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Gamma distributed delay differential equations (DDEs) arise naturally in many modelling applications.
However, appropriate numerical methods for generic gamma distributed DDEs have not previously been
implemented. Modellers have therefore resorted to approximating the gamma distribution with an Erlang
distribution and using the linear chain technique to derive an equivalent system of ordinary differential
equations (ODEs). In this work, we address the lack of appropriate numerical tools for gamma distributed
DDEs in two ways. First, we develop a functional continuous Runge-Kutta (FCRK) method to numer-
ically integrate the gamma distributed DDE without resorting to Erlang approximation. We prove the
fourth order convergence of the FCRK method and perform numerical tests to demonstrate the accuracy
of the new numerical method. Nevertheless, FCRK methods for infinite delay DDEs are not widely avail-
able in existing scientific software packages. As an alternative approach to solving gamma distributed
DDEs, we also derive a hypoexponential approximation of the gamma distributed DDE. This hypoexpo-
nential approach is a more accurate approximation of the true gamma distributed DDE than the common
Erlang approximation, but, like the Erlang approximation, can be formulated as a system of ODEs and
solved numerically using standard ODE software. Using our FCRK method to provide reference so-
lutions, we show that the common Erlang approximation may produce solutions that are qualitatively
different from the underlying gamma distributed DDE. However, the proposed hypoexponential approx-
imations do not have this limitation. Finally, we apply our hypoexponential approximations to perform
statistical inference on synthetic epidemiological data to illustrate the utility of the hypoexponential ap-
proximation.
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1. Introduction

Gamma distributed delay differential equations (DDEs), generically of the form

d
dt

X(t) = F

(

X(t),
∫ ∞

0
X(t − s)g j

a(s)ds

)

for t > t0

X(s) = ψ(s) s 6 t0,











(1.1)

have been extensively used in mathematical biology, epidemiology and pharmacometric modelling
[Andò et al., 2020, Câmara De Souza et al., 2018, Cassidy, 2021, Champredon et al., 2018, Hu et al.,
2018, Hurtado & Kirosingh, 2019, Smith, 2011]. These models describe the influence of the past on the
current state through the convolution integral

(X ∗g j
a)(t) =

∫ ∞

0
X(t − s)g j

a(s)ds

where g
j
a(s) is the probability density function (PDF) of the gamma distribution. The initial value

problem (1.1) is equipped with initial data in the form of the history function ψ . Typically, ψ ∈ L1(P)
where P is a probability measure [Hale & Verduyn Lunel, 1993]. The Radon-Nikodym derivative of P
with respect to Lebesgue measure is the PDF g

j
a(s) given by

g j
a(s) =

a j

Γ ( j)
s j−1 exp(−as)

which is parameterized using the shape and scale parameters, j and a, respectively. While both these
parameters can be positive reals, many authors, when considering applications, artificially restrict j to
integer values and (1.1) is thus an Erlang distributed DDE. This restriction is useful as these Erlang
distributed DDEs can then be reduced to an equivalent system of ordinary differential equations (ODEs)
through the linear chain technique [MacDonald, 1978, Vogel, 1961]. A major impediment to the imple-
mentation of the more general gamma distributed DDE is the lack of appropriate numerical techniques
for their simulation [Breda et al., 2016, Diekmann et al., 2018; 2020b]. Here, we address this imped-
iment in two distinct manners, first, by implementing a functional continuous Runge-Kutta (FCRK)
method to simulate (1.1) and, second, by deriving a finite dimensional approximation of (1.1) that is
more accurate than the common Erlang approximation.

Currently existing numerical tools for the simulation and study of DDEs with finite delays, such
as the continuous Runge-Kutta methods described in Bellen et al. [2009] and implemented in major
software packages, often perform poorly when the minimal delay is smaller than the numerical solution
step-size, a phenomena termed "overlapping". Since the minimal delay in the Gamma-distributed DDE
(1.1) is zero, this class of DDEs always exhibits overlapping. FCRK methods naturally and efficiently
deal with overlapping, but although they were first proposed in the 1970s [Maset et al., 2005, Tavernini,
1971], they still have not been widely implemented in software packages nor extended to the infinite
delay case. In fact, numerical tools for problems with infinite delay have only recently started to be de-
veloped. Recent work for problems with infinite delay includes pseudo-spectral techniques [Diekmann
et al., 2020b, Gyllenberg et al., 2018], and the development of ODE approximations of the gamma dis-
tributed DDE without enforcing j ∈ N [Koch & Schropp, 2015, Krzyzanski, 2019]. Krzyzanski [2019]
used the binomial theorem to develop an ODE approximation of a generic gamma distributed DDE.
However, this approximation relies on truncating the infinite series expansion of the probability density
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function of the gamma distribution at some finite value. While Krzyzanski [2019] does derive explicit
error bounds dependent on the number of terms M in the series expansion, the artificial truncation of
the convolution integral ensures that the numerical approximation is not consistent. In a related work
focused on lifespan distributions, Koch & Schropp [2015] impose a fixed upper bound for the lifespan
duration, then subdivide the interval of possible lifespan durations into m sub-compartments. The pop-
ulations in each sub-compartment are weighted according to the probability of a lifespan of that length
when calculating the total population size. Once again, this method requires the modeller to determine
a fixed upper bound of the lifespan duration, and does not capture the full dynamics of the infinite delay
DDE. The FCRK method developed in this work explicitly computes the improper convolution integral
and eliminates the requirement that modellers impose artificial upper bounds when simulating (1.1). To
our knowledge, the FCRK method developed in this work is the first numerical method that does not
artificially truncate the infinite delay by imposing artificial bounds. Consequently, the FCRK method
derived here is the first consistent numerical method for DDEs with infinite delay; while we focus on
gamma distributed DDEs, our method should be straightforward to adapt to other distributed DDEs
where the integrand in the convolution integral decays exponentially.

The main difficulty in applying FCRK methods to infinite delay problems is the evaluation of the
semi-infinite convolution integral. Our main new contribution to FCRK methods is to demonstrate how
to do this both accurately and efficiently. To achieve this, we derive a novel change of variable to map the
semi-infinite domain of integration to a compact interval. While many changes of variables exist to map
semi-infinite to compact domains of integration, our approach is derived to conserve sufficient regularity
and therefore ensure the accuracy of our numerical method. In particular, we derive explicit conditions
to ensure sufficient regularity of the transformed integrand that depend only on the parameters of the
PDF g

j
a(s). Then, existing composite Newton-Cotes methods are utilized to numerically calculate the

transformed convolution integral and thus efficiently evaluate the right-hand side of (1.1). To ensure the
accuracy of the FCRK method, we derive order conditions on the quadrature method which allow us
to evaluate the integrals just sufficiently accurately to maintain the global order of the FCRK method.
In particular, we establish an explicit relationship between the stepsize of the FCRK method and the
stepsize of the quadrature method. We prove the fourth order convergence of our FCRK method in
Theorem 2.5 and Appendix C and demonstrate the accuracy of our FCRK method through a number of
examples in Section 4.1.

Inspired by the lack of readily available appropriate numerical methods for problems such as (1.1),
there has also been considerable interest in approximating infinite delay DDEs by forms that are more
convenient for simulation [Cassidy et al., 2019, Diekmann et al., 2018; 2020a, Hurtado & Kirosingh,
2019, Koch & Schropp, 2015, Krzyzanski, 2019]. The most well-known of these is the previously
mentioned linear chain technique, wherein modellers often make the simplifying assumption that j ∈
N when implementing gamma distributed DDE models. We refer to this assumption as the Erlang

approximation. However, this assumption imposes constraints on the sample mean and variance of the
delayed process. Typically, for a general gamma distributed random variable with mean τ and variance
σ2, modellers impose j = [τ2/σ2] where [x] rounds x to the nearest integer with [0.5] = 1 [Cassidy &
Craig, 2019, Jenner et al., 2021]. As a result, it is only possible to fit one of these statistics with an
Erlang distribution, as the system

τ =
[τ2/σ2]

a
and σ2 =

[τ2/σ2]

a2

only admits a solution if [τ2/σ2] = τ2/σ2 which corresponds to j ∈ N.
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In light of this limitation of the Erlang approximation, recent work has explored using phase type
distributions to approximate generic distributed DDEs. These phase type distributed DDEs are then
reduced to a system of ODEs through a variant of the linear chain technique [Cassidy, 2021, Hurtado &
Richards, 2020, Hurtado & Kirosingh, 2019]. These phase type distributions approximate the underly-
ing distribution either by minimizing some distance measurement between distributions or by matching
moments of the underlying distribution. We take the latter approach when developing a novel hypoex-
ponential approximation of the generic gamma distributed DDE (1.1). Existing work has identified the
“reachable” bounds in moment space and the minimal number of phases required to match the first three
moments of the underlying distribution using phase type distributions [Bobbio et al., 2005, Johnson &
Taaffe, 1989; 1990]. However, in general, it may not be possible to match the first three moments, and
even if it is possible, the required number of phases can be arbitrarily high [Osogami & Harchol-Balter,
2006]. In fact, we prove in Theorem 3.3 that it is not possible to match three or more moments of a
generic gamma distribution using purely hypoexponential distributions. Accordingly, we only match
the first two moments of the underlying gamma distribution. We match the first two moments without
imposing any restrictions on their values, and the parameters of our approximating phase type distri-
bution are entirely determined by the mean and variance of the underlying distribution. Moreover, our
approximation is exact if the underlying distribution is Erlang.

To achieve this two moment matching, we derive explicit rates of the hypoexponential approximation
to match the first two moments of a given gamma distribution, and then derive the equivalent system of
ODEs. These ODE models are simple to study numerically and have the added benefit of being easy to
implement in scientific software packages and explain for scientific collaborators. Further, we leverage
our FCRK method to simulate (1.1) and thus explicitly evaluate the accuracy of our hypoexponential
approximation by comparison against solutions obtained from our FCRK method, which has not been
done in prior work. As we will show, our approximation more accurately captures the dynamics of
the underlying gamma distributed DDE than the Erlang approximation obtained by setting j = [τ2/σ2]
while being as simple to implement in existing scientific software as the common Erlang approximation.

Finally, we apply our hypoexponential approximation to the problem of statistical inference. Erlang
delay models are often used in epidemiology of infectious diseases [Champredon et al., 2018, Green-
halgh & Rozins, 2019, Rozhnova et al., 2021, Sanche et al., 2020], but also in many other fields [Câmara
De Souza et al., 2018, Cassidy, 2021, Cassidy & Humphries, 2019, Gossel et al., 2017]. A common ap-
proach is to define an epidemiological model in terms of ODEs, and estimate parameters by fitting the
model to disease incidence data. One key parameter, the basic reproduction number R0, is closely re-
lated to the generation interval (or it’s proxy the serial interval), the initial exponential growth rate of the
epidemic, and time to recovery TI [Roberts & Heesterbeek, 2007]. This relationship depends not only
on the mean infectious period E[TI ], but also on the distribution of this period. Therefore, making in-
valid assumptions about this distribution can lead to spurious estimates of e.g. R0 and the corresponding
critical vaccination coverage. The same argument holds for other intervals with randomly distributed
durations such as the duration of the period that an individual has been exposed, but is not yet infectious
(TE ).

In practice, the random times TE and TI are often assumed to be Erlang-distributed so that the DDEs
can simply be implemented as ODEs using the linear chain technique. This is convenient because ODE
models are easy to implement in commonly used software packages for statistical inference [Carpenter
et al., 2017], whereas support for DDE models is much less common, and often restricted to an Erlang
distributed or fixed delays [Lixoft, 2019, Raue et al., 2014; 2009]. Apart from convenience, there is no
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reason to assume that the distributions of TE and TI should be Erlang instead of gamma distributions.
The hypoexponential approximation of the gamma distribution proposed here still allows for an ODE
approximation of the DDE model, but removes the need to assume that the shape j parameter is an
integer.

Another purely practical reason for using the hypoexponential approximation of the gamma distri-
bution instead of an Erlang distribution is that estimating the integer shape parameter j of the Erlang
distribution can be inconvenient in some software packages. For instance, in the commonly used pack-
age for Bayesian inference Stan [Carpenter et al., 2017], the estimated parameters have to be real-valued
due to the limitations imposed by the Hamiltonian Monte-Carlo method. Accordingly, to estimate an
integer valued j, modellers must repeat the analysis for multiple fixed values of j ∈ N, and compare
the results with Bayes factors or information criteria as LOO-IC or WAIC [Vehtari et al., 2017]. This
extra step, and the resulting extra computation, can be avoided if j is allowed to be real-valued and es-
timated by the software package, as when using either the FCRK method or the approximation derived
in this work. However, updating existing scientific software to use our FCRK method would be much
more time consuming than using our hypoexponential approximation. Consequently, we implement the
hypoexponential approximation in Stan and use the resulting ODE system for statistical inference of
epidemiological parameters and evidence synthesis, thus illustrating a simple application of the hypo-
exponential approximation derived in this work.

The remainder of the article is structured as follows. We begin by developing a numerical method to
simulate the general gamma distributed DDE by using the theory of functional continuous Runge-Kutta
methods to address overlapping in the convolution integral in Section 2. We then give sufficient condi-
tions to ensure that our evaluation of the semi-infinite convolution integral conserves the accuracy of the
underlying FCRK method by proving the convergence of our method in Section 2.1.1 and Appendix C.
Next, in Section 3, we develop our hypoexponential approximation by considering a more generic con-
catenation of exponentially distributed waiting times than the Erlang distribution and allowing for the
rate parameters to vary between compartments. In Section 3.2, we derive explicit expressions of these
rates that replicate the first and second moments of the gamma distribution in (1.1). Turning to numer-
ical results, we confirm that the FCRK method derived in Section 2 performs to the proven accuracy
in Section 4.1. Then, by leveraging the numerical simulation of the gamma distributed DDE (1.1), we
show that the hypoexponential approximation outperforms the common Erlang approximation of the
underlying gamma distributed DDE in Section 4.2. The comparison between the Erlang and hypoexpo-
nential approximations against the true solution of the distributed DDE obtained via our FCRK method
has not been performed previously. As the most striking illustration, we show in Section 4.2.1 that
the Erlang distributed DDE does not necessarily replicate the qualitative properties of the underlying
gamma distributed DDE. Finally, we illustrate how to implement the hypoexponential approximation
to estimate parameters of an epidemiological model in Stan in Section 5 before finishing with a brief
discussion.

1.1 Notation and assumptions

Choosing an appropriate state space for DDEs with infinite delay can be subtle [Cassidy & Humphries,
2019, Hale & Verduyn Lunel, 1993]. Here, for fixed ρ > 0, we follow Diekmann & Gyllenberg [2012],
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Gyllenberg et al. [2018], Hino et al. [1991] and consider the state space C0,ρ given by

C0,ρ =

{

ψ ∈ C0(−∞, t0]| lim
θ→−∞

ψ(θ)eρθ = 0
}

. (1.2)

C0,ρ is a Banach space under the norm

‖ψ‖∞,ρ = limsup
θ6t0

eρθ |ψ(θ)|.

In practice, we take ρ < a so that the convolution integral in (1.1) converges at time t = t0.

The IVP (1.1) has a unique solution X(t) if F is globally Lipschitz [Diekmann & Gyllenberg, 2012].
We immediately obtain that the solution X is continuous on t > t0. However, to establish the accuracy of
the FCRK method, we require further differentiability of the solution X , and consequently, the function
F . In general, the convolution integral in (1.1) smooths the initial function ψ for t > t0, as the kernel
g

j
a(s) is analytic, and ensures that the only possible breaking point is t0. Then, if the function F is

k-times differentiable, X is k+1 times differentiable for t > t0.

Throughout the paper, we use the following notation. If x ∈ R, then the ceiling and floor of x are
defined as ⌈x⌉ = min{n ∈ Z : n > x} and ⌊x⌋ = max{n ∈ Z : n 6 x} respectively. The fractional part
of x is denoted {x} = x− ⌊x⌋. The nearest integer to x is denoted [x] = ⌊x+ 1

2⌋. We parameterise
the gamma distribution with shape and rate parameters and denote a gamma distribution with shape
parameter j and rate parameter a by Gamma( j,a). Hence, when a random variable X ∼ Gamma( j,a),
then X has mean E[X ] = j/a and variance Var[X ] = j/a2. Similarily, we denote a hypoexponential
distribution with rates a1,a2, ...,an by HypoExp(a1,a2, . . . ,an). Finally, we denote the function segment
Xt(θ) = X(t +θ) for θ 6 0.

2. Functional continuous Runge-Kutta methods

Most existing numerical methods for delay differential equations have been adapted from known numer-
ical methods for ODEs [Bellen et al., 2009, Enright & Hayashi, 1997, Eremin, 2016, Vermiglio, 1988].
For a given stepsize h and integration mesh given by tn = t0 +nh, these continuous Runge-Kutta (CRK)
methods are designed to output a continuous function over the delay interval. This continuous function
is then used to evaluate the solution at the abscissa ci of the RK method, which is necessary for accurate
evaluation of the intermediate functions in each CRK step, since these fall at time points t = tn +cih−τ
which typically do not fall on the integration mesh. This illustrates another difficulty with CRK meth-
ods: when the delay τ is smaller than the stepsize h, as if τ < cih, then overlapping will occur, i.e.
the n+1st step will require knowledge of the solution in the current step [Eremin, 2019, Eremin et al.,
2020], and the method can no longer be explicit. Overlapping is inevitable when solving (1.1) since the
convolution integral in (1.1) requires knowledge of the solution X on the entire semi-infinite interval
(−∞, t).

A class of methods, now called functional continuous Runge-Kutta (FCRK) methods, has been de-
veloped which have a continuous interpolant associated with each stage of the Runge-Kutta method,
allowing for the construction of methods which remain explicit even in the case of overlapping. Such
methods were first proposed in the 1970s [Cryer & Tavernini, 1972, Tavernini, 1971], with the con-
vergence theory and construction of explicit methods up to order 4 derived in the 2000s [Bellen et al.,
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2009, Maset et al., 2005]. However, the development of the methods to that point had been purely
theoretical, and the works cited above do not contain any implementations or numerical simulations.
FCRK methods have recently been implemented for distributed DDEs with possibly time dependent,
but finite, delay [Eremin, 2019, Langlois et al., 2017]. To our knowledge, Langlois et al. [2017] was
the first instance of applying these FCRK methods to explicitly simulate a distributed DDE arising in
mathematical biology. Here, we implement a 4th order FCRK method for the infinite delay initial value
problem (1.1). In what follows, we consider fixed time step methods and leave the variable time step
case to future work.

Following Definition 6.1 of Bellen et al. [2009], we define an s-stage FCRK method as follows

DEFINITION 2.1 (s-stage FCRK method) A s-stage FCRK method is a triple (A(θ),b(θ),c) such that A

and b are polynomial functions into Rs×s and Rs, respectively, with A(0) = 0 and b(0) = 0, and c ∈ Rs

with ci > 0.

It is customary to represent a s-stage FCRK method (A(θ),b(θ),c) by it’s Butcher tableau

ci Ai, j(θ)
b j(θ)

where i, j = 1,2,3, ...,s and Ai, j and b j are the components of A and b. Now, for a given step size h,
the s-stage FCRK method creates a continuous approximation η(t) to the solution of the IVP (1.1) X(t)
through

η(t) =

{

ηn(hθ) for t ∈ (tn, tn+1), and θ = t−tn
h

ψ for t 6 t0.
(2.1)

The stage interpolant ηn is a continuous approximation of the solution X(tn +hθ) defined by

ηn(hθ) = Xn +h
s

∑
i=1

bi(θ)Kn,i, θ ∈ (0,1) η0 = ψ(t0) and Xn = ηn−1(h), (2.2)

where

Kn,i = F

(

Y n,i(ci),
∫ ∞

0
η(tn + cih−u)g j

a(u)du

)

(2.3)

are the stage variables, η represents the numerical approximation of the solution up to the current stage,
and Y n,i is the continuous approximation of X(t) in the stage given by

Y n,i = Xn +h
i−1

∑
k=1

Ai,k(θ)Kn,k, θ ∈ [0,ci].

Thus, the piecewise interpolants ηn(t) agree with Xn at the collocation points t = { jh}N
j=1 and

define the piecewise continuous polynominal function η . For (1.1) with history function ψ and stepsize
h computed up to tm, the local error function is given by

E(a, tm,ψ) = ‖η(tm +a)−X(tm +a)‖, a ∈ [0,h].

The uniform and discrete order of a FCRK method are intrinsically related to this local error function
(see Equation (1.2) and Definition 4.1 in Maset et al. [2005]). The uniform order of a FCRK method is
the maximal error incurred over a single time step:
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DEFINITION 2.2 (Uniform order) Let d be a positive integer and let η be the approximation of the
solution X of an IVP with sufficiently smooth right hand side obtained using an FCRK method with step
size h. The FCRK method has uniform order d if

max
α∈(0,1)

E(αh, tm,ψ) = O(hd+1).

Conversely, the discrete order is the error incurred at the collocation points t = jh, which corresponds
to a = h in the definition of E:

DEFINITION 2.3 (Discrete order) Let d be a positive integer and let η be the approximation of the
solution X of an IVP with sufficiently smooth right hand side obtained using an FCRK method with step
size h. The FCRK method has discrete order d if

E(h, tm,ψ) = O(hd+1).

Finally, the global order of the numerical method is the absolute error incurred throughout the sim-
ulation when considering the solution x and η as continuous functions on the interval t ∈ [t0,T ].

DEFINITION 2.4 (Global order) A s-stage method has global order p if

max
t∈[t0,T ]

‖η(t)−X(t)‖= O(hp).

The connection between the local error measurements given in Definition 2.2 and Definition 2.3 and
the global order of an FCRK method is considered by Bellen & Zennaro [2013] and Bellen et al. [2009].
Explicitly, if the s-stage method has global order p on [t0,T ], then η is a p–th order approximation of X

as

max
t∈[t0,T ]

‖η(t)−X(t)‖<Chp.

In what follows, we use the fourth order explicit FCRK method due to Tavernini [1971] with global
fourth order and Butcher tableau given by [Bellen et al., 2009]

0 0
1 θ
1
2 θ −1/2θ 2 1

2 θ 2

1 θ −1/2θ 2 1
2 θ 2

1
2 θ −3/2θ 2 +2/3θ 3 0 2θ 2 −4/3θ 3 −1/2θ 2 +2/3θ 3

1 θ −3/2θ 2 +2/3θ 3 0 2θ 2 −4/3θ 3 −1/2θ 2 +2/3θ 3

θ −3/2θ 2 +2/3θ 3 0 0 0 2θ 2 −4/3θ 3 −1/2θ 2 +2/3θ 3

(2.4)
although our results hold for other FCRK schemes.

2.1 Numerical quadrature

In theory, FCRK methods are directly applicable to the infinite delay case (1.1). However, in practice a
s-stage FCRK method implicitly assumes the ability to accurately calculate the right hand side of equa-
tion (1.1). Accordingly, the main difficulty in numerically simulating (1.1) is the numerical calculation
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of the improper convolution integral
∫ ∞

0
X(t − s)g j

a(s)ds =
∫ t

−∞
X(s)g j

a(t − s)ds,

appearing in (2.3).

Most numerical quadrature methods are designed for a compact domain of integration. However,
artificially truncating the convolution integral in (1.1) would introduce unnecessary error while simul-
taneously ensuring that the FCRK method is not consistent as the quadrature stepsize, hint, converges
to 0. Thus, to compute the convolution integral, we map the semi-infinite domain of integration to the
compact set [0,1] through the change of variables

ω(t,s) = exp
(

− 1
α
(t − s)1/β

)

,

where α and β are two parameters determined later. The improper integral then becomes

∫ t

−∞
X(s)g j

a(t − s)ds =
∫ 1

0

βαβ ja j

Γ ( j)
X(t − (−α log(ω))β )exp

[

−a(−α log(ω))β
]

(− log(ω))β j−1 dω

ω

=
∫ 1

0
u(t,ω)dω.

(2.5)

In general, we require a k times continuously differentiable integrand for a k + 1th order composite
Newton-Cotes quadrature method to obtain k+1th order accuracy. To ensure that our change of variable
does not prohibit achieving such accuracy, we show how to choose the positive constants α and β to
ensure that the transformed integrand is sufficiently smooth for our numerical integration techniques.
This requirement is naturally dependent on the smoothness of the solution X and the history function ψ.
Further, even if ψ is differentiable, it is likely that

ψ ′(t−0 ) 6= F

(

ψ(t0),
∫ ∞

0
ψ(t0 − s)g j

a(s)ds

)

= X ′(t+0 ),

where the superscripts denote limits from the left and right, so the solution X is not continuously differ-
entiable at t0 [Bellen et al., 2009]. Accordingly, when implementing a numerical quadrature method, we
will enforce that transformed initial point ω(t, t − t0) is part of the integration mesh. We now show how
to choose α and β to ensure that the integrand is sufficiently smooth away from this breaking point.

LEMMA 2.1 Assume that X(t) is k times differentiable and set

β =
k+1

j
+1 and α =

j+1
a1/β

. (2.6)

Then, u(t,ω) is k times differentiable in ω for ω ∈ (0,ω(t, t − t0))∪(ω(t, t − t0),1). Further, if the k−th
derivative of X(t), X (k)(t), is bounded for t > t0, then there exists M such that

∣

∣

∣

∣

∂ k

∂ωk
u(t,ω)

∣

∣

∣

∣

< M

for ω ∈ (0,ω(t, t − t0))∪
(

ω−1(t, t − t0),1
)

.
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The proof of Lemma 2.1 is straightforward and follows from the rapid decay of
exp[−(−α log(ω))β ] at ω = 0. This decay, along with the fact that the history function ψ belongs
to the function space C0,ρ for ρ < a, ensures that u(t,ω) → 0 as ω → 0. We give the full proof in
Appendix A. In practice, we use the fifth order open composite Simpson’s rule, which is the fifth order
composite open Newton-Cotes method, and requires the integrand to have a bounded fourth derivative.
Therefore, when implementing the FCRK method, we apply (2.6) with k = 4. When evaluating the
numerical approximation of the convolution integral (2.5), we avoid the mesh points tn where the inter-
polant is continuous but not differentiable by ensuring these points are in the integration mesh. Finally, it
is known that solutions of DDEs typically have discontinuous derivatives at breaking points. However,
when considering a distributed DDE such as (1.1), we can leverage the additional smoothing offered
by the convolution integral and only must ensure that t0 is in the integration mesh at each time point
[Eremin et al., 2020].

After the change of integration variable, with α and β chosen as in (2.6), solving the IVP (1.1) is
equivalent to solving

d
dt

X(t) = F

(

X(t),
∫ 1

0
u(t,ω)dω

)

for t > t0

X(s) = ψ(s) s 6 t0.











(2.7)

We recall that u(t,ω) depends explicitly on the solution Xt through the definition (2.5). Finally, while
we only consider fixed time step FCRK methods in this work, using variable time step methods on the
reformulated IVP (2.7) is possible.

Then, to simulate (2.7) using a FCRK method, we must numerically evaluate the convolution integral

I(t) =
∫ 1

0
u(t,ω)dω (2.8)

where we note the integrand is depends explicitly on the solution of (2.7).

2.1.1 Quadrature rules and order conditions As we are developing a FCRK method to numerically
integrate (2.7), we will not evaluate the transformed convolution integral (2.8) exactly. Rather, as men-
tioned, we will use a quadrature method to numerically evaluate the integral to sufficient accuracy to
maintain the global order of the FCRK method. Specifically, we consider a FCRK method of global
order p so that the interpolant (2.1) is accurate to order p on each stage. We thus have

∣

∣(X ∗g j
a)(tn)− (η ∗g j

a)(tn)
∣

∣=

∣

∣

∣

∣

∫ tn

t0

(X(s)−η(s))g j
a(tn − s)ds

∣

∣

∣

∣

6 ‖X(s)−η(s)‖L∞[t0,T ]

∫ tn

t0

g j
a(tn − s)ds

6Chp

∫ tn

t0

g j
a(tn − s)ds <Chp

∫ tn

−∞
g j

a(tn − s)ds =Chp.

Therefore, if we were to calculate the convolution integral (2.8) exactly, then we would evaluate the
right hand side of (2.7) to order p. In each RK stage, the evaluations of F occurs within the calculation
of a Kn,i, so we gain an extra order of accuracy via the multiplication by h in (2.2). Then, the local error
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in each step of the numerical method has order p+1 as required, with the extra order coming from the
multiplication by h.

However, in practice, we cannot evaluate the convolution integral (2.8) exactly, and nor would we
want to do so. Indeed, as the numerical solution ηn is only a p−th order approximation of the true
solution X(t), it is not computationally efficient to evaluate the convolution integral I(t) to extreme
precision. Thus, the numerical integration should be sufficiently accurate to preserve the global order of
the method, but not so accurate as to be computationally inefficient. To illustrate this idea, assume that
we evaluate the integral (2.8) to order q using a composite quadrature method with stepsize hint, so

I(t) = Î(t)+O(hq
int),

where Î(t) denotes the quadrature approximation of the convolution integral. Now, consider a FCRK
method of order p with coefficients Kn,i and stepsize h. Using Taylor’s theorem, we see that

K̂n,1 = F(xn−1, Î(tn−1)) = F(xn−1, I(tn−1)+O(hq
int))

= F(xn−1, I(tn−1))+∂x2 F(xn−1, I(tn−1)O(hq
int)+O(h2q

int) = Kn,1 +O(hq
int) ,

where ∂x2 F is the partial derivative of F with respect to the second variable. So the first stage step Ŷ1

is calculated with the same accuracy as the numerical integration. We can thus proceed inductively to
calculate each Ŷi and K̂i with accuracy O(hq

int). Accordingly, for the continuous approximation η̂n(hθ)
of the solution X(t), equation (2.2) gives

η̂n(hθ) = Xn +h
s

∑
i=1

bi(θ)K̂n,i = Xn +h
s

∑
i=1

bi(θ)Kn,i +O(h×h
q
int).

Thus, if h
q
int = ξ hp for some constant ξ , then O(h× h

q
int) = O(hp+1). Therefore, the condition h

q
int =

O(hp) ensures that we do not decrease the accuracy of the scheme nor perform extra computations when
numerically integrating (2.8) using a q-th order quadrature rule.

Finally, we note that the integrand in (2.8) is not defined at ω = 0. Accordingly, we use an open
quadrature method so that the end points of the domain of integration, ω = 0 and ω = 1, are not included.
In particular, we use the composite Simpson’s open rule for which the base method is given by

∫ b

a
f (x)dx =

4ĥ

3

(

2 f (a+ ĥ)− f (a+2ĥ)+2 f (a+3ĥ)
)

+O(ĥ5)

where ĥ= (b−a)/4. We note that the integrand of (2.8) must be sufficiently smooth inside each integra-
tion sub-interval to ensure the composite order. As previously mentioned, t0 is a potential breaking point
of the distributed DDE. Therefore, we must enforce that t0 is as an end-point of one of the sub-intervals
at each step tk = kh by including

ω(tk + cih, t0) ∈ [0,1]

in the quadrature mesh. Furthermore, since η is only C0 at the mesh points tn preceding the current step
tm, we include the transformed mesh points ω(tm + cih, tn) in the integration mesh. These points may
not be evenly spaced in [0,1] and so the composite Simpson’s open rule does not use a uniform step
size ĥint to partition [0,1]. To ensure the global accuracy of the FCRK method, it is sufficient to divide
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[0,1] into sub-intervals of maximal length hint = h. The composite quadrature rule therefore has error
h4

int = ξ h4 and is sufficiently accurate to maintain the global error of the fourth order FCRK methods
considered here. Indeed, we utilize results from Bellen et al. [2009], Maset et al. [2005] to prove the
following result in Appendix C

THEOREM 2.5 (Global order of the FCRK method) Assume that the right hand side of (1.1) is 4 times
continuously differentiable and let (A(θ),b(θ),c) be the explicit FCRK method with global fourth order
defined in (2.4). Furthermore, let the simulation mesh include all breaking points of the DDE (1.1) and
have maximal stepsize h∆ , and calculate the convolution integral I(t) using the composite Simpson’s
open rule with maximal sub-interval size of hint 6 h∆ . Then, the FCRK method has global order 4.

3. Ordinary differential equation approximations

In Section 2, we developed a numerical method to solve the distributed DDE (1.1). As mentioned, nu-
merical methods for distributed DDEs are computationally demanding, complicated and as a result, not
available in most off-the-shelf scientific software packages. Therefore, we discuss a common method
by which modellers avoid these difficulties via an Erlang approximation of (1.1) before deriving a new
phase type approximation of (1.1).

3.1 Erlang approximation

In many modelling applications, it is common to avoid the difficulties in simulating (1.1) by enforcing
that j ∈ N. As previously mentioned, the case j ∈ N corresponds to τ2/σ2 ∈ N where τ and σ2 are the
mean and variance of the underlying gamma distribution. As τ2 being an integer multiple of σ2 is not
generic, it is common to round j to the nearest integer [ j] and then set the rate parameter b = [ j]/τ . This
approximation allows modellers to replace the gamma distributed delay with an Erlang distribution and
thus approximate (1.1) by the Erlang distributed DDE

d
dt

Y (t) = F

(

Y (t),
∫ ∞

0
Y (t − s)g

[ j]
b (s)ds

)

for t > t0

Y (s) = ψ(s) s 6 t0.











(3.1)

The Erlang distributed random variable E with shape and rate parameters [ j] and b, respectively, has
precisely the same mean τ as the random variable in (1.1), but not the same variance. Then, it is a simple
application of the linear chain technique—where the convolution integral is written as the solution to a
system of differential equations—to obtain the equivalent ODE formulation to (3.1)

d
dt

Y (t) = F
(

Y (t),bA[ j](t)
)

d
dt

A1 = Y (t)−bA1(t)

d
dt

Ai = b[Ai−1(t)−Ai(t)] for i = 2,3, . . . , [ j].



























(3.2)
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3.2 Hypoexponenetial approximations

The approximation involved in the linear chain technique described previously replaces the gamma dis-
tributed convolution integral with an Erlang distributed convolution integral parameterized to match
the first moment of the original gamma distribution. Here, we develop an improved approximation
technique to approximate the gamma distributed DDE (1.1) by constructing a random variable Y with
corresponding probability measure PY that matches the first two moments of the original gamma dis-
tribution and considering the corresponding distributed DDE

d
dt

Y (t) = F

(

Y (t),
∫ ∞

0
Y (t − s)dPY (s)

)

for t > t0

Y (s) = ψ(s) s 6 t0.











(3.3)

We construct Y such that it represents the concatenation of exponentially distributed random variables,
so it is a phase type distribution, and we show that (3.3) admits a finite dimensional representation. We
then derive the equivalent ODE formulation to (3.3), and show that this approximation is more accurate
than the approximation in (3.1). There are infinitely many such random variables Y , and we consider
two specific cases. We discuss the benefits of each approximation in Section 3.4.

3.2.1 The fixed hypoexponential approximation We begin by deriving the rates of the exponentially
distributed random variables whose concatenation is the random variable Y f where Y f is the concatena-
tion of an Erlang distribution with two exponential distributions. We parametrize the Erlang distribution
so that the rates of the Erlang distribution are fixed as the fractional part of j varies. Accordingly, we
refer to this approximation as the fixed hypoexponential approximation, with corresponding random
probability measure P f = PY f

.

THEOREM 3.1 Consider the gamma distributed random variable X with shape parameter j, mean τ ,
and variance σ2. Let Y f be the random variable obtained by concatenating n = max(⌈ j⌉,2) independent
and exponentially distributed variables where n−2 of these exponentially distributed random variables
have identical rates

λi, f =
n

τ
, i = 1, . . . ,n−2 ,

while the remaining two exponentially distributed variables have rates λn−1, f = ν f and λn, f = µ f . Then,
setting

ν f =
(τ

n

(

1+
√

n
2 j
(n− j)

))−1

and

µ f =
(τ

n

(

1−
√

n
2 j
(n− j)

))−1

ensures that X and Y f have the same first two moments.

Proof. The moment generating function (MGF) MY f
(t) of the random variable Y f is given by

MY f
(t) =

n

∏
i=1

λi

λi − t
for t < min

i
{λi}.
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The mean τY f
and variance σ2

Y f
of Y f are therefore

M′
Y f
(0) =

n

∑
i=1

1
λi

= τY f
and M′′

Y f
(0)− τ2

Y f
=

n

∑
i=1

1
λ 2

i

= σ2
Y f
.

Recalling that

λi =
n

τ
= λ , i = 1, . . . ,n−2,

and setting x1 = 1/ν f and x2 = 1/µ f , gives

x1 + x2 = 2
τ

n
and x2

1 + x2
2 =

τ2

n2 (n(n/ j−1)+2).

From this, x1 must solve

x2 −2
τ

n
x+

τ2

n2

(

1− 1
2 n(n/ j−1)

)

= 0.

By symmetry, x2 must be the other root of this polynomial. Hence, we obtain

1
ν f

=
τ

n

(

1+
√

n
2 j
(n− j)

)

and
1

µ f

=
τ

n

(

1−
√

n
2 j
(n− j)

)

,

which ensures that the random variable Y f matches the first two moments of the gamma distribution. �

When j = n ∈ N, the square roots in the definition of µ f and ν f vanish identically, leading to the
following Corollary.

COROLLARY 3.1 If the gamma distributed random variable X has integer shape parameter j, then the
random variable Y f defined in Theorem 3.1 is also Erlang distributed and ν f = µ f = λi, f = j/τ for
i = 1, . . . ,n−2.

3.2.2 A smoothed hypoexponential approximation The parametrization of the hypoexponential dis-
tribution in Theorem 3.1 is determined by the choice of {λi, f }n−2

i=1 and is therefore not unique. Here,
we derive a slightly different parameterization of the hypoexponential approximation. This alternative
approximation has benefits and a disadvantage compared to the fixed hypoexponential approximation,
which we discuss below.

Again, denote the mean of the gamma-distributed random variable X by τ and let j /∈ N denote
the shape parameter. Now we define a second hypoexponentially-distributed random variable Ys with
the same mean and variance as X . We once again use a concatenation of an Erlang distribution with
two exponential distributions. Here, unlike the fixed approximation described in Theorem 3.1, the rate
of the Erlang distribution varies continuously as the fractional part of j changes. We therefore refer
to this approximation as the smoothed hypoexponential approximation, with corresponding probability
measure Ps.

THEOREM 3.2 Let X be a Gamma( j,a)-distributed random variable where j /∈ N. Consider the hy-
poexponentially distributed random variable Ys with rate parameters (λs,1, . . . ,λs,n−2,µs,νs). Recalling
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that { j}= j−⌊ j⌋> 0 as j /∈ N, set λs,1 = · · ·= λs,n−2 = j/τ , and define µs and νs by

µs =
2 j

τ

(

1+{ j}+
√

1−{ j}2

)−1

νs =
2 j

τ

(

1+{ j}−
√

1−{ j}2

)−1

.

(3.4)

If j ∈ N, then we define µs = νs = j/τ . Then X and Ys have the first two moments.

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1 and is given in Appendix B. We
note that we use the term smooth when describing the smoothed hypoexpoential approximation of X

to refer to the continuous dependence of λs,i on j, and not in the infinitely differentiable sense. Once
again, if j is an integer, it follows from the definition that the smoothed hypoexponential approximation
is exact.

3.3 Ordinary differential equation representation of the hypoexponential DDE

The random variables Y f and Ys as defined in Theorems 3.1 and 3.2 correspond to the concatenation or
addition of n exponentially distributed random variables. As the derivation that follows is identical for
the smoothed and fixed approximations, we drop the indices f and s. The PDF of the hypoexponential
distributions is obtained by convolving the PDFs of an Erlang distributed random variable with rate λ
and shape parameter n−2, and the two exponentially distributed random variables with respective rates
ν and µ , where the rates are given explicitly in Theorems 3.1 and 3.2. The exponential distributions
have respective PDFs Eν and Eµ . Then, the delayed term in (3.3) is given by the convolution integral

∫ ∞

0
Y (t − s)dPY (s) =

∫ ∞

0
Y (t − s) fY (s)ds

where fY (s) = (gn−2
λ

∗Eν ∗Eµ)(s). The convolution integral
∫ ∞

0
Y (t − s) fY (s)ds

will satisfy a system of n ordinary differential equations in a similar manner to the linear chain technique
[Cassidy, 2021, Diekmann et al., 2018; 2020a]. To show that this is indeed the case, we introduce n

auxiliary variables Bi(t) satisfying

d
dt

B1(t) = Y (t)−λB1(t)

d
dt

Bi(t) = λ [Bi−1(t)−Bi(t)] for i = 2,3, ..,n−2,

d
dt

Bn−1(t) = λBn−2(t)−νBn−1(t)

d
dt

Bn(t) = νBn−1(t)−µBn(t)

with initial conditions

Bi(0) =
∫ ∞

0

ψ(−s)

λ
gi

λ (s)ds for i = 1,2, ..,n−2
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and

Bn−1(0) =
∫ ∞

0

ψ(−s)

ν
(gn−2

λ ∗Eν)(s)ds and Bn(0) =
∫ ∞

0

ψ(−s)

µ
(gn−2

λ ∗Eν ∗Eµ)(s)ds.

Then, using the linear chain technique on the Erlang distributed variables Bi for i = 1,2,3, .., ,n−2,
we see

λBi(t) = (Y ∗gi
λ )(t).

Then, an application of the main result in [Cassidy, 2021] shows that

νBn−1(t) = (λBn−2 ∗Eν)(t) and µBn(t) = (νBn−1 ∗Eµ)(t).

It follows from the associativity of convolution that
∫ ∞

0
Y (t − s) fY (s)ds = (Y ∗ fY )(t) = (Y ∗ [gn−2

λ ∗Eν ∗Eµ ])(t) = µBn(t).

Therefore, the distributed DDE (3.3) is equivalent to the (n+1) dimensional system of ODEs

d
dt

Y (t) = F (Y (t),µBn(t))

d
dt

B1(t) = Y (t)−λB1(t)

d
dt

Bi(t) = λ [Bi−1(t)−Bi(t)] for i = 2,3, ..,n−2,

d
dt

Bn−1(t) = λBn−2(t)−νBn−1(t)

d
dt

Bn(t) = νBn−1(t)−µBn(t),



























































(3.5)

where the rates λ ,µ and ν are taken from the fixed or smooth hypoexponential approximation.

3.4 A comparison between fixed and smooth hypoexponential approximations

The rates µ and ν determine the expected residence time in the n− 1st and nth compartments. Now,
if these rates were to grow arbitrarily large, then the expected residence time would become arbitrarily
small and the system of differential equations would become stiff. Furthermore, the dynamical system
obtained from the gamma distributed DDE has interesting behaviour as a function of the shape parameter
j. For j /∈N, we expect the gamma distributed DDE to define an infinite dimensional dynamical system.
However, when j ∈ N, the gamma distributed DDE can be reduced to a finite dimensional system of
ODEs through the linear chain technique as detailed in Section 3.1. Assuming continuous dependence of
dynamics on the parameter j, as j ↓ n−1, the gamma distributed DDE approaches a transit compartment
model with n−1 compartments. However, both the fixed and smoothed approximations are equivalent
to transit compartment models with n compartments. Thus, it is possible that the residence time in
the final compartment becomes arbitrarily small so that the extra compartment in the hypoexponential
approximation is negligible at the cost of the ODE system becoming stiff.
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To formalize this argument, consider the limit of j → 1 and the fixed hypoexponential distribution.
Then, µ f and ν f must simultaneously satisfy

1
µ f

+
1
ν f

= τ and
1

µ2
f

+
1

ν2
f

= τ2

which is only possible if 1
µ f

× 1
ν f

= 0. It is simple to show that, if j > 2, the rates µ f and ν f are bounded
from above so that this stiffness only occurs when j ↓ 1 for the fixed hypoexponential distribution.

Now, consider the smoothed approximation and j ↓ n− 1 for each integer n. We immediately see
that the rate µs can become arbitrary large in the limit, and the system of ODEs becomes stiff. In
addition, as j ↑ n, the argument of the square roots 1−{ j}2 in (3.4) approaches 0, and the derivative
of x 7→ √

x becomes arbitrarily large as x ↓ 0. This is problematic for optimization methods that require
the gradient of the objective function. To circumvent these singularities in the smooth hypoexponential
approximation, we slightly modify (3.4) by replacing µs and νs by µ̃s and ν̃s, defined by

1
µ̃s

=
τ

2 j

(

1+{ j}+
√

1−{ j}2 + ε2 − ε
)

and

1
ν̃s

=
τ

2 j

(

1+{ j}−
√

1−{ j}2 + ε2 + ε
)

where 0 < ε ≪ 1 is a small constant. By choosing ε , the practitioner can now trade-off the size of
the discontinuities of the objective function at integer values of j, with the level of stiffness of the
resulting ODEs. As we will see in Section 5, for statistical inference, one often needs to optimize an
objective function which depends on the solution of a DDE (1.1) at certain time points t0 < t1 < t2 <
· · · < tK . For many optimization algorithms, it helps if the objective function depends smoothly on the
model parameters, including j, and so using the smoothed hypoexponential in these scenarios may be
advantageous.

Further, we note that the approximations in Theorems 3.1 and 3.2 are approximations of the semi-
infinite convolution integral in (1.1). To compare the hypoexponential approximations against the true
gamma distribution, we first consider the survival function of the gamma distribution with mean 1 and
shape parameter j which is given by

u j(t) =
j j

Γ ( j)

∫ ∞

t
s j−1 exp(− js)ds.

We also compute the survival functions corresponding to the fixed and smoothed hypoexponential ap-
proximations of the gamma distribution with mean 1 and shape parameter j

y
j
f (t) = P f ([t,∞)) and y j

s(t) = Ps([t,∞)). (3.6)

We plot y
j
f (t) and y

j
s(t) in Fig. 1 to illustrate the difference between the fixed and smoothed hypoexpo-

nential approximations. We do not present u j(t) as it overlaps the two approximations. Furthermore, for
fixed t = t1, it is possible to view u j(t1),y

j
f (t1) and y

j
s(t1) as functions of j. In Fig. 1 (B), we show this

function for both approximations and the exact solution. For the fixed hypoexponential approximation
(derived in Theorem 3.1) y

j
f (t1), we generally lose continuous dependence on the parameter j at integer

values as the rates of the Erlang distribution {λi, f }n−2
i=1 = ⌈ j⌉/τ do not vary continuously but rather jump
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Figure 1. Trajectory dependence on the shape parameter j is not smooth. (A) The trajectory y
j∗
f (t) and y

j∗
s (t) for j∗ = 2.1

calculated with the fixed (black) and smoothed (red) hypoexponential approximations in (3.6). The exact solution u j∗ (t) is not
shown as it overlaps with the two curves. (B) The graph of j 7→ u j(t1) with t1 = 4, using the fixed (black) and smoothed (red)
parameterizations of the hypoexponential approximation, and the exact solution (blue).

as j crosses each integer. However, using the smoothed hypoexponential parameterization, the rates λi,s

vary continuously with j which appears to reduce the size of jumps at integer values of j. However, an
analytical study of these jumps is beyond the scope of the current work.

3.5 Approximation error estimates

The natural phase space for distributed DDEs such as (1.1) or (3.3) is the space of exponentially
weighted functions C0,ρ [Cassidy, 2021, Diekmann & Gyllenberg, 2012]. In general, solutions evolving
from the space of X measurable functions remain integrable with respect to X [Cassidy & Humphries,
2019, Hale, 1974].

Now, for the rate parameter of the gamma distribution given by a = j/τ , solutions of the gamma
distributed DDE will satisfy the growth bound in (1.2) with ρ < a. Furthermore, solutions Y (t) of
linear gamma distributed DDE (1.1) are of the form Y (t) = Ceϕt with ℜ(ϕ) < a. To illustrate the
increased accuracy offered by the hypoexponential approximation, we use this linear case to derive
explicit bounds for the approximation error induced by replacing the gamma distribution in (1.1) by an
Erlang distribution as in (3.1) or by the hypoexponential approximation in (3.3). In both cases, we will
express the approximation error as the difference of the MGFs evaluated at ϕ and we will see that the
hypoexponential approximation has one fewer term than the Erlang approximation.
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3.5.1 Erlang distributed DDE In the Erlang approximation described in Section 3.1, we approxi-
mated the convolution integral in the gamma distributed DDE

∫ ∞

0
Y (t − s)g j

a(s)ds ≈
∫ ∞

0
Y (t − s)g

[ j]
b (s)ds

where b = [ j]/τ is the rate of the approximating Erlang distribution, and the Erlang distributed
DDE (3.1) is otherwise identical to (1.1). Thus, to compute the error induced by this approximation, we
consider the difference between the convolution integrals where Y (t) =Ceϕt

ErrE (t) =

∣

∣

∣

∣

∫ ∞

0
Ceϕte−ϕs

(

g j
a(s)−g

[ j]
b (s)

)

ds

∣

∣

∣

∣

.

We immediately obtain

ErrE (t) = |Y (t)| |MX (−ϕ)−ME (−ϕ)|

where the MGF of the gamma distributed random variable is given by

MX (−ϕ) =
a j

(a+ϕ) j
=

1
(1+ϕ/a) j

,

and ME (−ϕ) is the MGF of the Erlang distribution

ME (−ϕ) =
b[ j]

(b+ϕ)[ j]
=

1
(1+ϕ/b)[ j]

.

Then,

ErrE (t) = |Y (t)|
∣

∣

∣

∣

∣

(1+ϕ/b)[ j]− (1+ϕ/a) j

(1+ϕ/a) j(1+ϕ/b)[ j]

∣

∣

∣

∣

∣

. (3.7)

Using the binomial theorem and the fact that the Erlang distribution is parameterized so that the first
moment matches that of the gamma distribution, we can write the numerator in (3.7) as

(1+ϕ/b)[ j]− (1+ϕ/a) j =
[ j]

∑
k=2

[(

j

k

)

(ϕ

a

)k

−
(

[ j]

k

)

(ϕ

b

)k
]

+
∞

∑
k=[ j]+1

(

j

k

)

(ϕ

a

)k

=
[ j]

∑
k=2

[

(

j

k

)

−
(

[ j]

k

)(

j

[ j]

)k
]

(ϕ

a

)k

+
∞

∑
k=[ j]+1

(

j

k

)

(ϕ

a

)k

.

Thus, the approximation error in the Erlang approximation case (see Section 3.1) is order (ϕ/a)2. We
see from the above analysis that if j ∈ N, then (3.7) is identically 0 and the approximation is exact.

3.5.2 Hypoexponential approximations Turning to the two moment approximations derived in Theo-
rems 3.1 and 3.2, we see that the approximation error induced by integrating with respect to the random
variable Y is given by

ErrY (t) =

∣

∣

∣

∣

∫ ∞

0
Ceϕte−ϕs

[

g j
a(s)− fY (s)

]

ds

∣

∣

∣

∣

.
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Then, we obtain

ErrY (t) = |Ceϕt |
∣

∣

∣

∣

∫ ∞

0
e−ϕs

[

g j
a(s)− fY (s)

]

ds

∣

∣

∣

∣

= |Ceϕt | |MY (−ϕ)−MX (−ϕ)| , (3.8)

where MY (−ϕ) is the MGF of the random variable Y and is given by

MY (−ϕ) =
1

(1+ϕ/λ )n−2(1+ϕ/µ)(1+ϕ/ν)
.

Then, we see

|MY (−ϕ)−MX (−ϕ)|=
∣

∣

∣

∣

(1+ϕ/a) j − (1+ϕ/λ )n−2(1+ϕ/µ)(1+ϕ/ν)

(1+ϕ/λ )n−2(1+ϕ/µ)(1+ϕ/ν)(1+ϕ/a) j

∣

∣

∣

∣

. (3.9)

By recalling that ϕ/a < 1 and the fact that the first two moments agree, we use the binomial theorem to
write the numerator in (3.9) as

(1+ϕ/a) j − (1+ϕ/λ )n−2(1+ϕ/µ)(1+ϕ/ν) =

n−2

∑
k=3

[(

j

k

)

1
ak

−
(

n−2
k

)

1
λ k

−
(

1
µ
+

1
ν

)(

n−2
k−1

)

1
λ k−1 − 1

µν

(

n−2
k−2

)

1
λ k−2

]

ϕk

+

[(

j

n−1

)

1
an−1 −

(

n−2
n−1

)

1
λ n−1 −

(

1
µ
+

1
ν

)

1
λ n−2 − 1

µν

(

n−2
n−3

)

1
λ n−3

]

ϕn−1

+

[(

j

n

)

1
an

− 1
µν

1
λ n−2

]

ϕn +
∞

∑
k=n+1

(

j

k

)

(ϕ

a

)k

.

Now, recalling that λ = n/τ and a = j/τ , we have

n−2

∑
k=3

[(

j

k

)

1
ak

−
(

n−2
k

)

1
λ k

−
(

1
µ
+

1
ν

)(

n−2
k−1

)

1
λ k−1 − 1

µν

(

n−2
k−2

)

1
λ k−2

]

ϕk

=
n−2

∑
k=3

[(

j

k

)

− jk

nk

(

n−2
k

)(

1+
k

n− k−1
λ

(

1
µ
+

1
ν

)

+
k(k−1)

(n− k)(n− k−1)
λ 2

µν

)]

(ϕ

a

)k

=
n−2

∑
k=3

[(

j

k

)

− jk

nk

(

n−2
k

)(

1+
2k

n− k−1
+

k(k−1)
(n− k)(n− k−1)

λ 2

µν

)]

(ϕ

a

)k

.

Thus, as µ,λ , and ν are entirely determined by the mean and variance of the gamma distribution, we
can write the error (3.8) as

ErrY (t) = |Y (t)|
∣

∣

∣

∣

∣

∞

∑
k=3

Ck(τ,σ
2)
(ϕ

a

)k

∣

∣

∣

∣

∣

where ϕ/a < 1. Accordingly, we see that the approximation error is order (ϕ/a)3, or one order bet-
ter than the Erlang distributed DDE approximation. We also see that for j ∈ N, as µ = ν = λ as in
Section 3.2, MY = MX so (3.9) is identically 0, and the approximation is exact.
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3.6 On three moment matching

The ODE approximations in this section aim to replicate the gamma distributed DDE by matching the
first (in the case of the Erlang approximation) or first and second moments (in the hypoexponential
approximations) of the underlying gamma distribution. It is natural to ask if a similar technique could
allow for a more accurate approximation by matching the first three moments. To address this question,
it is simpler and equivalent to match first three cumulants, rather than moments, of gamma and hypo-
exponential. The cumulant generating function of a gamma distributed random variable X with shape
and rate parameters j,a is given by

KX (θ) =− j log(1−θ/a) = j
∞

∑
m=1

(θ/a)m

m
.

Therefore, the cumulants κX
m = dm

dθ m KX (θ)
∣

∣

∣

θ=0
are

κX
m =

j

am
(m−1)!.

Conversely, the cumulant generating function of hypoexponential distributed random variable Y ∼
HypoExp(a1,a2, . . . ,an) is given by

KY (θ) =−
n

∑
k=1

log(1−θ/ak) =
∞

∑
m=1

θ m

m

n

∑
k=1

1
am

k

.

Therefore, the cumulants of Y are given by

κY
m = (m−1)!

n

∑
k=1

1
am

k

.

Now, we show that if a hypoexponential distribution matches the first three cumulants, and thus mo-
ments, of Gamma( j,a), then j ∈ N.

THEOREM 3.3 Let X ∼ Gamma( j,a) be a gamma distributed random variable and assume that Y ∼
HypoExp(a1,a2, . . . ,an) such that κY

m = κX
m for m = 1,2,3. Then, Y ∼ X ∼ Erlang(n,a).

Proof. Without loss of generality by scaling, we take a = 1. Write xi = 1/ai, so that xi > 0. The
following system of equations for the first three cumulants must hold

x1 + x2 + · · ·+ xn = j

x2
1 + x2

2 + · · ·+ x2
n = j

x3
1 + x3

2 + · · ·+ x3
n = j.

Now, consider the sum S = ∑
n
i=1 xi(xi −1)2. We have xi(xi −1)2 = x3

i −2x2
i + xi and therefore

S =
n

∑
i=1

x3
i −2

n

∑
i=1

x2
i +

n

∑
i=1

xi = j−2 j+ j = 0.

As all terms of S are non-negative, we must have xi(xi −1)2 = 0 for all i. As xi > 0, we obtain xi = 1 for
all i. It follows that j = n ∈ N and X ∼ Erlang(n,1). �
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We therefore conclude that it is not possible to match the first three moments of a generic gamma
distribution using a hypoexponential approximation. This three moment matching problem has been
extensively studied [Bobbio et al., 2005, Osogami & Harchol-Balter, 2006]. A generalized hypoexpo-
nential random variable corresponding to a Markov chain where each stage is visited at most once, i.e.
the linear chain flows in one direction but some stages can be skipped, can be used to match the first
three moments of gamma distributed random variable. However, these generalized hypoexponential
random variables are more demanding to implement than the hypoexponential approximations derived
in Theorems 3.1 and 3.2. In short, their output varies depending on normalized moments, require at
least as many parameters as the hypoexponential approximations, and the non-zero probability of skip-
ping stages does not allow for a simple skip-free Markov chain interpretation as in the hypoexponential
approximation.

4. Numerical results

Here, we illustrate the analytical results of Section 2 and evaluate the hypoexponential approximations
derived in Section 3.2 by comparing the direct simulation of (1.1) using the FCRK method in Section 2
against the numerical simulation of the approximate ODE (3.3) and the Erlang distributed DDE (3.1).
We first show that the FCRK method for (1.1) is accurate to the order demonstrated in Theorem 2.5.
We then test the accuracy of the hypoexponential approximation derived in Section 3.2 using our FCRK
method to provide reference solutions of generic gamma distributed DDEs.

4.1 Numerical verification of the FCRK method

We test the 4th order FCRK numerical solver by comparing the output of the FCRK method for (1.1)
against differential equations with known, or reference, solutions. To obtain these known solutions, we
first consider (1.1) in the case where the shape parameter j is an integer. The gamma distribution in
(1.1) is thus an Erlang distribution so, using the linear chain technique, we derive an equivalent ODE
formulation. This equivalent ODE formulation can either be solved analytically or simulated using
established techniques for systems of ODEs as implemented in Matlab to give the reference solution
U(t).

We simulate the Erlang distributed DDE (1.1) using our 4th order FCRK method to compute the
numerical solution X(t) for a given step size h. Then, to compute the accuracy of our simulation, we
compute the L∞([t0,T ]) error between the solution of (1.1), as obtained using our FCRK method, and the
reference solution, obtained via the equivalent ODE. In general, when using a pth order FCRK method,
the error between the numerical solution, X(t), and the reference solution, U(t), satisfies

E(h) = max
t∈[t0,T ]

|X(t)−U(t)|6Chp,

where h is the stepsize of the FCRK method. The error E(h) then satisfies

log(E(h))6 log(C)+ p log(h).

Therefore, we consider the error E as a function of the step size h of the FCRK method and thus compute
E(h) for a various values of h. The slope of log(E) as a function of log(h) is the order p of the FCRK
method.
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4.1.1 Linear test problem We first consider the linear test problem

d
dt

X(t) =
4
5

X(t)− 11
10

∫ ∞

0
X(t − s)g j

a(s)ds for t > 0

X(s) = 1 s 6 0







(4.1)

where we set j ∈ N, and choose a = j so the mean delay time τ = 1. In this case, we can use the linear
chain technique to reduce the Erlang distributed DDE in (4.1) to

d
dt

U(t) =
4
5

U(t)− 11
10

aA j(t)

d
dt

A1(t) =U(t)−aA1(t)

d
dt

An(t) = a[An−1(t)−An(t)] for n = 2,3, ..., j



























(4.2)

where

An(t) =
∫ ∞

0

Y (t − s)

a
gn

a(s)ds for n = 2,3, ..., j.

Equation (4.2) is a linear system of ODEs and has an exact solution given by matrix exponentials.
For j = 1, the analytical solution is

X(t) = e−t/10

[

cos

(√
29

10
t

)

− 2
29

sin

(√
29

10
t

)]

.

Thus, we simulate (4.1) using the 4th order FCRK method described in the preceding section for
j = 1 and compare it against the analytic solution of (4.2) for j = 1 on the interval t ∈ [0,10]. Further,
we simulate (4.1) for j = 4 and j = 7. To compute reference solutions for j = 4,7, we use the 4th order
variable step size RK solver in Matlab [MATLAB, 2017] with absolute and relative error tolerance of
10−12. We show the error E(h) on the log-log scale and the solution of the DDE in Figure 2.

4.1.2 Non-linear test problem We next consider the non-linear test problem

d
dt

X(t) = X(t)− X(t)

K

∫ ∞

0
X(t − s)g j

a(s)ds for t > 0

X(s) = 1 s 6 0







(4.3)

where we set K = 2, take j ∈ N, and choose τ = 2.25 which gives a = j/2.25. Once again, we set

Am(t) =
∫ ∞

0

Y (t − s)

a
gm

a (s)ds for m = 2,3, ..., j,
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Figure 2. Convergence plots for the linear test problem (4.1). We plot log10(maxt∈[0,10 |X(t)−U(t)|) as a function of log10(h).
The slope of log10(maxt∈[t0 ,T ] |X(t)−U(t)|) gives the convergence rate. X(t) is the simulation of (4.1) using the 4th order
FCRK method from Section 2 with fixed step size h and U(t) is the solution of the equivalent ODE (4.2). Figure (A) shows the
comparison against the exact solution when j = 1 while figures (B) and (C) show the error between X(t) and U(t) for j = 4 and
j = 7, respectively. Figure (D) shows the solution of the DDE for each test case. The solution U(t) of the equivalent ODE (4.2)
is calculated using the 4th order RK method RK45 in Matlab with relative and absolute error tolerance of 10−12.
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and use the linear chain technique to reduce (4.3) to

d
dt

Y (t) = Y (t)− Y (t)(aAn(t))

K
d
dt

A1(t) = Y (t)−aA1(t)

d
dt

Am(t) = a[Am−1(t)−Am(t)] for m = 2,3, ..., j.



























(4.4)

Equation (4.4) is a non-linear system of ODEs so we do not expect to find an analytical solution.
Rather, we once again solve the system of ODEs (4.4) using the 4th order variable step size RK solver in
Matlab [MATLAB, 2017] . We solve (4.4) with tolerance of 10−12, and compare this numerical solution
against the numerical solution of (4.3) obtained using the FCRK method described in Section 2 on the
interval t ∈ [0,10]. We show the error E(h) on the log-log scale for j = 3,8, and 14 and the solution of
the DDE in Figure 3.

4.1.3 Linear gamma distributed DDE Thus far, we have tested the FCRK method developed in sec-
tion 2 by simulating Erlang distributed DDEs and comparing the numerical solution against the solution
of the equivalent ODE system. Here, we test our numerical method against a known solution of a gamma
distributed DDE with j 6∈ N. In short, we consider

d
dt

U(t) = ΦU(t)+Θ

∫ ∞

0
U(t − s)g j

a(s)ds. (4.5)

We note that U(t) = 0 is a solution (4.5) and make the ansatz U(t) = Ceλ t . Inserting U(t) gives the
characteristic function

∆(λ ) = Φ −λ +ΘL [g j
a](λ )

where L [ f ](s) is the Laplace transform of the function f evaluated at s. It follows that L [g j
a](λ ) =

MX (−λ ) for moment generating function of the gamma distributed random variable evaluated at −λ .
Thus, a solution of (4.5) must satisfy

∆(λ ) = λ −Φ −Θ
a j

(a+λ ) j
= 0 (4.6)

which implies

0 = (Φ −λ )(a+λ ) j +Θa j.

Now, for simplicity, we set Φ =−a so that (a+λ ) j+1 =Θa j and

λ =
(

Θa j
)1/( j+1)−a (4.7)

is a solution of the characteristic function where we must impose Θ < 2 j+1a. The corresponding eigen-
function U(t) = ceλ t is the solution of the linear distributed DDE for the history function ψ(s) = ceλ s.
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Figure 3. Convergence plots for the non-linear test problem (4.3). We plot log10(maxt∈[0,10] |X(t)−U(t)|) as a function of
log10(h). The slope of log10(maxt∈[t0 ,T ] |X(t)−U(t)|) gives the convergence rate. X(t) is the simulation of (4.3) using the 4th
order FCRK method from Section 2 with fixed step size h and U(t) is the solution of the equivalent ODE (4.4). Figures (A), (B)
and (C) show the error between X(t) and U(t) for j = 3,8,14, respectively. Figure (D) shows the solution of the DDE for each test
case. The solution U(t) of the equivalent ODE (4.4) is calculated using the 4th order RK method RK45 in Matlab with relative
and absolute error tolerance of 10−12.
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Figure 4. Convergence plots for the linear gamma distributed DDE test problem (4.5). We plot log10(maxt∈[0,10] |X(t)−U(t)|) as a

function of log10(h) where X(t) is the simulation of (4.5) using the 4th order FCRK method from Section 2 and U(t) = ceλ t is the
analytical solution of the linear distributed DDE. In figure (B), the error reaches machine precision for log10(h)<−2. Figures (A),
(B) and (C) show the error between X(t) and U(t) for the parameter triples (τ, j,Θ) given by (4.65,2.15,0.5),(3.76,3.70,0.35)
and (4.25,2.25,0.71) respectively.

We have thus determined an analytical solution to the linear gamma-distributed DDE (4.5) in against
which we can compare the numerical solution obtained by the FCRK method.

Now, we consider parameter triples (τ, j,Θ), set Φ = −a = − j/τ and calculate λ by tak-
ing the principal root in (4.7). In Figure 4, we show the convergence of the numerical solu-
tion of (4.5) obtained using the FCRK method to the analytical solution for the parameter triples
(4.65,2.15,0.5),(3.76,3.70,0.35) and (4.25,2.25,0.71) on the interval t ∈ [0,10].

We note that for the DDEs (4.1) and (4.3) we observe the predicted convergence rate with approxi-
mate slope 4 until we reach numerical precision. For the DDE (4.5) the convergence rate is higher than
expected and close to 5. However, the DDE (4.5) is linear and its solution is particularly simple being
composed of a single exponential function. Numerical analysis is replete with examples of methods
which exhibit a higher than required convergence order for certain problems, and this seems to just be
another such example. We therefore conclude that the FCRK method derived in Section 2 exhibits the
fourth order global accuracy demonstrated in Theorem 2.5. These numerical tests, when combined with
Theorem 2.5, indicate that we can use our FCRK method to provide reference solutions when comparing
the Erlang and hypoexponential approximations.

4.2 Numerical evaluation of Erlang and hypoexponential approximations

Having confirmed the accuracy of our FCRK method to solve the distributed DDE (1.1), we now
evaluate the Erlang and hypoexponential approximations for the two test problems (4.1) and (4.3) for
j ∈ Q/N. To test the accuracy of the Erlang approximation from Section 3.1, we use (3.2) with shape
parameter [ j] and corresponding rate [ j]/τ . We also consider the fixed hypoexponential approximation
as described in Section 3.2 with n = max{⌈ j⌉,2} and the rates µ f and ν f as given in Theorem 3.1. In
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these simulations, the fixed and smoothed approximations are indistinguishable, so we only show the
fixed approximation corresponding to Y f .

In the following simulations, we consider (4.1) and with τ = 1, j = 2.57,3.48,6.5, and a non-
constant history function given by ψ(s) = 0.1e0.1s for s < 0. We simulate the non-linear test problem
(4.3) for j = 2.82,4.72, and 6.45 with a constant history function ψ(s) = 0.5.

In all cases shown in Figure 5, the Erlang approximation has a visibly larger error than the hypoexpo-
nential approximations. In fact, there is no perceptible difference between the fixed (and consequently,
the smoothed) hypoexponential approximation and the solution of the gamma distributed DDE. While
we only present the simulation results for a limited number of test problems, the significantly improved
approximation by the hypoexponential approximation, compared against the Erlang approximation, was
confirmed by a number of other test cases.

4.2.1 Effects on linear stability To study the effects of replacing the gamma distributed DDE (1.1)
by an Erlang or either hypoexponential approximation, we consider the linear gamma distributed DDE
given in (4.5). We note that X(t) = 0 is an equilibrium solution of the linear DDE, and it follows that
this linear DDE represents the linearised version of

d
dt

X(t) = F

(

X(t),
∫ ∞

0
X(t − s)g j

a(s)ds

)

where F(0,0) = 0 and Φ = ∂x1 F(x1,x2)|(0,0) and Θ = ∂x2 F(x1,x2)|(0,0). The principle of linearised
stability for delay equations with infinite delay was established by Diekmann & Gyllenberg [2012]
and, in short, indicates that the qualitative behaviour of a DDE with infinite delay near an equilibrium
solution is determined by the linearised version of the DDE.

As a final test of the Erlang and hypoexponential approximations, we consider two specific examples
with τ = 1 and parameters j,Φ , and Θ , and chosen near a bifurcation point. We identified the bifurcation
point j∗ by following the same analysis as in Campbell & Jessop [2009] and Jessop & Campbell [2010]
to calculate the region of stability of the equilibrium solution. There, the authors used eiλ as a solution
ansatz for the linear DDE (4.5) and calculated conditions to ensure that the characteristic equation has a
purely imaginary pair of roots.

In Figure 6, we show that the hypoexponential approximation has the same stability properties as the
solution of the distributed DDE, but that the Erlang approximation does not have the same stability prop-
erties. Essentially, for values of j near the bifurcation point j∗, the Erlang approximation requires round-
ing j to the nearest integer, which may fall on the opposite side of the bifurcation point, so j < j∗ < [ j].
Consequently, the Erlang approximation does not replicate the same qualitative behaviour as the gamma
DDE. While we did not observe qualitative disagreement between the hypoexponential approximation
and the gamma DDE in our simulations, it is possible for the hypoexponential approximation to fail
in the same manner, although the Erlang approximation would also fail in this case. In Figure 6 (A),
we set j = 2.5,Φ = 0.89, and Θ = −1.15, while in Figure 6 (B), we set j = 4.495,Φ = 0.825, and
Θ =−1.175. We parameterize the Erlang and hypoexponential approximations as previously described
in Sections 3.1 and 3.2.

These examples indicate that using an Erlang approximation to replace the gamma distributed DDE
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Figure 5. Comparison of ODE approximations to the gamma distributed DDE (1.1) using the Erlang approximation in equa-
tion (3.2) or the fixed hypoexponential approximation Y f in (3.5). In all cases, the solution of the gamma distributed DDE as
solved using the FCRK method is in solid blue, the solution of the fixed hypoexponential two moment approximation is in dashed
orange and the solution of the Erlang approximation is in purple. Figures A, B, and C show the solution of the linear test problem
(4.1) for j = 2.57,3.48 and j = 6.5, respectively. Figures D, E, and F show the solution of the nonlinear test problem (4.3) for
j = 2.82,4.72 and j = 6.45, respectively.



30 of 48 T. CASSIDY, P. GILLICH, A.R. HUMPHRIES AND C.H. VAN DORP

0 50 100 150 200 250

Time

-20

-15

-10

-5

0

5

10

15

20

y(
t)

DDE solution

Two Moment

Erlang

0 50 100 150 200 250

Time

-100

-50

0

50

100

y(
t)

DDE solution

Two Moment

Erlang

A B

Figure 6. Comparison of ODE approximations to the gamma distributed DDE (4.5) using the Erlang approximation in equa-
tion (3.2) or the fixed hypoexponential two moment approximation in (3.5) showing that the Erlang approximation does not have
the same stability properties as the gamma distributed DDE or the hypoexponential approximation. In all cases, the solution of
the gamma distributed DDE as solved using the FCRK method is in solid blue, the solution of the hypoexponential approximation
is in dashed orange and the solution of the Erlang approximation is in purple.

can introduce extreme approximation error and may not replicate the qualitative behaviour of the orig-
inal gamma distributed DDE. However, these simulations also indicate that the hypoexponential ap-
proximation faithfully replicates the dynamics of the linearised gamma distributed DDE. In this sense,
these results strongly advocate for the use of the hypoexponential approximation derived in Section 3.2
rather than the usual Erlang approximation when attempting to approximate the solution of a gamma
distributed DDE with an ODE approximation.

5. Statistical inference

One benefit of the hypoexponential approximation of a gamma-distributed DDE is that it is easily im-
plemented in existing inference software. Here we demonstrate a possible implementation, using the
simple and ubiquitous example of the Kermack-McKendrick (SIR) model from epidemiology, and the
probabilistic programming language Stan [Carpenter et al., 2017]. For this example, we deliberately
choose a simplistic scenario, but the same ideas can be used for more realistic models. We first show
how one can formulate the SIR model as a system of DDEs. Then we derive the hypoexponential ODE
approximation using the machinery developed above. We then show how one can build a simple sta-
tistical model for two independent data streams that both inform the model’s parameters (including the
shape parameter j). Finally, we fit the model to simulated data.
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5.1 The Kermack-McKendrik model as a system of DDEs

The SIR model describes fractions of susceptible (S), infected (I) and recovered (R) individuals in a pop-
ulation affected by a pathogen. In our version, the duration of the infectious period TI is Gamma( j, j/τ)
distributed. Hence, in this example, we ignore individuals that were exposed to the pathogen, but not yet
infectious. The mean duration of the infectious period is E[TI ] = τ and the variance is Var[TI ] = τ2/ j.
The infection rate and the initial fraction infected in the population are denoted β and ε respectively.
The model is then given by the following system of DDEs

d
dt

S(t) =−Z(t)

d
dt

I(t) = Z(t)−
∫ ∞

0
Z(t − s)g j

j/τ
(s)ds

Z(t) =

{

βS(t)I(t) if t > 0
εδ (t) if t 6 0 .

(5.1)

The variable Z(t) represents the instantaneous incidence, which is equal to βS(t)I(t) for t > 0, and we
define Z(t) = εδ (t) for t 6 0 to jump-start the epidemic [Champredon et al., 2018]. Here δ (t) is the
Dirac delta measure at t = 0. In addition, when t < 0 we set S(t) = 1 and I(t) = 0. Notice that I and S

have a discontinuity at t = 0, and I(0+) = ε , and S(0+) = 1− ε .

To understand why the system of DDEs (5.1) is correct, first notice that the equation for dS/dt

is the same as in the standard ODE SIR model: susceptible individuals are depleted at a rate equal
to the incidence βSI, assuming mass action. The equation for dI/dt is a bit less intuitive. The first
term Z = βSI represents influx of recently infected susceptible individuals, and the second term is a
convolution integral of the same time-delayed incidence, and the PDF of TI . Hence, this convolution
term represents recovery of individuals at time t that were infected s time units ago, with the likelihood
of recovery s time units from infection given by g

j

j/τ
(s).

A more formal way to derive (5.1) is to start with the renewal equation formulation of the Kermack-
McKendrick model (see e.g. [Diekmann et al., 2012])

Z(t) = βS(t)
∫ ∞

0
Z(t − s)P[TI > s]ds ,

d
dt

S(t) =−Z(t) (5.2)

where P[TI > t] =
∫ ∞

t g
j

j/τ
(s)ds is the survival function of the gamma distribution. The fraction of infec-

tious individuals at time t is then given by I(t) =
∫ ∞

0 Z(t − s)P[TI > s]ds, an integral over all individuals
infected at time t − s that are still infectious at time t. In order to derive DDE (5.1), we differentiate I(t)
as follows

d
dt

I(t) =
d
dt

∫ t

−∞
P[TI > t − s]Z(s)ds = P[TI > 0]Z(t)+

∫ t

−∞

d
dt
P[TI > t − s]Z(s)ds

= Z(t)−
∫ t

−∞
g

j

j/τ
(t − s)Z(s)ds = Z(t)−

∫ ∞

0
Z(t − s)g j

j/τ
(s)ds .

Here, differentiating under the integral sign is justified as g
j

j/τ
is bounded (for j > 1) and bounded

functions are integrable with respect to the measure Z(t)dt on the interval (−∞, t].
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5.2 The hypoexponential approximation of the DDE SIR model

We now approximate DDE (5.1) with a system of ODEs using the method developed in Section 3.2.

LEMMA 5.1 Using the hypoexponential approximation, the above DDE model (5.1) can be replaced by
the following system of ODEs

dS

dt
=−βSI

dI1

dt
= βSI − γ1I1

dIi

dt
= γi−1Ii−1 − γiIi , i = 2, . . . ,n

(5.3)

where we write I = ∑
n
i=1 Ii, with n = ⌈ j⌉ and the rates γi are given by

1
γi

=















τ/n if i 6 n−2
τ
n

(

1+
√

n
2 j
(n− j)

)

if i = n−1

τ
n

(

1−
√

n
2 j
(n− j)

)

if i = n .

(5.4)

As initial condition, we take S(0) = 1− ε , I1(0) = ε , and Ii(0) = 0 for i = 2, . . . ,n.

Proof. We first approximate the gamma distribution Gamma( j, j/τ) with the hypoexponential distri-
bution with parameters (γ1, . . . ,γn) and then use the linear chain trick to approximate the convolution
integral Z ∗g

j

j/τ
. This results in the following system of ODEs

d
dt

S =−βSI

d
dt

I = βSI − γnIn

d
dt

I1 = βSI − γ1I1

d
dt

Ii = γi−1Ii−1 − γiIi, i = 2, . . . ,n.

(5.5)

The initial conditions for the auxiliary variables I1, . . . , In are given by

Ii(0) =
∫ ∞

0

εδ (−s)

γi

(Eγ1 ∗ · · · ∗Eγi
)(s)ds =

{

ε if i = 1
0 otherwise

which holds because (Eγ1 ∗· · ·∗Eγi
)(0) 6= 0 only if i= 1. Notice that ∑

n
i=1 dIi/dt = dI/dt and ∑

n
i=1 Ii(0)=

ε . Hence I(t) = ∑
n
i=1 Ii(t) for t > 0, and the equation for dI/dt in system (5.5) is redundant. �

5.3 A statistical model for epidemiological data

Reporting of incidence often happens at discrete time points t1, t2, . . . , and the reported quantity is the
accumulated number of cases observed between consecutive reporting times. Using the above model
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Figure 7. Simulated epidemic data and posterior predictive checks. (A) Simulated data Ck and the model prediction ∆SkM.
The dark-blue band represents the 95% credible interval, and the light-blue band the 95% prediction interval. (B) Simulated
serial intervals represented as a empirical survival function (black), and the fitted survival function for TG given by P[TG > t] =
∫ ∞

t h
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(5.1), we therefore use the cumulative incidence ∆Sk = S(tk−1)−S(tk) to simulate cases

Ck ∼ Poisson(∆Sk ·M) (5.6)

where M is a large (known) constant representing the catchment population size, and t1 < t2 < · · ·< tK
are (positive) reporting times, and we take t0 = 0. The simulated incidence data is shown in Fig 7A.
Conversely, given predictions of the model ∆S1,∆S2, . . . ,∆SK , we can compute the likelihood of data
C1,C2, . . . ,CK , using the probability mass function of the Poisson distribution.

In addition to time series of the number of reported cases, often other data is collected to inform an
epidemic model. For example, symptom onset data from transmission couples might be available. Such
data consists of the times of symptom onset of pairs of individuals A and B, for whom it is known that
A infected B (e.g. by means of genetic evidence). Transmission couple data gives information about the
length of the generation interval TG, which is defined as follows:

DEFINITION 5.1 Sample a random infected individual A from the population. Suppose that A was
infected at time tA by individual B, and suppose that B was infected at time tB. The generation interval
is then defined as

TG = tA − tB, (5.7)

hence, the time between infection of individuals A and B.

Notice that different definitions of TG exist in the literature; we refer to Svensson [2007] for a
discussion. In practice, the generation interval will almost never be observed, but can be approximated
by the serial interval, which is the time between symptom onset of individuals A and B.

Assuming that the duration of the infection is gamma distributed, the hypoexponential approxima-
tion method allows one to estimate the shape parameter of this distribution using both time series data
and transmission couple data simultaneously, i.e. using “evidence synthesis”. For this we still need a
likelihood function for the transmission couple data.
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LEMMA 5.2 As before, suppose that the length of the infectious period has a gamma distribution TI ∼
Gamma( j, j/τ). The probability density function of TG is given by

h
j

j/τ
(t)≡ Γ ( j, t j/τ)

τΓ ( j)

where Γ ( j,x)≡ ∫ ∞
x e−ss j−1ds is the (upper) incomplete gamma function.

Proof. Here, we present only a sketch of the proof. See Svensson [2007] and references therein for more
details. Let h(t) denote the probability density function of TG. As in Definition 5.1, consider a randomly
sampled individual A, infected at time tA, and consider all individuals infected at time tB = tA − t. Each
of these individuals had an equal chance of infecting A, as long as they are still infectious at time tA,
which is true with probability

P[TI > t] =
∫ ∞

t
g

j

j/τ
(s)ds. (5.8)

Therefore, the probability density h(t) must be proportional to P[TI > t]. To get a proper probability
density function, we must find the normalizing constant

∫ ∞

0
P[TI > t]dt = E[TI ] = τ. (5.9)

Hence, we find that

h(t) =
1
τ

∫ ∞

t
g

j

j/τ
(s)ds =

Γ ( j, t j/τ)

τΓ ( j)
(5.10)

which proves the lemma. �

Suppose that we have L observed serial intervals. Assuming for simplicity that symptom onset is
immediate, the distribution of the serial interval and generation interval are identical. The log-likelihood
of the data is now the sum of the log-likelihood of the case data C = (C1, . . . ,CK), and the log-likelihood
of the transmission-couple data T = (T1, . . . ,TL), given parameters θ = (β ,τ, j,ε) is

L [C,T |θ ] =
K

∑
k=1

log pM·∆Sk
(Ck)+

L

∑
ℓ=1

logh
j

j/τ
(Tℓ) (5.11)

where pµ(x) = e−µ µx/x! is the probability mass function of the Poisson distribution. To demonstrate
this approach, we simulated, in addition to observed cases C, a small number of generation times Tℓ ∼
h

j

j/τ
. The simulated serial interval data is shown in Fig 7B.

We then used Stan to fit the model defined by (5.11) to the simulated data in a Bayesian frame-
work, using improper flat priors for all parameters. In the Stan implementation, the DDE model (5.1)
was replaced by the system of ODEs (5.3). The fitted model predictions are shown together with the
simulated data in Fig 7A and B. The marginal and joint posterior densities of the model parameters are
shown in Fig 8, together with the ground-truth values used to simulate the data. For all parameters, the
ground-truth values are close to the modes of the marginal posterior distributions. We do find strong
correlations between all pairs of parameters indicating practical identifiability issues.

In the SIR model, the shape parameter j of the infectious period TI is hard to identify due to the
correlation with other parameters, as shown in Figure 8. Further complicating matters, the trajectories of
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the model as a function of j are very similar when j is large, which makes the likelihood of the incidence
data C not well behaved. This problem has also been described for in-vitro SHIV data [Beauchemin
et al., 2017]. To resolve such identifiability issues, it can be important to use other data to inform
the parameter j. In this example, we used synthetic serial intervals that could be observed during
real-life epidemics using transmission pairs. The distribution of these serial intervals depends on the
real-valued parameter j. Therefore, to fit the model to both incidence data and serial intervals in an
evidence synthesis framework, it is essential that the likelihood of the incidence data also depends on a
real-valued shape parameter j.

Furthermore, treating j as a first-class real-valued parameter in a statistical model can be important
for accurately and efficiently estimating important quantities as the basic reproduction number R0. For
certain childhood diseases, the dynamics of an epidemiological model depend on j is of a more qualita-
tive nature [Krylova & Earn, 2013] due to bifurcations. As we have shown in Figure 6, using an Erlang
instead of the hypoexponential approximation in such cases, can result in large deviations from the true
gamma distributed model.

The Stan model code and a python script to simulate data and fit the model are available on
https://github.com/lanl/gamma-dde.

6. Discussion

Gamma distributed DDEs, such as (1.1), occur throughout mathematical biology. However, modellers
often make simplifying assumptions due to the lack of appropriate numerical methods for infinite delay
models. In this work, we developed a FCRK method to numerically simulate gamma distributed DDEs,
established order conditions on the numerical quadrature technique to ensure accuracy of the method,
proved the convergence of the FCRK method, and illustrated our results with a series of test problems.
Despite the development of a FCRK method to simulate (1.1) in this work, many software packages rely
on ODE solvers to perform parameter fitting and statistical inference. Accordingly, we derived a finite
dimensional approximation of the gamma distributed DDE using a hypoexponential approximation and
used numerical simulation to show that this hypoexponential approximation outperforms the common
Erlang approximation. In particular, we demonstrated that using the Erlang approximation can lead
to qualitatively different behaviour than the hypoexponential approximation and the true solution of
the gamma distributed DDE. Finally, we implemented our finite dimensional approximation in Stan
[Carpenter et al., 2017] to fit synthetic data from a hypothetical epidemic.

The primary impediment towards the adaptation of FCRK methods to distributed DDEs with infinite
delay is the accurate and consistent evaluation of the convolution integral (2.8). Here, we developed a
change of variable that transforms the semi-infinite domain of integration to [0,1]. This change of vari-
ables is parametrized by certain parameters α and β , and we give conditions on α and β to ensure that
the transformed integrand is sufficiently smooth to implement standard quadrature rules in Lemma 2.1.
These conditions, and thus the change of variable and FCRK method, apply to other delay distributions
that decay exponentially. Accordingly, the FCRK method framework developed in this article should
extend with minimal changes to other distributed DDEs with infinite delays.

Until such FCRK methods are implemented in common software packages such as Stan, it is useful
to have accurate finite dimensional approximations of the distributed DDE (1.1). Many finite dimen-



36 of 48 T. CASSIDY, P. GILLICH, A.R. HUMPHRIES AND C.H. VAN DORP

Figure 8. Posterior marginal and joint density for the epidemic model parameters. Each dot in the joint density scatter plots
represents a Monte-Carlo sample from the posterior distribution. The color of the dots indicates the density. The black vertical
lines represent the ground-truth parameter values. The ground-truth parameters used for the simulation are j = 4, β = 0.5,
ε = 10−3, τ = 5, M = 103, and L = 102.
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sional approximations have been developed recently. The hypoexponential approximation described in
Section 3 offers a number of advantages over existing methods. While our analysis of the approximation
error does not allow for an explicit expression of the error introduced by replacing the gamma distribu-
tion by either the Erlang or hypoexponential distribution, the calculation in Section 4.2 offers a heuristic
explanation for why the hypoexponential distribution is more accurate than the common Erlang approx-
imation. As our numerical simulations show, there are gamma distributed DDE problems for which the
hypoexponential method gives the correct qualitative behaviour while the Erlang approximation exhibits
incorrect asymptotic stability behaviour. Moreover, unlike existing algorithms to parametrise phase type
distributions that do not give explicit values for the parameters of the phase type distribution, we explic-
itly derived the parameters of the hypoexponential distribution as a function of the mean and variance of
the underlying gamma distribution. This explicit expression for the rates allows for simple implemen-
tation in software packages such as Stan and we showed how to implement a simple SIR model with
a gamma distributed duration of infection. This example explicitly showed how the hypoexponential
approximation derived in Section 3 facilitates evidence synthesis that is necessary to identify important
model parameters.

Our work represents a step towards relaxing the assumption of Erlang distributed delays in, amongst
many other applications, infectious disease epidemiology. The FCRK method developed in this work al-
lows modellers to directly simulate a gamma distributed DDE if precise numerical results are necessary,
while the hypoexponential approximations offer a more accurate ODE representation of the underlying
DDE than the common Erlang approximation without any increase in complexity. Accordingly, we
have presented two distinct pathways to allow for the implementation of gamma distributed DDEs and
facilitate their use in mathematical biology or other fields of science.
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A. Smoothness conditions for the FCRK method

In the main text, we derived sufficient conditions on the change of variable

ω(t,s) = exp
(

− 1
α
(t − s)1/β

)

to ensure that the transformed convolution integral is sufficiently smooth to not introduce unnecessary
error in the FCRK method. Here, we prove that these conditions are sufficient by giving the proof of
Lemma 2.1.

We recall that X(t − s) is the solution of the gamma distributed DDE and g
j
a(s) is the PDF of the

gamma distribution with shape parameter j and rate parameter a, and we are calculating

∫ 1

0

βαβ ja j

Γ ( j)
X(t − (−α log(ω))β )exp

[

−a(−α log(ω))β
]

(− log(ω))β j−1 1
ω

dω =
∫ 1

0
u(t,ω)dω.

We first show that the derivatives of u(t,ω) with respect to ω can be computed inductively.

LEMMA A.1 Assume that X(t) is k times differentiable and take ω ∈ (0,ω(t, t − t0))∪ (ω(t, t − t0),1).
Then,

dn

dωn
u(t,ω) =

βa jαβ j

Γ ( j)

4n

∑
i=0

Cni
Xdni

(

t − [−α log(ω)]β
) exp

[

−a(−α log(ω))β
]

(− log(ω))β j−(n+1)+bni

ωn+1

where Cni
is a constant depending only on ni, β > 1,bni

> 0,α > 0 and dni
is an integer between 0 and

n, inclusive.

Proof. The proof is by induction on the order of the derivative n. The n = 0 case follows immediately
from the definition of u(t,ω), while the n+1st case comes from term by term differentiation with

C(n+1)4i−3
=Cni

αβ β ; C(n+1)4i−2
=Cni

aαβ β ; C(n+1)4i−1
=Cni

(β j− (k+1)+bki
; C(n+1)4i

=−Cni

b(n+1)4i−3
= bni

+β ; b(n+1)4i−2
= bni

+β ; b(n+1)4i−1
= bni

; b(n+1)4i
= bni

+1;
d(n+1)4i−3

= d(n)i
+1; d(n+1)4i−2

= dni
; d(n+1)4i−1

= dni
; d(n+1)4i

= dni
.

�

We now must show that u(t,ω) is a bounded function of ω on [0,1]. Take ε > 0 and consider the
compact interval Ω away from 0, Ω = [ε,1]. We note that u(t,ω) is a product of continuous functions,
and thus continuous, so the image of this compact set is compact and thus bounded. Then, we consider
the interval [0,ε), and define

ξ (x) = exp
(

−a[−α log(x)]β
)

(−α log(x))γ 1
xδ

,
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for δ ,γ > 0. We note that, for δ = n+ 1 and γ = β j− (n+ 1)+ bni
, ξ (x) appears in the derivative of

u(t,ω). Now, ξ (x)> 0 for x ∈ (0,1) and we compute

lim
x→0

−αx log(x) = 0.

Thus, for x sufficiently close to 0 and γ > 0, we have (−α log(x))γ < 1/xγ and we can therefore bound
ξ (x) from above as

ξ (x)6 exp
(

−a[−α log(x)]β
) 1

xδ+γ
= exp

[

−(δ + γ) log(x)−a[−α log(x)]β
]

.

Now, we multiply by |X(t − [−α log(x)]β )| so

0 6 lim
x→0

ξ (x)
∣

∣

∣
X(t − [−α log(x)]β )

∣

∣

∣

6 lim
x→0

exp
[

(δ + γ)[−α log(x)]−a[−α log(x)]β
]∣

∣

∣
X(t − [−α log(x)]β )

∣

∣

∣
.

Then, as x → 0, we have ν =−α log(x)→ ∞. Recalling that the weight parameter of the function space
C0,ρ satisfies ρ < a, we set θ = a−ρ > 0 and thus obtain

lim
x→0

exp
[

(δ + γ)[−α log(x)]−a[−α log(x)]β
]∣

∣

∣
X(t − [−α log(x)]β )

∣

∣

∣

= lim
ν→∞

exp
[

δ + γ

α
ν −θνβ

]

∣

∣

∣
exp
[

ρ(t −νβ − t)
]

X(t −νβ )
∣

∣

∣
.

Then, as β > 1, we immediately see

lim
ν→∞

exp
[

δ + γ

α
ν −θνβ

]

= 0,

so ξ (x) is bounded and it follows from the definition of the space C0,ρ that

e−ρt lim
ν→∞

exp
[

ρ(t −νβ )
]

X(t −νβ ) = 0

for all t. We thus conclude that

0 6 lim
x→0

ξ (x)
∣

∣

∣
X(t −νβ )

∣

∣

∣
6 lim

ν→∞
exp
[

δ + γ

α
ν −aνβ

]

∣

∣

∣
X(t −νβ )

∣

∣

∣
= 0.

It follows that ξ (x)X(t −νβ ) and thus the integrand u(t,ω) is bounded on the entire interval [0,1]. The
condition γ > 0 is crucial in the above calculation, as it implies that β j− (n+1)+bni

> 0, and leads to
the result.

LEMMA A.2 Assume that X(t) is k times differentiable and set

β =
k+1

j
+1 and α =

j+1
a1/β

. (A.1)
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Then, u(t,ω) is k times differentiable in ω for ω ∈ (0,ω(t, t − t0))∪(ω(t, t − t0),1). Further, if the k−th
derivative of X(t), X (k)(t), is bounded for t > t0, then there exists M such that

∣

∣

∣

∣

∂ k

∂ωk
u(t,ω)

∣

∣

∣

∣

< M

for ω ∈ (0,ω(t, t − t0))∪
(

ω−1(t, t − t0),1
)

.

Proof. We recall that bni
> 0, so taking β = k+1

j
+1 ensures that β > 1 and β j− (n+1)+bni

> 0. The

bound of u(k) follows from the boundedness of ξ (x) demonstrated previously. �

B. The smoothed hypoexponential approximation

Here, we give the proof of Theorem 3.2 that established the rates of smoothed hypoexponential approx-
imation. As in the main text, let τ denote the mean of a gamma distributed random variable X , and
let j denote the shape parameter, such that X has variance σ2 = τ2/ j. We write a = j/τ for the rate
parameter, and n = ⌈ j⌉ for the smallest integer greater than j. We recall the definition of the smoothed
hypoexponentially distributed random variable Ys with the same mean and variance as X

THEOREM B.1 Let X be a Gamma( j,a)-distributed random variable where j /∈N. Consider the hypo-
exponentially distributed random variable Ys with rate parameters (λs,1, . . . ,λs,n−2,µs,νs). Recall that
{ j}= j−⌊ j⌋> 0 as j /∈ N, set λs,1 = · · ·= λs,n−2 = j/τ , and define µs and νs by

1
µs

=
τ

2 j

(

1+{ j}+
√

1−{ j}2

)

1
νs

=
τ

2 j

(

1+{ j}−
√

1−{ j}2

)

.

(B.1)

Then X and Ys have the same first two moments.

Proof of Theorem B.1. The mean of X and Ys are given by E[X ] = τ and

E[Ys] = κY
1 =

n

∑
k=1

a−1
k = (n−2)

τ

j
+2 · τ

2 j
(1+{ j}) = τ

j
(n−1+{ j})

because the square-roots in Eq (B.1) cancel. Now using the fact that n = j−{ j}+ 1, we indeed find
that E[Y ] = τ . The variance of X is equal to Var[X ] = τ2/ j and the variance of Ys is given by

Var[Ys] = κYs
2 = (n−2)

τ2

j2 +
1

a2
n−1

+
1
a2

n

.

For any two numbers u and v, we have (u+ v)2 +(u− v)2 = 2(u2 + v2). Hence, we find that

1
µ2

s

+
1

ν2
s

=
1
4

τ2

j2 2
(

(1+{ j})2 +1−{ j}2)=
τ2

j2 (1+{ j}).

Therefore Var[Y ] = τ2/ j2 · (n−2+1+{ j}) = τ2/ j, which proves the theorem. �
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REMARK B.1 Notice that the values µ−1 and ν−1 are the roots of the quadratic polynomial

x2 − x
τ

j
(1+{ j})+ τ2

j2

1
2
(1+{ j}){ j}.

C. Convergence of the FCRK Method

Here, we demonstrate the convergence of the FCRK method described in Section 2 and prove Theo-
rem 2.5. In the following analysis, we make extensive use of the results in Section 6 of Maset et al.
[2005] and Section 7 of Bellen et al. [2009]. We will also require the definitions of discrete and uniform
order for FCRK methods (found in Definition 2.3 and Definition 2.2, respectively, and Definition 4.1 of
Maset et al. [2005]).

To begin the analysis of our FCRK method, we transform the IVP (2.7) to an equivalent formulation
that is simpler to analyse. In particular, we recall that, for all times t,

lim
ω→0

u(t,ω) = 0

and u is a continuous function of ω in the interval (0,1]. We therefore define

ũ(t,ω) =

{

u(t,ω) if ω ∈ (0,1]

0 if ω = 0.

The function ũ is therefore a uniformly continuous function of ω and agrees with u almost-everywhere
in [0,1]. Therefore,

∫ 1

0
u(t,ω)dω =

∫ 1

0
ũ(t,ω)dω,

and we can consider the transformed problem

d
dt

X(t) = F

(

X(t),
∫ 1

0
ũ(t,ω)dω

)

for t > t0

X(s) = ψ(s) s 6 t0.











(C.1)

Now, we do not calculate the right hand side of (C.1) precisely but rather use a quadrature rule to
approximate the integral as discussed in the main text. Maset et al. [2005] considered FCRK methods
for the generalized setting of all such approximations of the right hand side of (C.1). Maset et al. [2005]
denoted approximations of the right hand side of (C.1) with a tilde which, in our setting, gives

F̃

(

X(t),
∫ 1

0
ũ(t,ω)dω,λ

)

≈ F

(

X(t),
∫ 1

0
ũ(t,ω)dω

)

where λ ∈ Λ is a parameter that controls the precision of the approximation. Here, Λ represents the
space of composite quadrature rules with a fixed number M of steps. These quadrature rules are defined
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by their weights, σi, and collocation points, πi ∈ (0,1]. The quadrature rule is therefore represented by
λ = (σ1, ...,σm,π1, ...,πm) with

∫ 1

0
ũ(t,ω)dω =

M

∑
i=1

σiũ(t,πi)+O(hq
int)

where hint and q are the the step size and order of the quadrature method, respectively. Accordingly, the
approximation of the right hand side of (C.1) is given by

F̃

(

X(t),
M

∑
i=1

σiũ(t,πi),λ

)

= F

(

X(t),
M

∑
i=1

σiũ(t,πi)

)

. (C.2)

For notational simplicity in the following, we denote, for a given function ϕ ∈C0,ρ ,

ũϕ(t,ω) =
βαβ ja j

Γ ( j)
ϕ(t − (−α log(ω))β )exp

[

−a(−α log(ω))β
] (− log(ω))β j−1

ω
.

The accuracy of the approximation F̃ for a given function ϕ and quadrature rule λ is given by

ε(ϕ,λ ) =

∣

∣

∣

∣

∣

F̃

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)

−F

(

ϕ(t),
∫ 1

0
ũϕ(t,ω)

)

∣

∣

∣

∣

∣

. (C.3)

Maset et al. [2005] derived conditions on the approximation F̃ that permit convergence of existing
FCRK methods. To establish the convergence of the FCRK method for the transformed problem (C.1),
the approximate function F̃ must satisfy the following conditions:

(1) F̃

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)

is uniformly continuous with respect to λ and the derivative with

respect to the function ϕ , F̃ ′
(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)

is continuous with respect to ϕ and uni-

formly bounded with respect to λ ;

(2) There exists a continuous function p : C0,ρ → R such that

∣

∣

∣

∣

∣

F̃

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)∣

∣

∣

∣

∣

< p(ϕ)

for all ϕ ∈C0,ρ and λ ∈ Λ ;

(3) F̃ (ϕ,λ ) is of class C2 with respect to ϕ for all λ ∈ Λ and both the derivatives are bounded
uniformly with respect to λ .

Furthermore, let t̄ > t0 be the largest value t such that the IVP (1.1) has a unique solution with initial
data ψ over the interval [t0, t̄]. Denote the simulation mesh by

∆ = {ti}N
i=1

with corresponding step size h∆ . Finally, let the approximation of the solution xtn obtained using a
FCRK method with mesh ∆ given by η̂n. Then, recalling the definitions of uniform, discrete, and global
Order in Definitions 2.2-2.4, Maset et al. [2005] prove
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THEOREM C.1 (Theorem 6.1 of Maset et al. [2005]) If a FCRK method (A(θ),b(θ),c) of uniform
order q, discrete order p, with p,q ∈ {1,2,3,4}, and such that ci ∈ [0,1], i = 1, ...,s, is applied to (C.1)
for the computation of X(t) through (t0,ψ) ∈ R×C0,ρ and the following assumptions hold:

A:
s

∑
i=1

bi(θ) = θ for θ ∈ [0,1] and
s

∑
j=1

Ai, j(θ) = θ for all i with θ ∈ [0,ci];

B: Conditions (1), (2), and (3) hold;

C: The approximation error (C.3) satisfies ε = O

(

h
min(q+1,p)
∆

)

;

D: X(t) is 5 times continuously differentiable;

then for a fixed T ∈ [t0, t̄], and simulation meshes ∆ that include all possible discontinuity points of x in
[t0, t̄]. Then,

max
t∈[t0,T ]

‖η̂n − xtn‖= O

(

h
min(q+1,p)
∆

)

.

We note the relationship between the smoothness required of the solution X and the maximal discrete
and uniform orders for the FCRK method.

C.1 Applying Theorem (C.1) to the FCRK method

We now show that Theorem C.1 is applicable to the FCRK method derived in Sec 2. Bellen et al.
[2009] show that the global fourth order explicit method considered in this work has uniform order 3
and discrete order 4 and simple inspection shows that (2.4) satisfies Assumption A. Next, we show that
our approximation F̃ satisfies the conditions (1), (2), and (3) and so verify Assumption B.

In what follows, we consider arbitrary functions ϕ ∈ C0,ρ . Further, we only consider quadrature
rules with bounded weights

M

∑
i=1

|σ j,i|< K1 (C.4)

for fixed K1. Finally, we assume that the function F is at least 4 times continuously differentiable and
globally Lipschitz. The solution X(t) is thus 5 times differentiable for t > t0. Thus, Assumption D is
satisfied. Furthermore, we assume that F and F(k) are bounded for k = 1,2,3,4.

C.1.1 Verifying condition (1) We begin with condition (1). Now, F is Lipschitz and thus uniformly
continuous. Therefore, for each ε > 0, there exists δ1 such that for all ‖b1 − b2‖ < δ1, ‖F(a,b1)−
F(a,b2)‖< ε . Then, it follows from the definition (C.2), the uniform continuity of F̃ with respect to λ is
equivalent to showing that we can choose δ2 > 0 such that if the quadrature rules satisfy ‖λ1−λ2‖< δ2,
then the quadrature method is such that

∥

∥

∥

∥

∥

M

∑
i=1

σ1,iũϕ(t,π1,i)−
M

∑
i=1

σ2,iũϕ(t,π2,i)

∥

∥

∥

∥

∥

< δ1.
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This relationship, combined with the uniform continuity of F , will establish the uniform continuity of
F̃ with respect to λ . We now show how to choose such a δ2. By adding 0 to the above expression, we
obtain
∥

∥

∥

∥

∥

M

∑
i=1

σ1,iũϕ(t,π1,i)−
M

∑
i=1

σ2,iũϕ(t,π2,i)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

M

∑
i=1

(σ1,i −σ2,i) ũϕ(t,π1,i)−
M

∑
i=1

σ2,i
(

ũϕ(t,π1,i)− ũϕ(t,π2,i)
)

∥

∥

∥

∥

∥

.

Now, ũ is uniformly continuous and the the sum of the weights |σi| is bounded above by K1. From the
uniform continuity of ũ, we can choose δ3, independently of λ1 and λ2, such that if |λ1 −λ2| < δ3,, so
that |π1,i −π2,i|< δ3, then

∥

∥

∥

∥

∥

M

∑
i=1

(

ũϕ(t,π1,i)− ũϕ(t,π2,i)
)

∥

∥

∥

∥

∥

<
δ1

2K1
.

Therefore, we obtain
∥

∥

∥

∥

∥

M

∑
i=1

σ2,i
(

ũϕ(t,π1,i)− ũϕ(t,π2,i)
)

∥

∥

∥

∥

∥

6

(

M

∑
i=1

|σ2,i|
)

δ1

2K1
<

δ1

2
.

Further, ũϕ is the product of bounded functions and thus bounded above. Let this upper bound be
given by K2 and note that it is independent of the quadrature rule used. Accordingly, it is possible to
constrain ‖λ1 −λ2‖< δ4 so that the weights of the quadrature rule satisfy

M

∑
i=1

|σ1,i −σ2,i|<
δ1

2K2
.

It thus follows that
∥

∥

∥

∥

∥

M

∑
i=1

(σ1,i −σ2,i) ũϕ(t,π1,i)

∥

∥

∥

∥

∥

6 K2

M

∑
i=1

|σ1,i −σ2,i|<
δ1

2
.

Therefore, independently of the quadrature rule λ , taking

δ2 < min
[

δ4,
δ1

2MK1

]

is sufficient to ensure that
∥

∥

∥

∥

∥

M

∑
i=1

σ1,iũϕ(t,π1,i)−
M

∑
i=1

σ2,iũϕ(t,π2,i)

∥

∥

∥

∥

∥

< δ1.

As δ1 was chosen from the uniform continuity of the function F , it thus follows that F̃ is uniformly
continuous in λ as desired.

Furthermore, F is continuously differentiable and the mapping

ϕ →
∫ 1

0
ũϕ(t,ω)dω
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is linear, and thus differentiable with respect to ϕ. The chain rule for Fréchet derivatives gives

Dϕ

[

F̃

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)]

(ζ ) = F̃x2

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)

M

∑
i=1

σiũζ (t,πi)

+ F̃x1

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)

ζ (t)

which is continuous with respect to ϕ ∈ C0,ρ and bounded with respect to λ by virtue of the bound on
the quadrature weights (C.4). The condition (1) is therefore satisfied.

C.1.2 Verifying condition (2) We turn now to the second condition. From the definition of F̃ , we
immediately see that

∣

∣

∣

∣

∣

F̃

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)

−F

(

ϕ,
∫ 1

0
u(t,ω)dω

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

F ′
(

ϕ,
∫ 1

0
u(t,ω)dω

)

h
q
int

∣

∣

∣

∣

+ξ h
2q
int

where hint 6 1 is the step size of the q-th order quadrature method λ and ξ is a known error term from
the Taylor expansion of F . Recalling that F ′ is assumed to be bounded, we obtain
∣

∣

∣

∣

∣

F̃

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)

−F

(

ϕ,
∫ 1

0
u(t,ω)dω

)

∣

∣

∣

∣

∣

6 max
ϕ∈C0,ρ

∣

∣

∣

∣

F ′
(

ϕ,
∫ 1

0
u(t,ω)dω

)∣

∣

∣

∣

+ξ = K3,

which gives
∣

∣

∣

∣

∣

F̃

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi),λ

)∣

∣

∣

∣

∣

6 K3 +

∣

∣

∣

∣

F

(

ϕ,
∫ 1

0
u(t,ω)dω

)∣

∣

∣

∣

= ρ(ϕ).

It is clear that ρ is a continuous function and satisfies condition (2).

C.1.3 Verifying condition (3) It remains to show that F̃(ϕ,λ ) is C2 with respect to ϕ for all λ . Now,
F(ϕ) is 4 times continuously differentiable and uϕ is linear in ϕ. Therefore, consecutive applications of
the chain rule for Fréchet derivatives gives the required regularity of F̃ . Further, the quadrature weights
σi satisfy (C.4) and we have assumed that F(k) for k = 1,2,3,4 is bounded. Therefore, Lemma A.2
yields the uniform boundedness of F̃(l) for l = 1,2 with respect to λ , as required.

C.1.4 Characterisation of the accuracy of the approximation of F We now consider the approxima-
tion error defined in (C.3) and show that Assumption C holds. To calculate F̃ in the FCRK method
defined in Sec 2, we considered composite quadrature rules λ of order q with maximal step-size hint .
Such quadrature rules satisfy

M

∑
i=1

σiũϕ(t,πi)−
∫ 1

0
uϕ(t,ω)dω = O(hq

int).
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Then, Taylor expanding the latter expression in (C.2) gives

F

(

ϕ(t),
M

∑
i=1

σiũϕ(t,πi)

)

= F

(

ϕ(t),
∫ 1

0
uϕ(t,ω)dω +

[

M

∑
i=1

σiũϕ(t,πi)−
∫ 1

0
uϕ(t,ω)dω

])

= F

(

ϕ(t),
∫ 1

0
uϕ(t,ω)dω

)

+F ′
(

ϕ,
∫ 1

0
uϕ(t,ω)

)

×h
q
int +O(h2qint

int )

The boundedness of F ′
(

ϕ,
∫ 1

0 uϕ(t,ω)
)

gives εi(ϕ,λ ) = O
(

h
qint
int

)

. In Sec 2, we chose hint such that

O
(

h
qint
int

)

= O
(

h
p
∆

)

. It follows that the FCRK method (2.4) satisfies Assumption C.

C.2 A convergence result for the FCRK method

Assumption A of Theorem C.1 is satisfied for the the fourth order explicit FCRK method defined in
(2.4) with uniform order q = 3 and discrete order p = 4. We have shown that both Assumptions B and
C hold while the assumption that F is 4 times continuously differentiable ensures that Assumption D

holds. We thus conclude

THEOREM C.2 Assume that the right hand side of (1.1) is 4 times continuously differentiable and let
(A(θ),b(θ),c) be the explicit FCRK method with global four order defined in (2.4). Furthermore, let
the simulation mesh ∆ include all breaking points of the DDE (1.1) and have maximal stepsize h∆ . Let
the quadrature method λ be given by the composite Simpson’s open rule with maximal sub-interval size
of hint 6 h∆ .

Then, the error between the solution, X of (1.1) and the numerical approximation of the solution, η ,
satisfies

max
t∈[t0,T ]

‖η − xtn‖= O
(

h4
∆

)

.


