for the

closed-loop Ad +BdKT in presence of disturbances W. The

tightened constraint sets are such that Z ⊆ X⊖S and V ⊆ U⊖
KTS. The set Zf is a PI set for Ad,K = Ad+BdKf such that

Zf ⊆ Z⊖{zss} and KfZf ⊆ V⊖{vss}. The LQR cost weights

fulfil Q ≥ 0, R > 0 and A⊤d,KPAd,K +
(

Q+K⊤f RKf

)

≤ P

Theorem 1 (Stability1). Suppose Assumption 1 holds. If (a)

the steady state pair (zss, vss) is constant, and (b) the nominal

system is initialized such that x(0) ∈ {z(0)} ⊕ S ⊂ ZN ⊕ S,

then the OCP (9)–(10) is feasible at all times, the true state

and input constraints are met at all times, and the set S×{zss}
is exponentially stable for (6) when in closed-loop with (8).

In our architecture, the steady state to be tracked is set

to the velocity and yaw rate references generated by the

RHNOCP, i.e. zss = [V ⋆(t+ 1|Ts), ω
⋆(t+ 1|Ts)]

⊤
, and the

corresponding input vss is computed via the prediction model.

The RHNOCP updates the velocities to be tracked at each

time instant to account for current vehicle attitude, which is

necessary due to modelling error and the different modelling

paradigms employed in each step of the controller. This results

in the need to continuously update the terminal constraint set,

which could be dealt with as shown in [42], [43], however it

also breaks a key assumption necessary for Theorem 1 to hold,

namely the invariance of the steady state pair to be tracked.

There exist some MPC approaches that enjoy stability

guarantees in the context of driverless cars, like [17], where

LTV models for obstacle avoidance are studied. However, it

is not clear if this result remains valid in view of a changing

reference, and feasibility of the optimisation is only assumed.

Another interesting approach is [13], where an input-to-state

stability resultn is obtained for a unicycle robot, yet in the

context of kinematic models only. MPC for tracking changing

references has also been studied without a specific application

attached. In [44], for example, the tracking of periodically

changing references is studied and a result of asymptotic

stability is provided. A more general issue is studied in [20],

[45], where references that change via the system dynamics

(or more specifically, the prediction model), are analysed. The

proposed controllers enjoy stability results that depend on the

length of the prediction horizon, removing the need for the

online (or offline) computation of terminal constraint sets.

The RHNOCP could indeed be modified to guarantee that

its resulting references are reachable via the prediction model,

however the techniques in [20], [45] also require that the

reference is entirely determined at initialization (at least for

1We omit the proof for brevity, but refer the reader to [8], [38] for the proof
and to [41] for a discussion about model uncertainty.

7

a duration equal to the prediction horizon). This assumption

is unachievable in our application, since the references are

updated at each time instant by the RHNOCP to take into

account the current attitude of the vehicle, which does not

match predictions due to inherent modelling error.

The problem of tracking a reference that is randomly

changing within a compact set is studied in [46]. The proposed

controller is shown to drive the state towards a neighbourhood

of a set of possible references in finite time. This is akin to our

own setup, since from the perspective of TMPC the reference is

indeed randomly changing. Nevertheless, a fixed (and possibly

tight) bound on the reference would constrain the pool of

applicability to manoeuvres with low levels of curvature.

An analogous issue is studied in [47], where the stabilizing

ingredients of a standard MPC controller are modified to

account for a disturbance whose prediction is available, but may

be different at each time instant. The modifications proposed

in [47] result in finite time convergence of the closed-loop to a

sublevel set of the MPC’s value function, whose size depends on

a measure of the allowable change in the disturbance prediction.

In our problem, the error system could be recast as

ẑ(t+ 1) = Adẑ(t) +Bdv̂(t) + ŵ(t),

where ŵ(t) represents the change in references from one time

instant to the next, that is ŵ(t) = Ad(zss(t − 1) − zss(t)) +
Bd(vss(t− 1)− vss(t)), allowing for such an implementation

to be employed. Nevertheless, the authors acknowledge the

limited practical use of the approach due to the numerous

parameters that need to be computationally estimated.

Furthermore, we attempt to solve the optimisation associated

to the TMPC via the fast MPC algorithm described in

Section III-D, which has early termination as a key feature. In

practice, this results in suboptimality of the MPC solution and

raises the well-known issue of whether the controller provides

stability in view of this, since conventional stability analysis

in MPC assumes that the global minimum is achieved each

time the problem is solved. Added to this is the fact that the

true dynamics are unknown and the identified dynamics are

merely an approximation, with inevitable modelling error.

While several results are available establishing robust stabil-

ity of the closed loop in response to both issues (e.g. [48]–[50],

we do not attempt to adapt them to our setting because of

their reliance on assumptions on the true dynamics and design

conditions on the costs and constraints. Instead, we note that

the two-step architecture of our controller is such that the

reference employed in the TMPC is computed via its own

MPC-like problem, hence it enjoys some preview of the road

ahead which promotes the smoothness of the reference profile.

In other words, no large changes in the reference values are

observed over one time step, which is in line with the results

in [47]. Furthermore, the controller shows a good tracking

performance in practice, particularly for long horizons, which

is in line with the results shown in [20], [45]. Therefore, given

that the objective of this paper is not to develop a new tracking

MPC technique alongside a manifold of theoretical guarantees,

we forgo from further modifications of the TMPC problem.

F. Unconstrained reference generation

A vehicle’s attitude is usually bound to lie within a certain

driving envelope defined by regulations and safety requirements

(particularly during normal driving conditions). This envelope

is represented by the velocity and yaw rate constraint sets we

enforce in the reference tracking step, however the RHNOCP

is an unconstrained optimisation problem, hence the generated

references could lie outside of the driving envelope.

IPOPT allows for the inclusion of constraints in the op-

timisation, however we have decided to keep the RHONCP

constraints-free to avoid creating an undesirable interdepen-

dency between the reference generator and the vehicle’s dy-

namic model. Indeed, a constrained RHNOCP would guarantee

references within the constraint sets of the TMPC, however the

latter do not depend solely on the driving envelope, but also on

the TMPC controller parameters (such as the tube gain used for

tightening) and the identified dynamic model. By not including

constraints in the RHNOCP we favour a modular design,

and allow for further development of the reference tracking

step without requiring modifications upstream. Moreover, we

identify the RHNOCP as the most critical point in computation

(c.f. Section V-C), therefore omitting constraints also alleviates

the processing load associated to the RHNOCP.

In order to guarantee that the references to be tracked

are within the constraint sets of the TMPC, we implement

a projection step between Steps 1 and 2. Our simulations

show the scheme works well with an unconstrained RHNOCP,

with the velocity references violating the TMPC bounds by a

maximum of 2%.

IV. DATA-DRIVEN MODELLING RESULTS

We first present the data-driven modelling results, since the

characteristics of the prediction model are key in designing

and tuning MPC controllers.

A. Experimental data

The experimental data was gathered through 108 km of

driving on public roads in the Piemonte region in Italy, on

a Lancia Delta car. The route was designed to include a

typical selection of extra-urban and urban roads, motorways,

roundabouts and intersections, but the driving itself was

unscripted since it had to accommodate for real-time traffic

conditions. The driving route is depicted in Figure 3(a) and it

was circumnavigated twice. The entire set of data was divided

into training and validation portions as shown by the grey line

in Figure 3(a), with 2501 s of data for training and 2383 s for

validation. The data was sampled at 100Hz, however the power

of the relevant signals was found to be concentrated at very

low frequencies. In view of this we resampled it at 20Hz, to

decrease the computational load of the estimation and control

algorithms. Note also that we use Ts = 0.05s for discretisation

purposes of all our models. In what follows, we refer to post-

gearbox torque, brake master cylinder pressure, steering angle

and road inclination by T , P , δ and φ. Figure 3(b), (c) show the

measurements employed to drive the identification procedure

8

Table I
PERFORMANCE METRIC SUMMARY FOR THE LANCIA DELTA MODELLING.

Configuration V ω
n r F% V% F% V%

(V, ω)← (T, P, φ, δ) 2 – 80.19 96.06 63.50 86.82
– 3 – 82.49 97.71 64.32 86.79
– 4 – 84.98 97.91 64.94 88.02

V ← (rT − P, φ) 1 16 80.76 97.00 – –
ω ← δ 1 – – – 64.66 87.52

NLPM 68.90 93.70 43.00 66.70

for a part of the training portion, while Figure 3(d)–(g) show

the corresponding inputs2.

Table I shows the performance metrics computed over

the validation portion of the data for several modelling

configurations, including the NLPM. We first obtained models

with a (V, ω) ← (T, P, δ, φ) input-output configuration and

state orders ranging from 2 to 4. The performance of the

estimated state-space models (see Table I) does not change

significantly throughout the different state orders, albeit the

number of parameters grows from 16 to 40. In view of the

above, and to avoid overfitting, we decide to set the state

order to n = 2. This also has the advantage of avoiding state

estimation, allowing us to employ the state-feedback TMPC

described in Section III directly. The performance of the NLPM

is also shown in Table I.

In normal driving, however, it is unexpected to experience

acceleration and braking simultaneously, so we proceed to

merge these two into a single input. We define the new merged

input as TP = rT−P , where r is scaling factor that was tuned

with respect to model fit metrics. Furthermore, from the cross

terms in the state and input matrices of (V, ω)← (T, P, φ, δ)
it appears that the coupling between longitudinal and lateral

dynamics is weak, at least within the available data. In view

of the above is that we estimate uncoupled models, whose

performance metrics differ from those of the fully coupled

model by less than 2% (cf. Table I).

Finally, note that the NLPM has poorer performance metrics

than any of the linear data-driven models. A detailed discussion

pertaining these results can be found in [29], however the main

reason for this is the numerical complexity involved in an

accurate estimation of the NLPM parameters.

B. CarMaker data

The IPGCarMaker software provides high fidelity simula-

tions of vehicle dynamics through a 3D physics environment,

and allows flexible coupling with software such as Simulink for

measurement acquisition and controller testing. IPGCarMaker

allows for a meticulous vehicle design process that would allow

us to replicate the Lancia Delta car in the software. However,

the main reason for using a data-driven model of the vehicle

dynamics is that we do not know (or have no means to obtain)

several of the many physical parameters that define the vehicle.

In order to test our algorithm with a high fidelity simulator

then, we employ a vehicle already loaded in the IPGCarMaker

2For commercial confidentiality, we report gas pedal and not post-gearbox
torque. We employ road inclination to improve model performance but is later
dropped in the controller analysis due to it being an uncontrolled input.

Table II
PERFORMANCE METRIC SUMMARY FOR THE MEGANE MODELLING.

Configuration V ω
n r F% V% F% V%

(V, ω)← (rT − P, δ) 2 15.8 84.78 98.01 63.01 86.33
V ← (rT − P) 1 16 84.31 97.96 – –

ω ← δ 1 – – – 63.12 86.46

Table III
ONE-STEP AHEAD ERROR BOUNDS COMPUTED VIA SIMULATION FOR THE

MODELS OF THE LANCIA DELTA AND MEGANE.

Vehicle eV,LB eV,UB eω,LB eω,UB

m/s m/s rad/s rad/s

Lancia Delta −0.044 0.044 −0.012 0.012
NLPM −0.012 0.012 −0.024 0.024
Megane −0.010 0.010 −0.041 0.041

database. We chose a Renault Megane for its similarities to

the Lancia Delta. In order to replicate the conditions under

which we obtained the Lancia results (see Table I) we drive

the Megane with the same set of inputs the Lancia was driven.

We feed gas pedal G, brake pedal B and steering angle to the

IPGCarMaker simulation environment, but we allow the internal

driver to choose the appropriate gear. Furthermore, since the

vehicles are not identical, their response will necessarily be

different. In view of this we do not load any particular route,

but let the vehicle to be driven over a flat square of pavement,

60 km in length.

The results of this modelling experiment are shown in

Table II. Note that, although we fed gas and brake pedal

signals, we still employ post-gearbox torque and master cylinder

pressure as inputs to our model. We do so to avoid the

nonlinearities that most likely exist in the engine dynamics.

The performance metrics are similar to those from the Lancia

Delta car both in magnitude and shape, hence we also move

forward with the uncoupled models for the design of the TMPC

(c.f. Appendix for the model parameter values).

C. Modelling error quantification

It follows from the fit metrics that the data-driven models,

for both the Lancia and the Megane, present some modelling

error. Indeed, 60% fit in yaw rate may seem unacceptably

low to guarantee safety. Nevertheless, the TMPC step of our

controller is able to deal with some modelling error as long

as it can be bounded inside the perturbation set W. In order

to quantify the modelling error as an uncertainty like the one

described in (6) we compute the one-step ahead prediction

error of our model for each data point in the validation data

set, and fit a normal distribution to the obtained values. We

then define the bounds on the modelling error as two standard

deviations of the fitted normal distribution, which account for

a 95% of the error values. With this approach we obtain the

error bounds depicted in Table III, where LB and UB stand

for lower and upper bound respectively.

9

0 3.94 7.87 11.81 15.74
0

4.44

8.89

13.34

17.79
(a)

Piscina

Volvera

Piossasco

Training

Validation

X displacement [km]

Y
d

is
p

la
ce

m
en

t
[k
m

]

252 267 282 297 312

Elevation[m]

Roundabout

Start
End

0

25

50

75

100
(d)

G
as

P
ed

al
[%

]

0

10

20

30
(e)

P
[b
a
r]

-0.3

-0.15

0

0.15

0.3
(f)

φ
[r
a
d
/
s]

1,720 1,850 1,980 2,110 2,240
-0.4

-0.2

0

0.2

0.4
(g)

Time[s]

δ
[r
a
d

]
0

10

20

30

40
(b)

V
[m

/
s]

1,720 1,850 1,980 2,110 2,240
-0.8

-0.4

0

0.4

0.8
(c)

Time[s]

ω
[r
a
d
/
s]

Figure 3. Experimental data for the Lancia Delta: (a) Driving route, the gray line indicates the split of the route between training data (above) and validation
data (below), (b) Longitudinal velocity V , (c) Yaw rate ω, (d) Gas pedal position, (e) Brake pressure P , (f) Road slope angle φ, (g) Steering angle δ.

V. PATH-FOLLOWING ALGORITHM PERFORMANCE

A. Nonlinear baseline

To acknowledge the prevalence of nonlinear solutions in

autonomous driving, we begin with a performance comparison

between linear data-driven and nonlinear physics-based MPC.

The latter is a nonlinear MPC (NMPC) fitted with the NLPM as

a prediction model. Note however that the NLPM has a poorer

fit to data than the linear data-driven models, thus to avoid

reaching biased conclusions, we will temporarily consider the

NLPM as the true plant (i.e. the NLPM will be used to simulate

the feedback, resulting in perfect prediction of the NMPC).

Note however, that we do not attempt to produce a linear con-

troller that outperforms carefully designed nonlinear controllers,

nor do we make such claims; rather we propose a novel linear

data-driven solution in the context of MPC for autonomous

driving. Thereby we employ a general NMPC solution provided

by the nlmpc object in MATLAB. The comparison is based

on the driving performance of our two-step controller over

certain cornering manoeuvres, with the reference tracking step

being solved by NMPC and linear data-driven MPC (a non-

structurally robust implementation, which does not tighten

constraints nor allocates part of the control authority for a

corrective action).

At each time instant the NMPC solves the OCP P
n
N (x(t)) :

minu J
n
N (u) subject to (for k = t, . . . , t+N − 1):

x(k + 1|t) = fd (x(k|t), u(k|t))

(x(k|t), u(k|t)) ∈ (X× U) ,

where fd represents a discretization of the NLPM, and

Jn
N (u) =

t+N−1
∑

k=t

x̂(k|t)TQx̂(k|t) + ∆u(k|t)TR∆u(k|t)

x̂(k|t) = x(k|t)− xss(t), ∆u(k|t) = u(k|t)− u(k − 1|t).

Note that input tracking is replaced by input rate weighting.

This is due to the complexity of the nonlinear model, which

hinders the online computation of steady state inputs.

The Lancia Delta model was obtained with data gathered

during normal driving on public roads, hence we assess our

algorithm’s capabilities against cornering manoeuvres found

in the validation portion of our data set. Panels (a) and (f)

of Figure 4 present the test cornering manoeuvres and their

optimised Bezier curves, running through the centre line of the

driving lane. These will be referred to as Manoeuvres I and

II henceforth. These were driven with a road target velocity

of 40 km/h and 60 km/h respectively, employing ᾱ = 2π
and vg = 10 km/h as modulating parameters. These targets

10

Table IV
STEP 1 PARAMETERS (RHNOCP) FOR THE LANCIA DELTA AND MEGANE.

Parameter Value Parameter Value

Cost function

Ng/Nc 18/3 Qy 10
Qẏ 0.1 Qṡ 10

IPOPT main parameters

Tolerance 0.1 Linear solver mumps

Maximum iterations 5 Memory update bfgs-6

Table V
STEP 2 PARAMETERS (MPC/NMPC) FOR THE LANCIA DELTA.

Parameter Value Parameter Value

Constraints

VLB −2m/s VUB 27.77m/s
ωLB −πrad/s ωUB πrad/s
TPLB −40 TPUB 40
δLB −3πrad δUB 3πrad

Gains

Kf

[

−0.26 0
0 6.82

]

– –

Cost function

Q

[

1 0
0 500

]

R

[

0.01 0
0 0.1

]

P

[

250.42 0
0 50592.56

]

N 10

Fast MPC parameters [31]

niter 5 λ 0.1

and modulation parameters are chosen given the understeering

characteristics of the Lancia Delta.

The parameters associated to step 1 (reference generation via

the RHNOCP) can be found in Table IV. For Step 2 we consider

box constraint for states and inputs with VLB ≤ V (t) ≤ VUB

and analogous bounds for the remaining variables. Table V

lists the parameters chosen for both controllers. Note also that

we consider a negative lower bound on velocity, however this

is only to accommodate for theoretical requirements of MPC

that require the origin to be in the interior of the constraint

sets. We do not expect the vehicle to go in reverse.

The control objectives are to stay in the middle of the lane

and travel at a certain speed, hence performance is assessed

with respect to maximum lateral deviation from the lane’s

center line, defined by ȳ, and the tracking cost defined as

C =

Tf
∑

t=0

x̂(t)TQx̂(t).

Table VI summarizes the results. The difference in C across

the manoeuvres is at most 4%, indicating that the linear data-

driven MPC performs comparably to the NMPC at tracking the

velocity, despite the model mismatch. Furthermore, the MPC

is able to keep the car 40% closer to the lane’s center line

when compared to the NMPC (c.f. ȳ). We conclude from these

simulations that the performance of the linear data-driven MPC

is within the neighbourhood of the NMPC performance, and

thus provides an alternative to nonlinear autonomous driving

solutions.

Table VI
PERFORMANCE COMPARISON (MPC/NMPC) FOR THE LANCIA DELTA.

Manoeuvre I Manoeuvre II
C ȳ [m] Tf [s] C ȳ [m] Tf [s]

MPC 576.5 0.07 219.45 3817.8 0.29 142.05
NMPC 558.4 0.15 216.65 3802.3 0.48 140.55

Table VII
STEP 2 PARAMETERS (TMPC) FOR THE LANCIA DELTA.

Parameter Value Parameter Value

Disturbances W

wV,LB −0.20m/s wV,UB 0.20m/s
wω,LB −0.15rad/s wω,UB 0.15rad/s

Gains and cost function

Kf

[

−0.26 0
0 6.82

]

Q

[

0.1 0
0 500

]

P

[

25.20 0
0 50592.56

]

N 40

B. Disturbance rejection (robustness)

We now demonstrate the capabilities of our proposed path-

following algorithm with respect to disturbance rejection. To do

so we perform simulations in which the feedback is generated

by the linear data-driven model solved over the sampling period.

We do this only on the Lancia Delta model for brevity.

As evidenced by the constraint tightening in Assumption 1,

the RPI set S takes away some autonomy from the MPC and

allocates it to the linear feedback gain KT . It is usual then to

try to find the smallest possible RPI set given a disturbance set

W [30]. Finding the minimal RPI set is usually computationally

expensive and seldom provides a sensible result, however given

the simplicity of our model (two single input single output

models stacked) we can easily find said RPI set for any pair

KT and W. Note that it depends on KT whether Z and V are

nonempty. Table VII lists the new/updated parameters chosen

for the TMPC (the rest can be found in Table V). The bounds on

the acceptable disturbance are larger than the quantified model

error in order to also allow for some external perturbations in

the built-in robustness of TMPC.

We first discuss the advantages of built-in robustness as op-

posed to relying on inherent robustness. Figure 4(a)–(e) presents

a comparison in performance of the proposed controller for

when Step 2 is executed by vanilla MPC (inherent robustness)

and TMPC (built-in robustness). Note that by vanilla MPC we

refer to a standard non-structurally robust MPC implementation,

which does not tighten constraints nor allocates part of the

control authority for a corrective action. The parameters for

this standard MPC controller are, where applicable, as depicted

in Table VII. For this simulation Manoeuvre I was driven with

a road target velocity of 100 km/h without modulation, which

amounts to drive at the velocity constraint (see Table IV).

Panels (b) and (c) show the lateral deviation from the centre

line obtained with MPC and TMPC (respectively) for 100

independent and random realisations of a disturbance sequence

(the same 100 realisations are fed to the algorithm with MPC

and TMPC for fairness of comparison). The width of the vehicle

is 1.8m and the estimated lane width is 3.5m; it follows

11

then that both controllers are able to keep the vehicle within

acceptable distance from the centreline with deviations of less

than 0.4m in any direction. When compared to TMPC, MPC is

able to complete the manoeuvre in shortest time (about 14 s or

24% faster) and also reduce the lateral deviation by about 15 cm.

This is because MPC does not need to allocate control authority

to a linear gain, which ultimately modulates the control action

for disturbance rejection purposes, but also because TMPC

needs to restrict the reachable states (constraint tightening)

thereby restricting the maximum achievable velocity to be

98.6 km/h in this case. However, since MPC does not explicitly

account for the disturbance, and the target is to drive exactly

at the velocity constraint, the vehicle’s velocity does violate

the imposed constraint in several occasions when controlled

by vanilla MPC, as depicted in the histogram in panel (d).

Nevertheless, given the nature of the disturbance and the move-

blocking MPC technique which provides smoother references,

the constraint is violated in only 0.7% of the sampling times,

and by a maximum of 0.2m/s or 0.7%. Finally, panel (e)

shows the first 10 TMPC trajectories plotted against the map,

which confirms the capability of TMPC to follow the reference

generated in step 1 and keep the vehicle close to the lane’s

centre line.

Given the results in panels (b)–(d), built-in robustness might

seem an unnecessary trade-off in the form of removing control

authority from the MPC controller, but the next set of results,

depicted in Figure 4(f)–(i), show that this is not the case.

Manoeuvre II, shown in Panel (f), represents a sharper corner

when compared to Manoeuvre I, and thus it requires a much

lower velocity to be driven safely. Manoeuvre II was driven with

a target velocity of 25 km/h without modulation, and a single

realisation of the disturbance which was set to w(t) = [0.2 0]⊤,

that is a fixed maximum allowable disturbance in velocity

and zero disturbance in yaw rate. This type of disturbance

could represent an unexpected road slope, or an unaccounted

actuator response (model uncertainty). Panel (g) shows the

target velocity and the velocity profiles obtained by MPC and

TMPC. Both controllers converge to a value with a steady state

error, however MPC relies solely on inherent robustness and

hence it converges to 14.7m/s or 52.9 km/h, more than three

times the true target velocity. TMPC, on the other hand, uses

the linear gain KT to actively correct for the disturbance and

hence converges with a steady state error of 5.71%. This, in

turn, means that MPC is not able to complete the cornering

manoeuvre safely, as evidenced by the lateral deviation of

almost 4m depicted in panel (h). On the other hand, TMPC

completes the manoeuvre with a maximum lateral deviation

of 10.29 cm.

The results depicted in Figure 4 show that in many situations

the inherent robustness of MPC might be enough to provide

satisfactory constraint handling and better performance than

TMPC due to the retention of full control authority. However,

there exist scenarios in which the lack of built-in robustness

could result in lane-departure and possible collision. In view

of this, we proceed with TMPC for the remaining analysis.

Note that similar results are obtained for when feedback is

realized with the NLPM (allowing for reduced target velocities

and modulation), however are omitted here for brevity.

Remark 3. The source of the high frequency lateral vibration

shown in panels (b) and (c) of Figure 4 is mainly due to the

persistent perturbation we include in this simulation. The latter

is not necessarily representative of real driving conditions, thus

we defer passenger comfort analysis for Section VI, where

a high fidelity suite is employed for simulating the vehicle

dynamics (providing a more realistic model uncertainty setup).

C. Computational performance

Control systems designed for autonomous driving must be

able to produce control actions at sufficient sampling rates using

the available hardware. Our controller, as depicted in Section

III, generates a new control action at each time instant via the

solution of two optimisation problems, the RHNOCP solved

via IPOPT, and the TMPC solved by means of the fast MPC

algorithm, henceforth referred to as FMPC. IPOPT and FMPC

have been chosen due to the array of algorithmic features they

enjoy, which make them computationally more efficient when

compared to other solvers [31], [36], nevertheless the real-time

feasibility of any algorithm is contingent to the hardware on

which it will be implemented. To give an approximate estimate

of computational performance on a realistic embedded system,

such as would be used in a driverless car, we evaluated a

performance benchmark scaled to the NVIDIA Jetson TX2

[51] low power embedded processing board, which uses the

same Tegra X2 chipset as the NVIDIA Drive PX2 [52] made

specifically for the driverless car market.

We do not attempt to claim, at this stage, that our control

architecture is real-time capable, since it is out of the scope

of this paper to deploy the algorithm in target hardware akin

to that employed in autonomous driving applications. Instead,

we perform a computational performance analysis in line with

the original message in [31], [36]; that is, to study the effect

of the algorithmic improvements that IPOPT and FMPC have

over alternative, possibly naive, solutions.

We study the processing time of our algorithm under the

following conditions:

i. Step 1 solved via:

• The MATLAB function fminsearch, which implements

a direct search method.

• The IPOPT algorithm as obtained from [37].

ii. Step 2 solved via:

• The MATLAB function quadprog which is optimised

to solve optimisation problems such as (9)–(10).

• The FMPC algorithm as obtained from [53].

The quadprog function is the go-to option for solving quadratic

programming problems in MATLAB, although it is not neces-

sarily optimised for real-time capabilities. The FMPC algorithm

[53] has several limitations when compared to quadprog, being

a key one that an arbitrary terminal set is not allowed, that

is Zf (zss, vss) = Z⊖ {zss}. Nevertheless, it has been shown

[20] that terminal constraints can be replaced by a long enough

prediction horizon, which we assume to be our case with

N = 40. Finally, we fed the solution at the previous sampling

time as warm start for all solvers.

All the processing time results were obtained by running

our proposed control algorithm in MATLAB R2017b, on an

12

(a)

sta
rt→

44.950 44.954 44.958

7.499

7.502

7.505

Latitude [°]

L
o
n
g
it

u
d
e

[°
]

917 950
346

409

Y [m]

X
[m

]

0 890
0

472

Y [m]

X
[m

]
−0.4

−0.2

0

0.2

0.4

(b)

M
P

C
y
d

[m
]

0 10 20 30 40 50 60
−0.4

−0.2

0.0

0.2

0.4

(c)

Time[s]

T
M

P
C

y
d

[m
]

26 27 28 29
0

800

1,600

2,400

3,200

(d)

V [m/s]

N
u
m

b
er

o
f

o
cc

u
rr

en
ce

s
÷
1
0 MPC

TMPC

Constraint

(e)

sta
rt→

44.950 44.954 44.958

7.499

7.502

7.505

Latitude [°]

L
o
n
g
it

u
d
e

[°
]

701 712
346

409

Y [m]

X
[m

]

0 890
0

472

Y [m]
X

[m
]

(f)←
start

7.530 7.536 7.542
44.985

44.990

44.995

Longitude [°]

L
at

it
u
d
e

[°
]

55 133
722

756

X[m]

Y
[m

]

0 944

0

1112
Y [m]

X
[m

]

0

4

8

12

16

(g)

V
[m

/
s]

Vg

MPC

TMPC

0 10 20 30 40 50 60
−4

−2

0

2
(h)

Time[s]

y
d

[m
]

MPC

TMPC

(i)
←start

7.530 7.536 7.542
44.985

44.990

44.995

Longitude [°]

L
at

it
u
d
e

[°
]

MPC

TMPC

55 133
722

756

X[m]

Y
[m

]

0 944

0

1112
Y [m]

X
[m

]

Figure 4. (a)–(e)→Cornering Manoeuvre I (Lancia): (a) Map and Bezier curve optimised to follow the centre of the rightmost lane, (b) Lateral deviation from
the centre line of the vehicle with MPC in Step 2, (c) Lateral deviation from the centre line of the vehicle with TMPC in Step 2, (d) Histogram of the velocity
V measurement, (e) Map and trajectories of several TMPC simulations. (f)–(i)→Cornering Manoeuvre II: (f) Map and Bezier curve optimised to follow the
centre of the rightmost lane, (g) Unmodulated target velocity and true vehicle velocity for MPC and TMPC, (h) Lateral deviation from the centre line of the
vehicle with MPC and TMPC, (i) Map and trajectories of MPC and TMPC simulations

13

Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz processor,

fitted with L1, L2 and L3 cache memories of 0.256, 1 and 6

MB respectively. An approximate scaling is then performed

to estimate processing times on the Jetson TX2 based on the

results of running the Netlib Whetstone Benchmark [54] on

the desktop computer, and Jetson TX2.

We assessed the performance of our controller with a

simulation of Manoeuvre I under a single realisation of the

disturbance. Different prediction horizons were employed for

the RHNOCP, however fminsearch was able to find a stabilizing

solution only when a single block was employed, hence an

additional simulation is performed for the pair IPOPT–FMPC

with multiple blocks. Table VIII summarise the computational

performance of our algorithm in terms of mean processing time,

its standard deviation, and maximum processing time (all as a

percentage of the sampling time). As expected, increasing the

prediction horizon of the RHNOCP (from 10 to 18) increases

the time needed to obtain a reference, independent of the

strategy used to solve the optimisation. Moreover, although

small, there exist variations in the time taken to solve Step 2

for different horizons of the RHNOCP (either via quadprog

or FMPC). The reason for these is that different horizons in

the RHNOCP will unavoidably result in different references,

hence modifying the TMPC optimisation problem.

The average and maximum time used to solve Step 1

increases by a factor of 1.3 when IPOPT is implemented,

however using a larger number of blocks does not necessarily

result in further increments. Indeed, solving the RHNOCP via

IPOPT with (Ng, Nc) = (18, 1) takes a maximum of 40% of

the sampling time (and an average of 21%), however when 3

blocks are used the RHNOCP is solved in a maximum of 34%

of the sampling time (and an average of 28%). Oppositely,

solving Step 2 with FMPC results in a reduction of an order

of magnitude in the average and maximum processing times,

when compared to the usage of quadprog.

The bottleneck seems to be solving the RHNOCP (Step

1), which can take between 31% and 40% of the sampling

time depending on the horizon length and number of blocks.

However, the implementation of IPOPT allows for the usage

of more blocks in the solution of the RHNOCP, resulting

in a references with better characteristics (as observed in the

comfort analysis). Furthermore, the reduction in processing time

obtained via the implementation of FMPC is able to heavily

counter the increased load of IPOPT, resulting in overall faster

computations for the IPOPT-FMPC pair, even when the horizon

of the RHNOCP is split into more blocks.

In summary, the algorithmic improvements provided by the

IPOPT–FMPC pair result in maximum processing times of 41%

of the sampling time, a decrease of 17% when compared to

fminsearch–quadprog. These results are well below the 100%

sampling time threshold imposed by some researchers [34],

and in line with similar approaches such as [19] which reported

maximum processing times of 42% in experiments, and [15],

[55] which in simulation achieved average processing times of

50% and 28% (respectively).

Furthermore, note that to achieve these processing capabili-

ties [19], [55] resort to LTV models and LTV-MPC algorithms

with relatively short prediction horizons (3 and 10 respectively).

Nonlinear MPC (based on a nonlinear physical model) is solved

in [15] with an off-the-shelf tool, however reporting relatively

long processing times (50% of the sampling time in average)

and in a race-car driving setup in which deviations of over 5m
from the centre line seem to be acceptable. Our approach, on the

other hand, is able to leverage on the mathematical simplicity

of the uncoupled data driven model to achieve processing times

under 30% of the sampling time (in average) and to provide

safe driving in public roads.

VI. CARMAKER SIMULATION

The results in Section V show the ability of our proposed

controller to safely steer a vehicle throughout cornering

manoeuvres for a perfect prediction model. In order to analyse

the performance of our control architecture in presence of

modelling uncertainty we employ the high fidelity simulator

IPGCarMaker. Note, however, that the IPGCarMaker software

does not allow to define post-gearbox torque externally (i.e.

as a control input), since it would require bypassing several

engine modules for axle torque computation. In view of this

we map our input TP to gas and brake pedals as follows

(G(t), B(t)) =

{

(TP (t)/TPUB, 0) , TP (t) ≥ 0

(0, TP (t)/TPLB) , TP (t) < 0.

This mapping neglects engine and brake system dynamics and

hence introduces uncertainty. A possible solution to this issue is

to use Hammerstein-Wiener models to find a (static) nonlinear

map between the pedals and the chosen inputs, however this

remains as future work. For the following results we allow for

increased uncertainty bounds to account for this.

Table IX shows all the controller parameters that changed

from the Lancia simulation (see Tables IV and VII). Figure 5

shows the results of driving the Megane through Manoeuvre

I with a road target velocity Vg of 80 km/h and modulating

velocities vg of 30 km/h and 50 km/h. Panels (a) and (b)

show how the modulated target velocity Vf (green-dotted line)

changes depending on the modulating velocity vg and the road

curvature it can be seen that the reference velocity is tracked

accurately while it experiences slow changes (for example in

the interval from initialisation until 30 s), despite the modelling

error described in II.

Panel (c) shows the lateral deviation from the centreline for

both modulating velocities. A larger modulating velocity results

in larger target velocities throughout the manoeuvre, thus in

the vehicle being driven faster. This, in turn, results in a larger

lateral deviation (as depicted in panel (c)), particularly when

the vehicle is in the middle of the roundabout. Nevertheless the

maximum deviation remains under acceptable values given

an estimated lane width of 3.5m and a vehicle width of

1.8m. Finally, panel (d) shows both trajectories plotted against

the map. The maximum difference in lateral deviation with

respect to the s coordinate (i.e. when passing through the

same patch of track) is under 30 cm, which explain the

apparent superimposition of the trajectories in view of the

map resolution.

14

Table VIII
SCALED PROCESSING TIME (MANOEUVRE I - LANCIA DELTA - PERTURBED). COMPARISON BETWEEN fminsearch-quadprog AND IPOPT-FMPC.

Solver fminsearch-quadprog IPOPT-FMPC IPOPT-FMPC
Horizons Ng −Nc 18− 1 10− 1 18− 1 10− 1 18− 3 18− 2

Maximum(mean)[standard deviation σ]

Step 0 4(2)[1] 4(2)[1] 3(2)[0] 4(2)[0] 4(2)[0] 4(2)[0]
Step 1 32(13)[3] 25(10)[2] 40(17)[3] 31(12)[2] 34(24)[3] 34(16)[4]
Step 2 24(15)[4] 30(16)[4] 4(2)[1] 5(2)[1] 4(2)[1] 4(2)[1]
Total 55(31)[6] 52(28)[6] 44(21)[3] 35(16)[2] 37(28)[3] 37(20)[4]

0

8

16

24

(a)

[m
/
s]

Vg

Vf (t)

V (t)

0 10 20 30 40 50 60 70
0

8

16

24

(b)

Time[s]

[m
/
s]

Vg

Vf (t)

V (t)

0 10 20 30 40 50 60 70
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c)

Time[s]

T
M

P
C

y
d

[m
]

vg = 8.33[m/s]

vg = 13.89[m/s]

(d)

sta
rt→

44.950 44.954 44.958

7.499

7.502

7.505

Latitude [°]

L
o
n
g
it

u
d
e

[°
]

vg = 8.33[m/s]

vg = 13.89[m/s]

701 712
346

409

Y [m]

X
[m

]

0 890
0

472

Y [m]

X
[m

]

Figure 5. CarMaker simulation of cornering Manoeuvre I (Megane): (a) Velocity profile for vg = 8.33m/s, (b) Velocity profile for vg = 13.89m/s, (c)
Lateral deviation from the lane centre line, (d) Map and trajectories of the IPGCarMaker simulation.

Table IX
CONTROLLER PARAMETERS FOR THE MEGANE.

Parameter Value Parameter Value

Constraints

TPLB −80 TPUB 80
wV,LB −0.23m/s wV,UB 0.23m/s
wω,LB −0.45rad/s wω,UB 0.45rad/s

Gains

KT

[

−96.80 0
0 −0.20

]

Kf

[

−0.26 0
0 6.50

]

Cost function

P

[

25.20 0
0 50549.12

]

N 40

A. Passenger comfort analysis

To assess the performance of our controller in terms of

passenger comfort we use measures of local and average

comfort. In particular, we observe maximum lateral acceleration

āy , maximum lateral jerk J̄y and the frequency content of the

lateral acceleration within certain ranges, measured via the

power spectrum PSDay
, which measure local and average

comfort [56]. Table X shows the acceptable limits of these

indicators, alongside their values for Manoeuvre I simulated

with vg = 8.33m/s. It is clear from Table X that, although no

specific comfort requirement has been included in the design of

our two-step controller, the instantaneous measure of comfort

related to the lateral acceleration is met, however, the maximum

lateral jerk is an order of magnitude over the comfort limit.

The source of this excessive jerk is twofold, the first being

the corrective action of the TMPC. The second contributor is

the constant update of the reference yaw rate by the RHNOCP,

which is necessary to account for the modelling dichotomy

that exists between the two steps of our controller. In order to

improve the comfort performance of our controller we include

a filter to attenuate the high frequency content present in the

reference generated by the RHNOCP. We implement a first

order low pass filter with cutoff frequency of 1.5Hz. Table X

shows that this does result in a decrease of the maximum lateral

jerk, however at the expense of worsened average comfort (as

measured by the acceleration frequency content).

Given that the main source of the large jerk is the RHNOCP

optimisation, we also perform a simulation with a reduced

15

Table X
PASSENGER COMFORT COMPARISON BETWEEN FILTERED AND UNFILTERED

REFERENCE FOR MANOEUVRE I WITH vg = 8.33m/s (MEGANE)

Indicator Limit Unfiltered
Filtered

Nc = 3 Nc = 2

āy m/s2 ≤ 2 0.77 0.93 0.71

J̄y m/s3 ≤ 0.9 13.34 12.46 4.42
∫

PSDay 2–3Hz(×102) – 2.97 3.49 2.79
∫

PSDay 4–5Hz(×102) – 1.29 1.02 0.99

amount of blocks in the move-blocking MPC strategy, in order

to reduce the frequency content of the optimal reference passed

on to the TMPC. This results, as portrayed in Table X, in a

considerable reduction of the maximum jerk, and a slight

improvement in all the other comfort measures. Although

the maximum jerk is still over the recommended limit, this

threshold is surpassed only during 14% of the total manoeuvre

duration (around 9 s in aggregate), and the mean jerk is

0.57m/s3, a reduction of 2.3 times when compared to the

unfiltered manoeuvre.

VII. CONCLUSIONS

In this paper we have proposed a two-step robust MPC

controller for the purpose of path-following. The key advantage

of our controller is the use of uncoupled LTI data-driven models

for the prediction of lateral and longitudinal dynamics, which

show good fit to data and small one-step ahead prediction error.

These characteristics allow for a good control performance

with linear MPC with built-in robustness, tested against a

high-fidelity simulator in IPGCarMaker. Furthermore, the

implementation of linear MPC allows for computationally

efficient algorithms for solving the online optimisation problem,

achieving processing times which show their advantage over

naive solvers, and could provide an advantageous baseline for

future implementation in target hardware.

ACKNOWLEDGMENT

The authors would like to thank the EU for funding support

through grant number 731593 (Dreams4Cars), as well as A.

Saroldi and Centro Ricerche Fiat for their contribution in

collecting the experimental data.

APPENDIX

A. Uncoupled linear models employed for predictions.

V ← (rT − P, φ) ω ← δ

Lancia Ad 0.9996 0.7116
Bd 0.0061 0.0415

Megane Ad 0.9994 0.5703
Bd 0.0052 0.0653

REFERENCES

[1] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens,
A. Teichman, M. Werling, and S. Thrun, “Towards Fully Autonomous
Driving: Systems and Algorithms,” in Proceedings of the 2011 IEEE

Intelligent Vehicles Symposium. Baden, Germany: IEEE, 2011, pp.
163–168.

[2] M. Doumiati, A. Victorino, A. Charara, and D. Lechner, “Estimation
of vehicle lateral tire-road forces : a comparison between extended
and unscented Kalman filtering,” in Proceedings of the 2009 European

Control Conference, 2009, pp. 4804–4809.

[3] M. M. Shirazi and A. B. Rad, “L 1 Adaptive Control of Vehicle Lateral
Dynamics,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 1, pp.
92–101, 2018.

[4] E. H. M. Lim and J. K. Hedrick, “for Automated Vehicle Operation,” in
Proceedings of the 1999 IEEE American Control Conference, 1999, pp.
3676–3680.

[5] M. H. Lee, K. S. Lee, H. G. Park, Y. C. Cha, D. J. Kim, B. Kim, S. Hong,
and H. H. Chun, “Lateral controller design for an unmanned vehicle
via kalman filtering,” International Journal of Automotive Technology,
vol. 13, no. 5, pp. 801–807, 2012.

[6] G. Tagne, R. Talj, and A. Charara, “Design and Comparison of Robust
Nonlinear Controllers for the Lateral Dynamics of Intelligent Vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 3,
pp. 796–809, 2016.

[7] C. Acosta Lúa and S. Di Gennaro, “Nonlinear adaptive tracking for
ground vehicles in the presence of lateral wind disturbance and parameter
variations,” Journal of the Franklin Institute, vol. 354, no. 7, pp. 2742–
2768, 2017.

[8] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, pp. 789–814, 2000.

[9] P. F. Lima, G. Collares Pereira, J. Mårtensson, and B. Wahlberg, “Exper-
imental validation of model predictive control stability for autonomous
driving,” Control Engineering Practice, vol. 81, pp. 244–255, 2018.

[10] U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous Vehicle
Control: A Nonconvex Approach for Obstacle Avoidance,” IEEE Trans-

actions on Control Systems Technology, vol. 25, no. 2, pp. 469–484,
2017.

[11] Y. Gao, A. Gray, J. V. Frasch, T. Lin, E. Tseng, J. K. Hedrick, and
F. Borrelli, “Spatial Predictive Control for Agile Semi-Autonomous
Ground Vehicles,” in Proceedings of the 11th International Symposium

on Advanced Vehicle Control, 2012, pp. 1–6.

[12] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for
autonomous vehicles using model predictive control,” in Proceedings

of the 2017 IEEE Intelligent Vehicles Symposium. IEEE, 2017, pp.
174–179.

[13] Z. Sun, L. Dai, K. Liu, Y. Xia, and K. H. Johansson, “Robust MPC
for tracking constrained unicycle robots with additive disturbances,”
Automatica, vol. 90, pp. 172–184, 2018.

[14] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive
Active Steering Control for Autonomous Vehicle Systems,” IEEE

Transactions on Control Systems Technology, vol. 15, no. 3, pp. 566–580,
2007.

[15] A. Buyval, A. Gabdulin, R. Mustafin, and I. Shimchik, “Deriving
overtaking strategy from nonlinear model predictive control for a race
car,” in Proceedings of the 2017 IEEE International Conference on

Intelligent Robots and Systems, 2017, pp. 2623–2628.

[16] S. Arrigoni, F. Braghin, and F. Cheli, “Decentralized fast-MPC path
planner for automated vehicles,” in Proceedings of the 2017 IEEE

International Conference of Electrical and Electronic Technologies for

Automotive, 2017, pp. 1–7.

[17] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, and D. Hrovat, “Linear
time-varying model predictive control and its application to active steering
systems: Stability analysis and experimental validation,” International

Journal of Robust and Nonlinear Control, vol. 18, no. 8, pp. 862–875,
2008.

[18] C. E. Beal and J. C. Gerdes, “Model predictive control for vehicle
stabilization at the limits of handling,” IEEE Transactions on Control

Systems Technology, vol. 21, no. 4, pp. 1258–1269, 2013.

[19] M. Jalali, S. Khosravani, A. Khajepour, S.-k. Chen, and B. Litkouhi,
“Model predictive control of vehicle stability using coordinated active
steering and differential brakes,” Mechatronics, vol. 48, pp. 30–41, 2017.

[20] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory

and Algorithms, 1st ed. Springer-Verlag London, 2011.

[21] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “A study on model fidelity
for model predictive control-based obstacle avoidance in high-speed
autonomous ground vehicles,” Vehicle System Dynamics, vol. 54, no. 11,
pp. 1629–1650, 2016.

[22] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust non-
linear predictive control approach to semiautonomous ground vehicles,”
Vehicle System Dynamics, vol. 52, no. 6, pp. 802–823, 2014.

16

[23] E. Alcala, V. Puig, J. Quevedo, and O. Sename, “Fast Zonotope-
Tube-based LPV-MPC for Autonomous Vehicles,” arXiv e-prints, p.
arXiv:2009.02248, 2020.

[24] S. A. Eker and M. Nikolaou, “Linear control of nonlinear systems:
Interplay between nonlinearity and feedback,” AIChE Journal, vol. 48,
no. 9, pp. 1957–1980, 2002.

[25] S. M. Yoon, K. S. Lee, S. Y. Kim, J. H. Kang, and M. H. Lee, “Lateral
Control of an UCT (Unmanned Container Transporter) Using Ultrasonic
Satellite System and System Identification,” in Proceedings of the 2008

International Conference on Control, Automation and Systems. Seoul:
IEEE, 2008, pp. 296–300.

[26] N. Liu and A. G. Alleyne, “Iterative learning identification applied to
automated off-highway vehicle,” IEEE Transactions on Control Systems

Technology, vol. 22, no. 1, pp. 331–337, 2014.

[27] M. Canale, L. Fagiano, and M. C. Signorile, “Nonlinear model predictive
control from data: a set membership approach,” International Journal of

Robust and Nonlinear Control, vol. 24, pp. 123–139, 2014.

[28] M. Gevers, “Identification for control: From the early achievements to
the revival of experiment design*,” European Journal of Control, vol. 11,
no. 4, pp. 335–352, 2005.

[29] B. A. Hernandez Vicente, S. James, and S. R. Anderson, “Linear System
Identification Versus Physical Modeling of Lateral-Longitudinal Vehicle
Dynamics,” IEEE Transactions on Control Systems Technology, 2020.

[30] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predictive
control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[31] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control Systems Technology, vol. 18,
no. 2, pp. 267–278, 2010.

[32] IPG Automotive, “CarMaker: Virtual testing of automobiles and light-
duty vehicles.” [Online]. Available: https://ipg-automotive.com/products-
services/simulation-software/carmaker/

[33] L. Ljung, System Identification Theory for the user, 2nd ed. Upper
Saddle River, NJ: Prentice Hall, 1999.

[34] K. Berntorp and F. Magnusson, “Hierarchical predictive control for
ground-vehicle maneuvering,” in Proceedings of the 2015 American

Control Conference. IEEE, 2015, pp. 2771–2776.

[35] R. C. Shekhar and J. M. MacIejowski, “Robust variable horizon MPC
with move blocking,” Systems and Control Letters, vol. 61, no. 4, pp.
587–594, 2012.

[36] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[37] E. Bertolazzi, “mexipopt v1.1.2 [source code],” https://github.com/
ebertolazzi/mexIPOPT, 2015–2021.

[38] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and

Design, electronic ed. Madison, Wisconsin: Nob Hill, 2014.

[39] I. Kolmanovsky and E. G. Gilbert, “Theory and Computation of Distur-
bance Invariant Sets for Discrete-Time Linear Systems,” Mathematical

Problems in Engineering, vol. 4, pp. 317 – 367, 1998.

[40] D. Mayne, S. Raković, R. Findeisen, and F. Allgöwer, “Robust out-
put feedback model predictive control of constrained linear systems,”
Automatica, vol. 42, no. 7, pp. 1217 – 1222, 2006.

[41] B. A. Hernandez Vicente and P. A. Trodden, “Stabilizing predictive
control with persistence of excitation for constrained linear systems,”
Systems and Control Letters, vol. 126, pp. 58–66, 2019.

[42] P. A. Trodden and J. Maestre, “Distributed predictive control with
minimization of mutual disturbances,” Automatica, vol. 77, pp. 31 –
43, 2017.

[43] D. Simon, J. Lofberg, and T. Glad, “Reference tracking MPC using
dynamic terminal set transformation,” IEEE Transactions on Automatic

Control, vol. 59, no. 10, pp. 2790–2795, 2014.

[44] D. Limon, M. Pereira, D. Munoz De La Pena, T. Alamo, C. N. Jones,
and M. N. Zeilinger, “MPC for Tracking Periodic References,” IEEE

Transactions on Automatic Control, vol. 61, no. 4, pp. 1123–1128, 2016.

[45] J. Kohler, M. A. Muller, and F. Allgower, “Nonlinear reference tracking:
An economic model predictive control perspective,” IEEE Transactions

on Automatic Control, vol. 64, no. 1, pp. 254–269, 2019.

[46] P. Falugi, “Model predictive control for tracking randomly varying
references,” International Journal of Control, vol. 88, no. 4, pp. 745–753,
2015.

[47] P. R. Baldivieso Monasterios and P. A. Trodden, “Model Predictive
Control of Linear Systems With Preview Information: Feasibility,
Stability, and Inherent Robustness,” IEEE Transactions on Automatic

Control, vol. 64, no. 9, pp. 3831–3838, 2019.

[48] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal Model
Predictive Control (Feasibility Implies Stability),” IEEE Transactions on

Automatic Control, vol. 44, no. 3, pp. 648–654, 1999.
[49] G. Pannocchia, J. B. Rawlings, and S. J. Wright, “Is suboptimal nonlinear

MPC inherently robust?” in Proceedings of the 18th IFAC World Congress.
IFAC, 2011, pp. 7981–7986.

[50] D. A. Allan, C. N. Bates, M. J. Risbeck, and J. B. Rawlings, “On the
inherent robustness of optimal and suboptimal nonlinear MPC,” Systems

and Control Letters, vol. 106, pp. 68–78, 2017.
[51] NVIDIA, “Jetson TX2 Module,” 2022, [Online] Available at: https:

//developer.nvidia.com/embedded/jetson-tx2 (Accessed 17 June 2022).
[52] ——, “5.x Linux DPX SDK,” 2018, [Online] Available at: https://docs.

nvidia.com/drive/active/5.0.10.3L/nvvib docs/ (Accessed 17 June 2022).
[53] Y. Wang and S. Boyd, “Fast model predictive control using online

optimization v alpha [source code],” https://web.stanford.edu/∼boyd/
papers/fast mpc.html, 2008.

[54] R. Painter, “C Converted Whetstone Double Precision Benchmark.”
[Online]. Available: http://www.netlib.org/benchmark/whetstone.c

[55] K. Liu, J. Gong, A. Kurt, H. Chen, and U. Ozguner, “Dynamic Modeling
and Control of High-Speed Automated Vehicles for Lane Change
Maneuver,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 3,
pp. 329–339, 2018.

[56] J. Eriksson and L. Svensson, “Tuning for Ride Quality in Autonomous
Vehicle Application to Linear Quadratic Path Planning Algorithm,” Ph.D.
dissertation, 2015.

Bernardo A. Hernandez Vicente received the
M.Eng. degree from the University of Concepcion,
Chile, in 2013 and the Ph.D. degree in Model
Predictive Control theory from the Department of
Automatic Control and Systems Engineering, Univer-
sity of Sheffield, UK in 2018. Since 2021, he is an
assistant professor at the Department of Mechanical
Engineering, University of Concepcion, Chile.

Paul A. Trodden received the MEng degree in
Engineering Science from the University of Oxford,
UK, in 2003, and the PhD degree in Aerospace
Engineering from the University of Bristol, UK, in
2009. Since 2012, he is a lecturer in the Department
of Automatic Control and Systems Engineering,
University of Sheffield, UK. His research interests
include robust and distributed model predictive and
optimization-based control, and control and optimiza-
tion for power and energy systems.

Sean R. Anderson received the M.Eng. degree in
control systems engineering in 2001 and in 2005
the Ph.D. in nonlinear system identification and
predictive control from the Department of Automatic
Control and Systems Engineering, University of
Sheffield, UK. From 2005 to 2010, he was a Research
Associate in the Neural Algorithms Research Group,
University of Sheffield. From 2010 to 2011 he was a
Research Associate in the Department of Automatic
Control and Systems Engineering, University of
Sheffield, then became lecturer there in 2012, and

has been a senior lecturer since 2015.

	Introduction
	Control architecture and scope
	Curvilinear kinematic model
	Data-driven LTI model
	Nonlinear physics-based model

	TMPC for robust path-following
	Reference generation
	Solution of the RHNOCP
	Reference tracking via TMPC
	Fast tube model predictive control
	Stability of the fast TMPC
	Unconstrained reference generation

	Data-driven modelling results
	Experimental data
	CarMaker data
	Modelling error quantification

	Path-following algorithm performance
	Nonlinear baseline
	Disturbance rejection (robustness)
	Computational performance

	CarMaker simulation
	Passenger comfort analysis

	Conclusions
	Appendix
	Uncoupled linear models employed for predictions.

	References
	Biographies
	Bernardo A. Hernandez Vicente
	Paul A. Trodden
	Sean R. Anderson

