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Abstract
InGaAs/GaAsSb type-II superlattice (T2SL) photodiodes grown on InP substrates are an
alternative detector technology for applications operating in the short wavelength infrared band.
Their cut-off wavelengths are heavily influenced by the thickness and material composition of
InGaAs and GaAsSb used in the T2SL. We present a single band k.p. model performed using a
finite difference approach in nextnano validated against two T2SL photodiode wafers and
results from literature. These photodiode wafers cover both lattice matched and strained
GaAs1−xSbx compositions (x = 0.40, wafer A and 0.49, wafer B). The validation data covers
temperature dependence of cut-off wavelengths (obtained from phase-sensitive photo response
data) from 200 K to room temperature. The cut-off wavelengths were found to reduce at
1.32 nm K−1 for wafer A and 1.07 nm K−1 for wafer B. Good agreement was achieved between
the validation data and nextnano simulations, after altering the GaAs1−xSbx valance band offset
(VBO) bowing parameter to −1.06 eV. Using this validated model, we show that the
wavefunction overlap drops significantly if the GaAsSb barrier is thicker than the InGaAs well
layer, hence defining the upper limit of the barrier layer. This validated model is then used to
demonstrate that there is a linear dependence between the maximum achievable wavefunction
overlap and cut-off wavelength of a lattice matched InGaAs/GaAsSb T2SL. We also found that
the adoption of a 5 nm/3 nm InGaAs/GaAsSb T2SL structure offers an improved wavefunction
overlap over the more common 5 nm/5 nm InGaAs/GaAsSb T2SL designs. The data reported in
this paper is available from doi: 10.15131/shef.data.20310591.
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1. Introduction

Detectors operating in the short wavelength infrared (SWIR)
range (1–3 µm) have seen an increase in research focus due
to several important applications covering the SWIR range.
These include remote greenhouse gas monitoring [1], light
detection and ranging [2], and hyperspectral imaging [3].

There are several competing SWIR photodiode techno-
logies, including HgCdTe [4], extended wavelength InGaAs
(ex-InGaAs) [5], InAs [6], and InGaAs/GaAsSb superlattices.
HgCdTe photodiodes are the most established, though also the
most expensive, due to a combination of cryogenic operating
temperatures (cooling engines are essential), highly special-
ised manufacturing technologies, and substrate cost (if using
CdZnTe). Furthermore, the use of both Hg and Cd is being
increasingly restricted.

Commercial ex-InGaAs photodiodes exhibit dark current
densities approaching the ′Rule 07′ benchmark for HgCdTe
[4, 7]. However, due to the difference in lattice constants
between ex-InGaAs materials and the InP substrates used,
ex-InGaAs photodiodes contain misfit dislocations causing 1/f
noise [5]. Ex-InGaAs photodiodes are also more susceptible
to radiation damage compared to Si and InGaAs detectors [8].
InAs is a suitable SWIRmaterial and InAs substrates are avail-
able commercially, but its cut-off wavelength (λc) of 3.55 µm
is unnecessarily long for many SWIR applications.

InGaAs/GaAsSb Type-II superlattices (T2SL) can be
grown on InP substrates using conventional III–V growth tech-
niques. Their λc can be engineered by tailoring the superlattice
well (InGaAs) and barrier (GaAsSb) thicknesses and compos-
itions. Using InP substrates also facilitates two-colour photo-
diodes comprising of In0.53Ga0.47As and T2SL sub-detectors
[9].

Lattice-matched 5 nm/5 nm InGaAs/GaAsSb T2SL
photodiodes exhibit λc of 2.4–2.5 µm at near room
temperature [10, 11], responsivities of 0.47–1.4 A W−1 at
2.04–2.18 µm [10, 12], and bandwidths of 3.7 GHz [13]. To
increase λc, some researchers used strain-compensated T2SL
structures which apply compressive strain to the GaAsSb lay-
ers. For example, a 0.6% strain-compensation in a 5 nm/5 nm
InGaAs/GaAsSb T2SL increases the room temperature λc
from 2.6 to 2.8 µm [14]. Other researchers have explored
recessed optical windows to increase quantum efficiency [15].

Commercial simulation software APSYS (from Crosslight
Software Inc.) and nextnano have been used to simulate
InGaAs/GaAsSb T2SL photodiodes [10, 11, 16]. The reported
nextnano simulations were limited to a single lattice matched
5 nm/5 nm InGaAs/GaAsSb T2SL design and were performed
using the default nextnano database values. These default val-
ues do not appear to be rigorously validated using experi-
mental data. As will be shown later, T2SL simulation results
of λc temperature dependence obtained using default values
disagree with published data considerably.

In this work, we present a validated single-band k.p. model
performed using a finite difference approach in nextnano
for both strained and lattice-matched SWIR InGaAs/GaAsSb

T2SL photodiodes. The validation data included experimental
temperature dependence of λc from two SWIR T2SL
photodiode wafers of this work and relevant reports in the
literature. The validated model was then used to study the
effects of GaAsSb composition on λc and wavefunction
overlaps, using a 5 nm/3 nm T2SL design.

2. Characterisation

Two In0.53Ga0.47As/GaAs1−xSbx T2SL photodiode wafers
were grown on n+ InP substrates using molecular beam epi-
taxy (MBE) reactors equipped with As2 and Sb2 crackers
and conventional In and Ga sources. Following the initial
growth of an n-type In0.53Ga0.47As layer, short periods of
In0.53Ga0.47As/GaAs1−xSbx T2SL were grown. Growth inter-
rupts were performed at each interface to allow sufficient time
for the As2 and Sb2 sources to adjust to the required values.
Growth was completed with In0.53Ga0.47As and In0.52Al0.48As
layers at a raised substrate temperature. During wafer growth,
two Ga cells were used to facilitate independent control of the
In0.53Ga0.47As and GaAs1−xSbx growth conditions.

Structure details of these wafers are summarised in table 1.
Wafer A contains lattice mismatched GaAs1−xSbx with
x = 0.40, whereas wafer B is fully lattice matched (x = 0.49).
Their T2SL periods and compositions were confirmed using
theta–theta x-ray diffraction (XRD) characteristics and trans-
mission electron microscopy images. Fitting to the XRD data
was performed using x-ray server [17]. XRD data and fitting
(using structure details from table 1) for wafer A are shown as
an example in figure 1. There is good agreement in periodicity
(fringe peak spacing) and overall shape.

Temperature dependent photocurrent versus wavelength
measurements were carried out on the device-under-test
(DUT) placed in a Janis ST-500 cryogenic probe station.
A monochromator (using a grating with a 2.0 µm blaze
wavelength) with a tungsten-halogen lamp provided the
optical signal, which was mechanically chopped at 180 Hz
before being delivered to the devices via optical fibres connec-
ted to the probe station. The end of the final optical fibre was
positioned above the DUT’s optical window. Phase-sensitive
detection was employed (with a lock-in amplifier) to measure
the resultant photocurrent flowing in the DUT in the presence
of reverse dark current.

A commercial photodiode with a known responsivity
versus wavelength characteristic was used to obtain the meas-
urement system response, facilitating extraction of quantum
efficiency (η) for the DUT. For each wafer and temperature,
data were obtained from three same-sized devices. λc for a
given temperature was extracted by linear regression fitting to
the η2 versus wavelength characteristics (from three devices),
as shown in figure 2. From these linear regressions λc was
definedwhere η2 reaches zero. The temperature dependence of
cut-off wavelengths were calculated as 1.32 and 1.07 nm K−1

for wafers A and B respectively, which are in broad
agreement.
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Table 1. Structure details for wafers A and B.

Material

Thickness (nm)

Wafer A Wafer B

p+ In0.53Ga0.47As 70 70
p+ InAlAs 1000 1000
i–In0.53Ga0.47As 1000 1000
i–In0.53Ga0.47As/
GaAs1−xSbx T2SL

5.5/3.0 2.0/6.0
x=0.4 x = 0.49
125 repeats 250 repeats

n+ In0.53Ga0.47As 800 200
n+ InP Substrate

Figure 1. Experimental (top) 004 x-ray diffraction characteristics
and fitting (bottom) for wafer A.

3. Modelling

Nextnano simulations were completed using single band
k.p. theory through nextnano++. Temperature dependent
bandgaps were included. The Varshni equation was used to
calculate the temperature dependent bandgap of each compos-
ite binary. These were then interpolated to produce the ternary
bandgaps. The full T2SL structure was included in the simu-
lation, rather than relying on periodic boundary conditions. A
grid spacing of 0.25 nm was used. Smaller grid spacing was
tested, however there was little effect upon λc.

In the simulations, the device structure included a 20 nm
thick InGaAs layer at either side of the T2SL region, instead of
the entirety of the non-T2SL layers. Comparisons were made
to confirm that this simplification does not affect the simu-
lated values of λc. In addition, simulations of λc performed
using nextnano++ versions 4.2.7.9 and 4.2.8.6, which yiel-
ded identical results.

Using the default parameter values, temperature depend-
ence of λc for 5.0 nm/5.0 nm In0.53Ga0.47As/GaAs0.51Sb0.49
type-II superlattice were simulated. The results are compared
to experimental reports from [10, 12] in figure 3(a). There is
a large discrepancy of ∼0.6 µm across the temperature range
covered.

Since λc values from T2SL structures are heavily
influenced by the VBO between the two constituent materials,
the discrepancy between experimental and simulated results
was minimised by correcting the VBO. Rather than having to

Figure 2. Extraction of λc using linear regression of η2 for wafer A
(top) and wafer B (bottom).

Figure 3. Comparison between simulated (lines) and experimental
(symbols: diamonds [10] and squares [12]) λc for a) a 5 nm/5 nm
InGaAs/GaAsSb type-II superlattice using the nextnano default
parameters and b) a 5 nm/5 nm InGaAs/GaAsSb type-II superlattice
and wafers from this work using a GaAs1−xSbx valence band offset
bowing parameter of −1.06 eV.

calculate the VBOs between every combination of materials
nextnano takes a different, simpler, approach. Each material
has a VBO calculated independently on an absolute scale,
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often referenced against InSb [18]. These independently
calculated absolute VBOs can then be used to align any
combination of materials. Changing these absolute VBO
values has no effect on the bulk bandgaps of the individual
materials (e.g. InGaAs).

For GaAsSb this absolute VBO is calculated by bowing
between the absolute VBOs of GaAs and GaSb. Replacing
the GaAsSb VBO bowing parameter (from its default value of
0 eV) with −1.06 eV [18], good agreement was achieved for
the simulation and experimental values fromfigure 2, as shown
in figure 3(b). The experimental values, which are the valida-
tion data of this work, include those from the 5.0 nm/5.0 nm
In0.53Ga0.47As/GaAs0.51Sb0.49 T2SL ([10 ,12]) as well as our
data from wafers A and B. The discrepancy in results between
[10,12] are thought to be due to the Zn-diffusion process
undergone in [10], which noted additional XRD satellite peaks
post-diffusion. Note that the data from [10, 12] and wafer B
group are lattice-matched T2SL whereas wafer A is a strained
T2SL. Hence our validated model for temperature dependence
of λc is valid for both strained and lattice matched T2SL struc-
tures. A detailed set of parameter values used in our model is
provided in the data repository [19].

4. Design

Having obtained the experimental data that was used to
achieve a validated model, we explore a series of T2SL
designs. For each design we calculated the wavefunction over-
lap (given by the overlap between the square modulus of the
electron and hole wavefunctions), which is important for inter-
band optical transitions.

A series of room temperature λc simulations were car-
ried out for lattice matched T2SL designs with In0.53Ga0.47As
thickness of 3–7 nm and GaAs0.51Sb0.49 thickness of 2 nm
to 9 nm. The simulated λc versus wavefunction overlap
characteristics are plotted in figure 4 (top). For a given
In0.53Ga0.47As thickness, increasing the thickness of the
GaAsSb increases λc. However, this is at the expense of
reduced wavefunction overlap and thus photon absorption
efficiency.

In figure 4 (top), we can observe a rapid decrease in
wavefunction overlap with barrier thickness, when the barrier
becomes thicker than the well, placing an upper limit for prac-
tical barrier thicknesses. Furthermore, using the largest wave-
function overlap values for a given λc, there is an empirical
linear relationship between wavefunction overlap and λc the
upper SWIR band of,

W= 76.8−mλ,

whereW and λ represent the wavefunction overlap and cut-off
wavelength in µm andm has a value of 26.0% µm−1, as shown
in figure 4 (bottom).

Another approach to change the cut-off wavelength is
by changing the composition of the well or barrier, e.g.

Figure 4. (Top) Simulated wavefunction overlap of lattice matched
InGaAs/GaAsSb type-II superlattice with InGaAs thickness of 3
(black), 4 (red), 5 (grey), 6 (green), and 7 nm (white). (Bottom)
Empirical linear relationship of maximum wavefunction overlap
against cut-off wavelength.

Figure 5. Simulated room temperature λc (left, circles) and
wavefunction overlap (right, squares) for a 5 nm/3 nm strained
InGaAs/GaAsSb type-II superlattice with 125 periods for different
GaAsSb compositions.

in [16]. To explore the effect of the GaAs1−xSbx compos-
ition on λc, a further set of simulations were carried out
using the 5 nm/3 nm InGaAs/GaAsSb T2SL designs. With
GaAs1−xSbx compositions between x= 0.3 and 0.6, the T2SL
λc values can cover the entire SWIR range, as shown in
figure 5.

Using simulation results from figure 5 and [16], the
dependence of λc values on GaAs1−xSbx composition is
summarised in table 2 for 5 nm/3 nm and 5 nm/5 nm T2SL
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Table 2. Comparison between 5 nm/3 nm and 5 nm/5 nm
InGaAs/GaAsSb type-II superlattices. ∗ indicates lattice matched
GaAsSb.

Structure
GaAs1−xSbx
composition λc (µm)

Wavefunction
overlap (%)

5 nm/3 nm
(This work)

x = 0.49∗ 2.5 11.5
x = 0.57 2.8 10.5
x = 0.60 3.0 8.9

5 nm/5 nm [14] x = 0.49∗ 2.4 10.4
x = 0.60 2.8 8.0

designs. The λc from 5 nm/3 nm T2SL design is slightly
more sensitive to changes in GaAs1−xSbx composition, com-
pared to its 5 nm/5 nm counterpart. However, the 5 nm/3 nm
design offers an improved wavefunction overlap at a given λc.
This suggests that asymmetric T2SL structures with a thinner
barrier offer higher photon absorption efficiency, however
their λc are more sensitive to GaAs1−xSbx composition
variation in wafer growths.

5. Conclusion

Two asymmetric InGaAs/GaAsSb T2SL have been grown by
MBE. These wafers contained strained and lattice matched
GaAs1−xSbx (x = 0.49 and 0.40). Temperature dependence
of cut-off wavelength was extracted from phase-sensitive
photoresponse data between 200 K and room temperature.
These results along with literature were then used to val-
idate a single-band k.p. model for temperature dependent
T2SL.

Using this validated model, we show a significant drop in
wavefunction overlap if the GaAsSb barrier is thicker than the
InGaAs well placing an upper limit on barrier thickness. This
model also suggests a linear relationship between maximum
achievable wavefunction overlap and cut-off wavelength for
lattice matched InGaAs/GaAsSb T2SL.

Advantages of the 5 nm/3 nm InGaAs/GaAsSb T2SL was
then explored. Adopting the 5 nm/3 nm structure over a more
common 5 nm/5 nm structure offers higher wavefunction over-
lap, which will benefit absorption efficiency. However, the
5 nm/3 nm structure’s cut-off wavelength is more sensitive to
variation in the Sb composition of GaAs1−xSbx.

Data availability statement

The data that support the findings of this study are openly
available at the following URL/DOI: 10.15131/shef.data.
20310591.
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