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Abstract: Farm livestock identification and welfare assessment using non-invasive digital technology

have gained interest in agriculture in the last decade, especially for accurate traceability. This study

aimed to develop a face recognition system for dairy farm cows using advanced deep-learning models

and computer vision techniques. This approach is non-invasive and potentially applicable to other

farm animals of importance for identification and welfare assessment. The video analysis pipeline

follows standard human face recognition systems made of four significant steps: (i) face detection,

(ii) face cropping, (iii) face encoding, and (iv) face lookup. Three deep learning (DL) models were

used within the analysis pipeline: (i) face detector, (ii) landmark predictor, and (iii) face encoder. All

DL models were finetuned through transfer learning on a dairy cow dataset collected from a robotic

dairy farm located in the Dookie campus at The University of Melbourne, Australia. Results showed

that the accuracy across videos from 89 different dairy cows achieved an overall accuracy of 84%.

The computer program developed may be deployed on edge devices, and it was tested on NVIDIA

Jetson Nano board with a camera stream. Furthermore, it could be integrated into welfare assessment

previously developed by our research group.

Keywords: cow identification system; deep learning in agriculture; computer vision; edge computing

1. Introduction

For traceability purposes, farmers and producers are highly interested in animal
recognition and identification. Conventional techniques to identify livestock involve
microchips, ear tags, tattoos, and Radio Frequency Identification (RFID) collars, among
others. However, most of these identification methods are prone to be lost and destroyed
due to animal movement, direct contact, and bites. Furthermore, electronic devices can
be hacked or physically exchanged between animals for fraudulent practices [1], and they
can involve relatively high costs for large herds of animals [2–5]. Since these devices need
the intervention of humans for data recording and maintenance, they tend to be time-
consuming and unreliable due to tattoos fading and tags being lost [6]. In pigs, researchers
have reported a loss rate of ear tags within 5–60% [7], 19% implants, and loss or damage
of 23% of electronic identification devices at slaughter [6]. In cattle, a loss of 20% after
the first five years has been reported, with an extra 20% loss per year in the following
years [8]. Recently, researchers have used new digital approaches based on computer
vision (CV), deep learning (DL), machine learning (ML), and artificial intelligence (AI) to
automate and monitor livestock recognition and identification for different animals, such
as bears [9], sheep [10], giant panda [11], and cattle [2,12]. Specifically, these approaches
use face recognition and muzzle pattern recognition [4] that are unique for each individual,
similar to fingerprints, patterns in the body of dairy cows [3], or iris recognition [13].
The latter studies have shown that CV, DL, ML, and AI technologies have great potential
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to be applied to livestock identification and management as non-invasive and efficient
automated methods.

Therefore, this study aimed to develop a deep learning model to recognize and identify
dairy cows from a robotic dairy farm in Australia using face recognition. The pipeline
presented in this paper can be applied to other livestock. The outcome of this research
will show the maturity and readiness of the advancing state-of-the-art computer vision
models to benefit the livestock industry, especially for automated traceability. The proposal
prototype is designed with flexible options for deployment and integrating new features in
the future that potentially can replace many physical tags and wearable sensor devices.

2. Materials and Methods

2.1. Data Collection from Dairy Cows

One-minute videos from N = 102 different Holstein-Friesian cows located at the
Robotic Dairy Farm belonging to the Dookie College, The University of Melbourne (UoM),
Victoria, Australia (36◦38′ S, 145◦71′ E), were recorded over four days during the winter of
2021 (total 281 video clips; ~505,800 video frames). For 89 cows, at least two videos were
recorded, while the other 13 had only one video. Each video consisted of a single identity
as the main target appearing in the middle of the frame throughout the entire video (frames
per second: 30 fps, average duration = 60 ± 19 s). Cows were held in a crush, so their
heads moved freely (Figure 1). Videos were recorded using a FLIR DUO PRO (Teledyne
FLIR LLC, Wilsonville, OR, USA). This camera can record 4K resolution RGB and thermal
infrared videos. However, for this study, only the RGB videos were used. The camera was
located ~2.5 m away from the crush to capture the face of the cows (Figure 1). All animal
handling and welfare protocols followed in this study were approved by the Animal Ethics
Committee of The University of Melbourne (Ethics ID: 2021-21466-18833-5).

′ ′

Figure 1. A sample setup of a recording session of the cattle videos.
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2.2. Application Pipeline

The pipeline (Figure 2) comprises four fundamental steps: (i) face detection, (ii) face
cropping, (iii) face encoding, and (iv) face lookup. These components have been used in
other deep-learning pipelines for face recognition [9]. Although naming these basic steps
can differ from one paper’s terminology to another, they all share similar functionality
to solve the face recognition problem [14]. The pipeline loads a still image and outputs a
matched identification (ID) number of a detected cow with an associate confidence score.
There are three deep learning models involved in the first three steps, respectively: (i) Face
detector, (ii) Landmark predictor, and (iii) Face encoder.

 

− −

Figure 2. Diagram showing the pipeline of the cows recognition and identification system.

In the face detection step, the Face detector model localizes the image coordinates
of the cow’s face, adjusts the coordinates into a square shape, crops the face, and sends
it to the Landmark predictor in the face cropping step. Landmark predictor, in the face
cropping step, identifies markers on the squarely cropped face, such as the eyes and tip of
the nose, to subsequently use these markers as anchors to help align the face into a portrait
position, called a face image chip [14] or chip face [9] having both eyes on a line parallel
to the x-axis. The portrait face is then cropped into a square shape and passed to the face
encoding step to extract embedding features. The Face encoder model encodes the face into
a vector representation called face embedding features in the face encoding step. These face
embedding features are distinctive and unique to an individual, upon which the machine
relies to distinguish one identity from the others. In other words, face embedding features
of the same individual would be very similar to each other and different compared to
embedding features of other individuals. In the last step, the face lookup algorithm ranks
all the pairwise similarity scores between the embedding features of the input chip face
with all the other embedding features of faces in the database. It outputs the face ID with
the highest similarity score. The similarity score of a pairwise comparison spans the range
[−1, 1], with 1 being a perfect match and −1 being the exact opposite. The returned ID and
its associated similarity score from the face lookup step are the final output of the pipeline
for the detected face in the input image.

A threshold, T, value acts as a level of confidence that can be introduced to the face
lookup step to help filter out returned IDs with a low similarity score. If the similarity score is
greater than T, it is an accepted returned ID; otherwise, the ID is considered “unidentified”.
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The “unidentified” ID may mean two things: the input chip face belongs to a new ID that
does not exist in the database, or the similarity level is not high enough for the system to claim
the returned ID is a correct match. In this case, the recognition system can be configured to
return the closest L candidate IDs, according to the similarity score ranking, and end-users
might examine either all L candidates or just the top R candidates (R ≤ L) or simply have to
manually check the subject’s ID based on other physical tag or collar.

This pipeline can process video sequences by treating the video frames as individual
still images. The video procedure uses a fixed-size buffer (i.e., 10, 20, or up to 50) to hold
sampling every n number of frames (n used in this paper is six). It outputs the ID with the
most occurrences as the representative ID across each frame in the buffer. The output score
[0, 1] of the buffer represents the frame ratio in the buffer where the output ID was selected.
Similar to the pipeline, there is also a threshold to obtain only highly confident outcomes.
As the term “threshold” is used in multiple contexts, a prefix “pipe” or “buffer” is added to
clarify the associated location of these terms in use, such as “pipID, pipScore, pipThreshold”
for the pipeline in a single image processing and “bufID, bufScore, bufThreshold” for the
buffer used in video processing.

All the annotations in this study were generated using the Computer Vision Annota-
tion Tool (CVAT) [15]. Model training and testing were performed on NVIDIA GeForce
GTX 2080 graphic card. The evaluation metrics of the pipeline follow the Face recognition
vendor test for the identification task of the National Institute of Standards and Technology,
US Department of Commerce [16].

2.3. Training and Testing Data

As 89 cows had at least two videos, one video of each cow was selected as a training
video to extract data for the models’ training and validation, which populated the enrolled
cow ID in the database. The other video, called the testing video, was saved to test the
whole pipeline’s performance. The 13 cows with only one video were used to assess how
the pipeline responds to a novel face, also considered testing videos. In short, there were
89 videos for training and 102 videos for testing. To simplify the terminology, a cow ID
present in the database is referred to as “mate”, while cows unenrolled in the database are
referred to as “non-mate” [16].

In this study, the training and testing datasets were novel with respect to any available
public datasets, so the data generation played a critical part in the overall performance
outcome. Although all three deep learning models used in this study were trained on
popular public datasets such as ImageNet [17] or COCO [18] datasets (in which cattle were
among the training classes), they did not explicitly map to dairy cow’s facial features. Since
these models are related in a sequential flow along the pipeline, they need to be trained
in order, starting with the Face detector, followed by the Landmark predictor and Face
encoder. Data used to finetune the models was sampled from the training videos.

Face detector, the first model in the pipeline, was finetuned on a total of 1780 randomly
sampled frames from training videos where the cow’s face appeared in the middle of the
frame. That is equivalent to 20 samples per individual cow. To retain a clear view of both
eyes and the tip of the nose for the Landmark predictor in the next step, only the cow’s
head that showed a clear view of those critical points was annotated with a bounding box.
In contrast, frames were ignored and not annotated, where the cow’s head was turned to
a side. Annotated data was split into training and validation sets with a ratio of 80/20,
respectively. The face’s bounding box predicted by the Face detector was post-processed to
become a square shape, and the face was also cropped accordingly before passing to the
Landmark predictor.

The Landmark predictor intakes generated data from the face detection step for
finetuning. To avoid using the same samples for training the Face detector, each training
video was randomly sampled for another 20 frames. That comprised 1780 samples in total.
These samples were put through the face detection step to crop the cow’s head into a square
shape, ready for annotation and retraining of the Landmark predictor. Each face image
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shows three crucial points: the left eye, the right eye, and the tip of the muzzle. Training
and testing datasets were split with a ratio of 80/20. As the Landmark predictor is a part
of the face cropping step, the predicted facial landmarks were used as anchors to rotate
the image to have the face in an aligned portrait position. An aligned portrait position is
defined as the angle being zero degrees between a line connecting both eyes and the x-axis;
in other words, both eyes are paralleled with the x-axis or the ground. When the face is
aligned, it is cropped in a square shape. The aligned cropped square shape of the face is
called ‘chip face’ and is passed to the next step.

The finetune Face encoder model dataset is a set of chip faces generated by the
formerly trained face detector and landmark predictor. In some videos where the chip
faces were extracted, there are a few consecutive frames where the cow head’s movement
is not noticeable. If chip faces were sampled among these frames, it would result in too
many chip faces in the database that look almost identical. Hence, capturing frontal faces
from various angles is preferred to achieve sample diversity for a given identity. A new
chip face sample of identity is considered eligible to be saved into the database when its
pairwise cosine similarity with all previously saved identity features is below a threshold
of 0.9. The MobileNetV2 model [19], pretrained on the ImageNet dataset [17], was used
as a feature extractor. To achieve a decent amount of training and validation data, each
video sampled 60 faces using the above method. From these, 40/60 were reserved for
finetuning, and 20/60 were reserved for validation, which comprised 5340 chip faces in
total, 3560 faces for training, and 1780 faces for validation. After finetuning the Face encoder
model, it is necessary to build a database to validate the face lookup step and the whole
pipeline. A subset of the first 25/40 training faces per identity was selected to enroll on a
database comprising 2225 chip faces representing 89 cow mates. Then, the Face encoder
was evaluated along with the face lookup step, equivalent to an overall validation of the
whole pipeline on the training video set.

To assess the performance of the pipeline, the testing videos are separated into two
testing sets: one closed set and one open set. The closed-set had a population of 89 cow
mates, each with 100 faces sampled once every 200 ms (one sample every six frames) across
20 s per testing video, which adds up to 8900 chip faces. The testing set was larger than the
training/validation set because it is not restricted by the sampling method used to select
the chip face for the Face encoder model above. The open-set had a population of 13 cow
non-mates novel to the pipeline. Faces were sampled the same way as the closed-set with
1300 chip faces, 100 faces sampled once every 200 ms, across 20 s per testing video.

2.4. Face Detector

The face detector searches for the cow’s frontal face in the input image. This model
was developed based on YOLOv5 [20]. It localizes the frontal face position of the cow
by returning the coordinates of four points, denoting a bounding box covering the face,
along with a score within a [0, 1] range, implying the confidence level of the detected
object. A value of 1 is an actual cow’s face, and 0 indicates it is less likely to be a cow’s face
(Figure 3). A threshold is currently set as 0.7 to filter false detection, which means if the
detected face has a score above 0.7, it will be post-processed for the next step, otherwise
discarded, and moved on to the next frame. Although the video frame’s resolution is 4K,
input images were resized to (640 × 360) in width and height to minimize the computation
cost and power consumption when moving the program onto edge devices. In addition, the
architecture of YOLOv5 used in this study was YOLOv5s6, where s6 denotes small model
architecture, fifth version. The output class was reduced to one class, implying a cow’s face.
During the training phase, the data augmentation techniques were randomly flipped along
the x-axis (horizontal flip), mosaic [21], and random scale, which scales the image content at
a random ratio while keeping the image size constant. All other hyperparameters were set
to the default values given in YOLO’s repository (https://github.com/ultralytics/yolov5).

https://github.com/ultralytics/yolov5
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Figure 3. Example of face detection showing the confidence score.

2.5. Landmark Predictor

Landmark predictor takes in the squared cropped face with a size of (224 × 224 pixels)
and identifies specific facial key points: left eye, right eye, and the tip of the muzzle. These
landmarks are anchors to align the face into the chip face for the Face encoder model
(Figure 4). The Landmark predictor model was trained using Resnet18 [22] with means
squared error loss (MSELoss) learning metric [23] and the Adam optimizer [24]. Parts of
the implementation have been adapted from the “Face Landmark Detection with PyTorch”
publicly available article [25].

 

Figure 4. Example of facial landmarks prediction and aligned face.

2.6. Feature Encoder

Feature encoder plays a critical role in the pipeline that encodes the input chip face
(a cropped and aligned face) from a size of 224 × 224 pixels into 512-embedding features,
which are used to compare and search for similar faces in the database. The architecture
includes two parts regarding the training phase: a backbone part used as a feature encoder
and a head part used as a classifier during the training phase. Since the head part learns to
classify a fixed set of IDs, it must be retrained every time a new ID is added to the system.
So, the classifier layer of the head part (using softmax in the last layer as a classifier which
is not preferred for face recognition problems [26]) will increase when more identities are
available to be recognized. Consequently, the complexity will grow, and further retraining
a deep learning model is computationally time-consuming. Therefore, the head part is
used only during the training phase to help finetune the parameters of the backbone
(feature encoder). The identification part handled by the face lookup step is more flexible
and discriminative to novel faces because it bases on the similarity measurement (cosine
similarity) to pick up the best-matched ID during the testing and inferencing (Figure 5).
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However, using the head part to perform the recognition task on the validation set can also
be considered a valuable alternative baseline for comparison.

 

−
−

−𝑐𝑜𝑠(𝜃) = 𝐴 ∙ 𝐵‖𝐴‖‖𝐵‖ = ∑ 𝐴𝐵ୀଵඥ∑ 𝐴ଶୀଵ ඥ∑ 𝐵ଶୀଵ

Figure 5. Example of input target face (first on the left) in a search returned top five most similar

faces in the database.

The backbone part, the feature encoder model, was developed using Resnet101 [22]
to generate 512 embedding features. The head part used the ArcFace margin product
network [26] that takes 512 embedding features from the backbone and outputs 89 ID classes.
Parts of the ArcFace margin product network implementation have been adopted from the
ArcFace-PyTorch repository (https://github.com/ronghuaiyang/arcface-pytorch). This
architecture was trained with the focal loss [27] learning metrics and cosine annealing [28]
learning rate schedule.

2.7. Database

A database was populated by 2225 chip faces representing 89 individual enrolled cow
mates. The number of chip faces per identity (nim) was selected as the first 25 out of 40 chip
faces per identity derived from the training dataset of the Face encoder. The corresponding
embedding features of these chip faces were also recorded and made available to compute
pairwise cosine similarity (1) with new chip faces.

2.8. Evaluation Metrics

The pairwise similarity score between embedding features of the input chip face and
other embedding features of enrolled cow mates in the database are measured by cosine
similarity metric (Equation (1)), that bounds within the range [−1, 1] where “1” indicates a
perfect match and “−1” means an exact opposite. In other words, the similar level increases
when the similarity score runs from “−1” to “1”.

cos(θ) =
A·B

‖A‖‖B‖
=

∑
n
i=1 AiBi

√

∑
n
i=1 A2

i

√

∑
n
i=1 B2

i

(1)

Regarding the Face detector model, mean average precision (mAP) is currently used
as a standard metric for object detection models, also adopted by the series of YOLO
models [29] and as the evaluation metric of the COCO dataset [18]. The mAP measures
the mean of average precision for all categories. However, in this study, there was only
one class, which was the cow’s face; therefore, mAP@T represents the precision of the
model in detecting a cow’s face with an overlapping rate between the predicted bounding
box and the ground truth bounding box that is greater than a threshold T. For example,
mAP@0.5 denotes the precision value at threshold T = 0.5. mAP@0.5:0.95 is also popular that
represents the mean precision over a set of precision values associated with the overlapping
threshold range within 0.5–0.95 with a step of 0.05 [18]. Regarding the Landmark predictor
model, mean squared error (MSE) [23] was used to measure the difference between the
coordinates of predicted points concerning the original points.

Concerning the metrics for the Face encoder and the whole pipeline performance of
the identification system in general, the following terminologies are used, derived from the
Face recognition vendor test for the identification task of the National Institute of Standards

https://github.com/ronghuaiyang/arcface-pytorch
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and Technology US Department of Commerce [16]. According to the performance metrics
under this standard, the evaluation of an identification system needs to be able to quantify
two error conditions:

• False-positive: an error when a search is done for a non-mate cow, but the returned ID
belonged to a mate cow.

• Miss: an error when a search is done for a mate cow, but the returned ID for that cow
is out of the top R, or its score is below threshold T.

The false-positive cases accumulate to the false-positive identification rate (FPIR;
Equation (2)), known as the “false alarm rate”, which shows the proportion of non-mate
cow lookups that return an erroneous outcome given a specific threshold T

FPIR(N, T) =
number o f f alse positives

number o f nonmate searches attempted
(2)

The miss cases accumulate to the false-negative identification rate (FNIR; Equation (3)),
known as the “miss rate”, which shows the proportion of unsuccessful mate cow searches
given a specific threshold T and top R.

FNIR(N, R, T) =
number o f misses

number o f mate searches attempted
(3)

An opposite measurement for the “miss rate” is the “hit rate,” known as the true-
positive identification rate (TPIR; Equation (4)).

TPIR(N, R, T) = 1 − FNIR(N, R, T) (4)

The general accuracy related to a mate search is called cumulative match characteristic
(CMC; Equation (5)), which relaxes the similarity score threshold and only reports the
proportion of successful mate searches.

CMC(N, R) = 1 − FNIR(N, R, 0) (5)

Since the system is meant to operate autonomously without human supervision and
in a controlled environment with a constant number of identities N for every search, the
“rank one-hit rate” (TPIR with R = 1) was the accuracy metric used in this study to validate
the performance of the whole pipeline in association with a specific threshold T.

A plot called detection error trade-off (DET), or identification error trade-off character-
istic, is typically used to show two error types (FPIR and FNIR) on the same graph with
a logarithmic scale. This plot helps compare the accuracy of the biometric system under
different settings. Moreover, particularly in this study, it is mainly used to compare the
system’s performance under different settings, such as the effect of enrolling in the database
multiple images per identity and different buffer size settings. Another plot involving
FPIR and FNIR is used to show the error rate across a range of threshold values, which
helps select a threshold, especially in an environment where both enrolled cow mates
and non-mates coexist. In this plot, an equal error rate (EER) point suggests a reference
threshold T for the identification system, and the EER point is defined by the intersection
of the FPIR and FNIR lines.

The matching speed measures the overall inference time of the pipeline over a static
input image. This matching speed is essential in assessing whether the pipeline can run
in real-time and measuring the speed improvement when different deep learning models
are used.
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3. Results and Discussion

3.1. Model Performance

The Face detector model achieved mAP@0.5:0.95 = 0.95, which means the model’s
average precision in predicting the location of a cow’s head correctly is 95% over a set of
precision values corresponding to the overlapping ratio range between 0.5 and 0.95.

The Landmark predictor achieved an MSE of 9.2, equivalent to a prediction point with
an error swing within a circle with a radius = 3 (square root of 9.2) in pixel, centered at the
ground truth point. This MSE value equals a 1.35% error rate (3/224-pixel width).

Regarding the performance assessment of the Face encoder, two of the following archi-
tectures were compared. The first method structure used in the training phase, backbone
and head part, recorded CMC (N = 89, R = 1) = 84.55% accuracy on the validation set. Be-
sides, using the Face encoder’s backbone and the face lookup step resulted in CMC (N = 89,
R = 1) = 93.14% accuracy on the validation dataset. Therefore, it is recommended to use
the backbone as a feature extractor. Furthermore, using the generated features to perform
cosine similarity is preferred and used as the overall pipeline performance. Figure 6 shows
a distribution map of chip face embedding features in 2D space of all enrolled cow mates in
the database using linear discriminant analysis (LDA) [30] techniques with pre-processing
steps, including feature scaling and normalization. It can be seen that chip faces of the same
identity are grouped into separate clusters. There is still room to include more identities
and chip faces in the database without overpopulating the 512-dimensional space.

 

Figure 6. Cow ID distributed in 2-dimensional feature space with linear discriminant analysis processing.

Up to this point, all three deep learning models were finetuned well to the cow’s facial
features and achieved good results. The pipeline on the validation set also showed a good
result. The next step was to assess the whole identification system on two test sets: the
open set and the closed set in the form of still images and video sequences.

3.2. Cows Identification on Still Images

The cow identification system was tested on two test sets to validate two error types in
this experiment. The first set, referred to as the closed set, contained only the ID of enrolled
cow mates in the database, and it was used to quantify the FNIR or miss rate. The second
set, referred to as open-set, contained only the ID of cows not included in the database to
quantify the FPIR or false alarm rate.



Sensors 2022, 22, 8256 10 of 19

The following results were conducted with 25 chip images per identity (nim = 25) and
considering just the top one ranking (R = 1). With a relaxed threshold T = 0, the CMC
value derived from the closed-set was 84%, equivalent to an accuracy of a hit rate of 84%
with only two cows that were missed entirely from all of its test samples. The latter can be
inferred as 87 out of 89 individuals were correctly identified by the system. By introducing
a range of threshold values and testing on both open-set and closed-set, FPIR and FNIR
rates were obtained to visualize the system’s overall detection error trade-off characteristic
(Figure 7).

Figure 7. Detection error trade-off (number of identity N = 89, top R = 1, number of images per

identity nim = 25) characteristics of identification system on test set.

Looking at the score distribution histogram of all the top one ranking prediction
IDs (Figure 8), a mate search score distribution reaches a peak near value “1”, which is
consistent with the high similarity-score values. However, many correctly identified pairs
had low confidence scores (long-tail). Similarly, many pairs had relatively high confidence
in the identification result for the unmatching mate searches. The latter means that some
individuals closely resemble each other in color and facial patterns (Figure 9). A similar
phenomenon was also recorded in the score distribution of non-mate searches when the in-
put face looked similar to some enrolled identities. Figure 9 shows an example of a missing
case and a false alarm case where the input face looked similar to an enrolled identity.

Suppose the identification system needs to identify both enrolled mate and non-mate
cows. To select an appropriate threshold, it is more practical to look at the score distribution
(Figure 8) or the error rate against the threshold graph (Figure 7). For example, a threshold
with a lower value can be used if the case study requires a low miss rate and does not need
to detect unenrolled faces. In contrast, if the case study requires a harmonious balance
between the false alarm rate and miss rate, it is practical to obtain the equal error rate (EER)
point where FPIR = FNIR. From Figure 7, the EER point was 0.23, the threshold T was set
to 0.68, and the corresponding hit rate TPIR (89, 1, 0.68) achieved 77% accuracy. Otherwise,
if only enrolled mate cows are subjects of the identification system, and no non-mate face
needs to be detected, it is possible to relax the threshold to T = 0. The cumulative match
characteristic value should be the metric used.
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Figure 8. Score distribution in comparison between mate and non-mate cows from closed-set and

open-set, respectively.

(a) 

 
(b) 

Figure 9. Example of (a) a miss case (ID = 1186 enrolled in database) and (b) a false alarm case

(ID = 1480 not in database) in which input face looks very similar to an enrolled identity.

Regarding processing video sequences, a detected face may come from various angles.
Having more representative chip faces with diverse views can help improve the overall
performance of the identification system [31]. Therefore, an experiment was conducted to
evaluate the effect of different pipeline settings in the events where the number of enrolling
images per identity (nim) ranges from 1 to 25 with a step of 5, the number of enrolled mate
N = 89, and top R = 1. The experimental result supported the above statement, as increasing
the nim decreases the miss rate (Figure 10).
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Figure 10. Effect of enrolling multiple images for each identity.

This study also tested different numbers of match IDs returned by the pipeline, known
as different top R values. Accordingly, a human or an automated process must select the
final ID if the candidate list is returned. In this study, an automated process was tested
to select the top ID using the top R = 5 and R = 10 as a voting mechanism, returning as
the final prediction of the ID with the most occurrences in the returned candidate list. The
cumulative match characteristic of each combination of (R, nim) is shown in Table 1 to
examine the effect of different top R settings associated with various images per identity.
The CMC values at a fixed top R increased when the database expanded from having only
one representative chip face to having more. However, when the nim value is larger, their
chance of having a mismatched pair is higher, which explains why the CMC value drops
slightly when nim increases. Note that with a fixed nim value, increasing the length of the
candidate list incurs a slightly improved CMC value.

Table 1. Cumulative match characteristic (%) of selecting different returned Top R.

nim

Top R

1 5 10

1 84.15 - -
5 84.21 84.27 -
10 84.35 84.25 84.35
15 84.35 84.27 84.30
20 84.34 84.31 84.35
25 84.42 84.33 84.31

Abbreviations: nim: number of images per identity; Top R: top closest candidate to examine.
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Finally, the matching speed measurement is also essential for the system setup and
configuration, necessary for the deployment phase. The pipeline takes ~100 ms to process
a still input image (Table 2). The recorded inference speed can be considered a baseline for
future development and improvement. It is possible to run the system in real-time and
process up to 10 fps with the current recorded speed.

Table 2. Timing measurement of the pipeline inferencing with NVIDIA GeForce GTX2080 graphic card.

Step Inference Speed

Face detection 23.4 ms
Face cropping 7.3 ms
Face encoding 24.9 ms
Face lookup 42.9 ms

Total ~98.5 ms

3.3. Cows Identification on Video Sequences

Not all frames were processed to test the identification system on a video sequence,
which is time-consuming. In addition, it is possible to treat each frame as a still image;
however, it is easy to encounter a missing case between a sequence of hit cases, so in such
case, there is a flicker in the result indication shown on the monitor. Therefore, a buffer
was introduced to help stabilize the returned ID. The buffer integrates past information
(detected pipID from previous frames) with the latest one (detected pipID from the latest
frame) using a voting mechanism similar to the one used on still images with R = 5 and
R = 10. The bigger the buffer size, the more time is needed to fill it with frames.

Using both the open-set and closed-set, the detected ID returned by the pipeline
(pipID) for each frame is added to the buffer until full. Once the buffer is filled up, it will
indicate on the monitor the most occurrent ID in the buffer, and the associated score is
the proportion frames where that ID appeared in the buffer (Figure 11), denoted as bufID
and bufScore, respectively. For example, in Figure 12, the buffer size is 10, and a score
of 0.9 implies ID = 1246 has been predicted over 90% of the frames in the buffer. When
the next pipID is added to a full buffer, the oldest pipID in the buffer will be discarded
to make room for the upcoming pipID. A threshold designated for this buffer can also be
introduced, called bufThreshold, to filter out less confident ID via the bufScore. With the
use of bufThreshold, the evaluation metrics such as FPIR, FNIR, and CMC values can be
obtained similarly to the values obtained on still images.

Figure 11. Example of visualized identified cows with bufID and bufScore processed on video

sequence with buffer size of 10.
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(a) 

(b) 

Figure 12. Comparison of detection error trade-off characteristic lines between various buffer sizes

and pipeline settings for the (a) false negative rate and (b) false positive rate.

In order to show the advantage of a buffer in processing video sequences over still
images, FPIR and FNIR values were measured using the same settings as the single image
pipeline (R = 1, nim = 25, T = 0) along with different buffer sizes (Figure 12). Regarding
the false-negative identification graph in Figure 12, the buffer implementation is helpful
in reducing the miss rate regardless of buffer size and the threshold value. Therefore, in a
closed-set scenario, where no new face is recognized by the system, implementing a buffer
helps to boost performance. Implementing a buffer for video processing does not always
guarantee a lower error rate regarding an open-set scenario.

As shown in Table 3, a larger buffer size also helps improve the CMC hit rate recorded
concerning the single image pipeline, jumping from 84% to 88% and 91%, with buffer
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sizes ranging from 10 to 50. At the same time, the number of unique mate IDs returned
correctly for all mate search attempts (true-positive) results in a slight decline in the #Mate
ID true-positive from 87 IDs down to 86 and 84 for buffer sizes from 10 up to 50. This
phenomenon occurs due to the stabilization effect of the buffer that filtered out true-positive
cases of mate IDs that are less similar to their representative chip faces in the database and
more similar to other enrolled cow mates. Regarding non-mate search, this stabilization
effect of the buffer shows a positive result that helps minimize the recorded number of
unique false-positive mate IDs over all the non-mate search attempts, from 52 down to
42 and 19 as for buffer size from 10 up to 50. However, regardless of this minor drop,
the overall system gained more confidence in its prediction as the CMC results increased.
Even when the top R-value increased from one to five and 10, a similar positive effect was
observed due to increasing the buffer size. However, increasing the top R-value while
keeping the buffer size constant may not improve performance.

Table 3. Comparing effect of buffer size on performance on video sequences.

Number of Images per Identity
nim = 25

Top R Pipeline
Buffer Size

10 20 30 40 50

CMC (%)
1 84 88 89 90 90 90
5 84 88 89 90 90 91
10 84 88 89 90 90 91

#Mate ID true positive
1 87 86 86 85 86 85
5 87 86 86 85 85 85
10 87 87 85 84 84 84

#Nonmate ID false positive
1 52 42 34 32 25 19
5 52 42 34 31 25 23
10 52 42 35 35 25 21

Abbreviations: CMC: cumulative match characteristic; nim: number of images per identity; Top R: top closest
candidate to examine.

An optimal choice of buffer size depends on how it will behave in the field test at the
deployment stage. It is a trade-off between performance and matching speed.

3.4. Deployment

The deployment phase integrated the deep learning models into an NVIDIA Jetson
Nano (NVIDIA, Santa Clara, CA, USA) using a 12 MP camera (Figure 13). This board is
equipped with a 128-core GPU that delivers up to 472 GFLOPs of computing power, which
is enough to yield real-time identification of cows. This camera can be installed at the farm
to monitor and identify cows at any point that farmers or producers consider convenient.
It aims to place it in a location that mimics the angle the cow’s models were trained. A
proposal setup can be by integrating the camera at the gate of the squeeze chute to simplify
the number of cows to be identified to just one at a time. One limitation of the proposal may
be the short length of the camera’s ribbon cable. However, the board does support other
camera interfaces such as USB or TCP/IP video stream via network. Not to mention that
the board can host a website and exposes its IP address to other devices in the same local
network to interact with the face ID recognition program. If applicable, any smartphone
with a built-in camera can snap, send, and retrieve the cow’s ID on its web browser. Further
field test is required to validate an optimal setup (e.g., camera positioning, power supply,
and connectivity) as well as to evaluate external environment factors (e.g., lightning, dust,
ambient temperature). The deployed device can incorporate other algorithms to predict
physiological responses [32].
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Figure 13. Hardware setup for system deployment using NVIDIA Jetson nano and a 12 MP camera.

Since the number of NVIDIA Jetson nano GPU cores is much lower than GeForce
GTX 2080 graphic card used in testing (which has 23 times more computing cores), the
inference time of the Jetson nano is much slower, about 6.5 times slower (Table 4). So
as not to interrupt the video streaming processing on the main thread, the pipeline was
redesigned to be triggered on a new thread whenever a new frame is sampled. With
that said, the main processing thread is handling video streaming. The newly triggered
thread will process the recognition task without interfering with the video streaming of
the main thread. To prevent the system from throttling when another recognition thread is
triggered while the previous recognition thread has not been completed, the number of new
threads running alongside the main thread is limited to only one at a time and not a queue.
This implementation allows the video streaming to run at real-time speed while there is
a minor lagging for the recognition result to be indicated on the monitor. The lagging is
approximately 600 ms for processing the recognition task and returning the result (ID and
score), as measured in Table 4.

Table 4. Matching speed of the pipeline running on Jetson Nano.

Step Inference Speed

Face detector 177.1 ms
Face cropper 47.9 ms
Face encoder 177.7 ms
Face lookup 236.8 ms

Total ~639.5 ms

In an ideal scenario, it is expected that a non-mate cow search would return a low
similarity score against all the enrolled cow mates. However, as experiments showed, false
alarm cases with a relatively high similarity score still exist. The farmer will usually know
which cow is newly transferred to their farm. It is recommended to manually capture a
few samples of a non-mate cow and add the encoding to the database. When adding new
information to the database, retraining any deep learning models is unnecessary, although
retraining the face encoder may improve performance.

Similarly, when users need to remove a cow from the database, they must delete the
corresponding chip faces and remove embedded features from the database. Regarding a
missing case, when the returned ID has a low confidence score, the user should manually
verify the ID of that cow, either via the attached ear tag or other preferred identification
methods. A systematic study will be conducted to determine the best protocol for data
acquisition in future work.
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3.5. Discussion

In 2020 the average herd size of an Australian dairy farm had grown to an average of
279 head [33]. Although the number of unique identities experimented within this study
is small compared to standard industrial herd size, the ArcFace algorithm showed high
accuracy on various datasets containing thousands to millions of identities [26]. With the
spacious 2D cow feature space (Figure 6), there is still capacity for this system to take up
more identities and scale up to an industrial size.

Working with computer vision systems often encounters external impacts from the
environment to the overall performance, such as occlusion, illumination, or background
problems. Since no obstacles were recorded between the camera and the cow across all
videos in the dataset, the occlusion problem was not addressed in this paper. Regarding
the illumination problem, although all videos were recorded in good lighting conditions,
image augmentation methods were applied to simulate varied input image colors (e.g.,
randomly adjust brightness, contrast, saturation, and gaussian blur), minimizing the
effect of illumination changes. However, further testing the impact of either occlusion or
illumination of the environment during field tests can be addressed in future work. One
concern about the current implementation of the pipeline is the chip face’s background
impact on the performance of the face lookup. Namely, the system is sensitive to minor
background changes, even though many data augmentation steps were used while training
each deep learning model. For example, in some “chip face” samples, a tool supports the
cow’s head. Since the device is yellow, when part of the tool is captured in the chip face, it
may affect the prediction accuracy when the same cow is recognized without the device
occluding its face. Likewise, chip faces of another identity with the yellow neck support
tool may also likely be mispredicted with those in the database. Therefore, it is intended to
blur or filter the background to decrease its impact on the pipeline in the future.

Assuming a well-controlled environment on a farm scale is equivalent to a closed-set,
where all cows have been enrolled into the database. Consequently, the identification
system will have no chance to see a non-mate cow, so the only metric needed is the CMC
value. Alternatively, a hit rate value that maps to a specific threshold metric should be used.

An advantage of the model developed is that it can be integrated with previous
works from the Digital Agriculture, Food and Wine research group from The University
of Melbourne related to the welfare assessment of farm animals. Specifically, different
models have been developed to extract animal physiological information from RGB and
infrared thermal videos, such as heart rate, eye temperature, respiration rate, and sudden
movements for pigs [34], sheep [35], cattle [36], and dairy cows [32]. Hence, integrating the
analysis pipeline (Figure 2) up to face cropping with the ML models developed for animal
physiology will allow extracting the ID per animal and parameters to assess welfare. These
integrated models may not require a FLIR DUO PRO, just normal RGB cameras, since eye
temperature has been extracted using ML models from heart rate and respiration rate plus
environmental temperature and relative humidity for dairy cows [32]. The latter explains
using the FLIR visible and infrared thermal integrated camera for this study. However, the
deployment option proposed will be the same as in Figure 13.

By integrating ID and welfare ML models, the industry can have further advantages
related to predictions of the quality of produces related to individual animals and their
physiological responses to the environment, such as quality and composition of milk [32]
and meat quality for cattle [36] and early detection of respiratory problems for pigs [34].

4. Conclusions

This study presented a deep-learning facial recognition pipeline on dairy cows with
high accuracy and deployment options. Furthermore, the pipeline proposed is easy to
upgrade as its fundamental steps are segmented into smaller modules. The steps to add
or remove an identity to/from the database would not need to retrain other models. The
deployment test on the Jetson nano board showed that the system could be portable and
used with mobile devices such as smartphones and tablet PCs. This identification system
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can then be integrated with other technology, such as biometric tracking, for animal welfare
monitoring purposes. It also showed that existing machine learning tools are accessible,
advanced, and easy to use for various purposes by end-users in both industry and academia.
Importantly, this pipeline and method are non-invasive to the animal, quick, and reliable.
It can complement the conventional checking of every animal based on ear tags or paper
checklists if required. The system can be used for other farm animals, requiring only
retraining, which can be a significant leap for livestock monitoring, not only for traceability
but also to track the welfare of animals on the farm during transport and avoid fraudulent
practices, and predict the quality of produces, such as milk and meat and the effects of
environmental stresses, such as heat stress on produces.
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