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Quantum repeaters with encoding on nitrogen-vacancy center platforms

Yumang Jing1 and Mohsen Razavi1

1School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, U.K.

(Dated: June 15, 2022)

We investigate quantum repeater protocols that rely on three-qubit repetition codes using
nitrogen-vacancy (NV) centers in diamond as quantum memories. NV centers offer a two-qubit
register, corresponding to their electron and nuclear spins, which makes it possible to perform de-
terministic two-qubit operations within one NV center. For quantum repeater applications, we,
however, need to do joint operations on two separate NV centers. Here, we study two NV-center
based repeater structures that enable such deterministic joint operations. One structure offers less
consumption of classical communication, at the cost of more computation overhead, whereas the
other one relies on a fewer number of physical resources and operations. We assess and compare
their performance for the task of secret key generation under the influence of noise and decoherence
with current and near-term experimental parameters. We quantify the regimes of operation, where
one structure outperforms the other, and find the regions where encoded quantum repeaters offer
practical advantages over their non-encoded counterparts.

I. INTRODUCTION

The unavoidable transmission loss in optical channels
poses a serious challenge to distributing entanglement be-
tween remote parties. A key solution to this problem is
to use quantum repeaters (QRs) [1, 2], which are the
main building blocks of future quantum communications
networks. The conventional idea behind QRs is to cre-
ate entanglement over shorter segments, followed by en-
tanglement swapping (ES) at all intermediate nodes to
distribute entanglement over a long distance [1]. Doing
ES operations in a nested way can result in accumula-
tion of errors in the system, for which entanglement dis-
tillation (ED) techniques are proposed [2]. An attrac-
tive option to implement a repeater chain is based on
using probabilistic ES operations [3, 4], e.g., by using
linear optics, and/or probabilistic ED procedures [5, 6].
However, due to the probabilistic nature of such oper-
ations, the finite coherence time of currently available
quantum memories (QMs) can restrict the performance
of such systems. Nevertheless, as quantum technologies
make progress, other promising experimental platforms
emerge in which at least some of the previous proba-
bilistic steps can be operated in a deterministic way. In
this paper, we focus on one such possible implementa-
tion, where both ES and ED operations are performed
in a deterministic way. We particularly investigate the
suitability of nitrogen-vacancy (NV) centers in diamond
in such settings.

In order to perform ES and ED operations in a deter-
ministic way, we not only need a suitable physical plat-
form that allows deterministic two-qubit gates, but also a
repeater protocol that allows one-way ED. One approach
to deterministic ED operations is based on quantum re-
peater with encoding [7]. Such repeaters rely on quantum
error correction (QEC) codes for their ED operations,
and by doing so they go around the bottleneck caused by
the transmission delays in acknowledging the success of
ES and ED operations. In this protocol, the entangled
states over elementary links are in encoded forms, such

that errors in the ES steps can potentially be detected
and corrected. That is, the ED operation effectively is
performed via the QEC framework. This results in less
waiting time, thus less restrictions on the QM coherence
times, and can boost the entanglement generation rate in
a QR. Such an approach is, however, only possible in QM
platforms that allow for the deterministic gates needed
for ES and QEC operations.

In this work, we study the use of NV centers as a plat-
form for QRs with encoding. This is partly driven by
the successful implementation of deterministic two-qubit
gates between electron and nuclear spins of a single NV
center [8–10]. Moreover, such memories are adopted for
the first demonstration of a simple QR network between
four cities in Netherlands [11, 12]. This offers a promising
platform for the implementation of near-future encoded
QR structures, as our recent work on QRs with encod-
ing [13, 14] suggests that the simple three-qubit repeti-
tion code could be the best option, in such repeaters, for
quantum key distribution (QKD) applications over short
to moderately long distances. In particular, we find that
there are working regimes of operation where encoded
QRs can outperform probabilistic QRs [14]. This means
that for the type of networks that we are expecting to
have in the short term, it could be a rewarding exercise
to implement encoded QRs despite their additional im-
plementation challenges.

To get a sensible view of the requirements, versus gains,
for NV-center based QRs with encoding, we need to con-
sider realistic scenarios that such memories can be used
in. While, in earlier works by our group [13, 14], the per-
formance of the QRs with three-qubit repetition codes
is carefully studied in the presence of operational errors,
such analyses are not directly applicable to the case of
NV centers. Firstly, the work in [13, 14] assumes that
a direct deterministic Bell-state measurement (BSM) on
two separate QMs is readily available. This is not ex-
actly the case for NV centers. While it is possible to
use an entangled link between the electron spins of two
NV centers to mediate a joint operation on them [15],
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we should account for additional errors, or delays, that
this may cause. There are also different QR structures
that we can then come up with based on this mediatory
entangled link, which need to be comparatively studied.
Finally, the work in [13, 14] ignores the impact of mem-
ory decoherence. Now that we have a chosen memory,
which is short of ideal once it gets to coherence times, we
should consider its effect on the performance to have a
better assessment of system requirements.

In this work, motivated by the ideas and structures
in [15] and [16], we propose two structures for encoded
QRs with NV centers. One structure has the advan-
tage of requiring less consumption of classical commu-
nication, while the other one uses fewer resources. We
will assess and compare their performance for generating
secret key under the influence of erroneous operations
and decoherence, using current or near-term experimen-
tal parameters. We compare the results with the sim-
pler non-encoded structures where deterministic BSMs
are employed but no ED operation is applied. Our results
suggest that, while at short distances, the non-encoded
schemes may offer better performance, as we go to longer
distances, it pays off to use structures that employ more
encoded links. As experimental parameters, e.g., mem-
ory coherence times, improve, the encoded structure with
fewer resources often offer the best performance among
those considered in this work. We also specify the gap be-
tween what we have experimentally available today ver-
sus the minimum required specifications for any of these
systems to work.

The paper is structured as follows. In Sec. II, we begin
with a description of the ideal implementation of encoded
QRs motivated by Refs. [7, 17] on NV-center based plat-
forms, and explain the error models we use to formulate
the problem in hand. In Sec. III, we analyse the effect
of decoherence, as well as other system imperfections, on
system performance, and calculate the secret key gener-
ation rates for such setups in Sec. IV. We compare our
results with the case of QRs without encoding, and illus-
trate the parameter regions where one type of protocol
outperforms the others. Finally, we conclude the paper
in Sec. V.

II. SYSTEM DESCRIPTION

In this work, we study the implementation of QRs with
encoding on NV center platforms. One of the key fea-
tures of NV centers, which makes them a desirable option
for QR setups, is their being a two-qubit register. This
includes an electron spin acting as the optical interface
with single photons, and a nuclear spin, due to neighbor-
ing carbon or nitrogen atoms to the vacancy, suitable for
long-time quantum storage. Moreover, using microwave
and radio frequency signals, within each NV center, two-
qubit operations, e.g. controlled not (cnot) and con-
trolled phase gates, can be performed deterministically
on these two qubits [18, 19]. Within each NV center, one

can also map a quantum state from the electron to the
nuclear spin, and vice versa [20–23]. All these tools come
handy in dealing with operations that we need in the QR
setup.

An additional requirement for an efficient QR setup is
the ability to write and read single photons to and from
a QM. By driving an NV center, embedded in a diamond
crystal, with a laser field, we can drive many transitions
that mostly involve vibrational mode phonons. Such
transitions will not be useful for coherent operations as
these vibrational modes often quickly die out within the
crystal. Zero phonon line (ZPL) emissions are then ef-
fectively the key to generating entangled states with NV
centers. Even at near zero Kelvin temperatures, however,
such emission are typically only a small portion, around
3%, of all radiations from the NV center [24]. Account-
ing also for low collection efficiency from a bulk crystal,
entanglement generation with NV centers has been ex-
tremely inefficient [25]. A remedy to both problems of
ZPL emission rates and collection efficiency is to have a
microcavity around the NV center [26–29]. There have
been several efforts in this regard, which have improved
the ZPL emission rates to 46% and have increased the
collection efficiency by several factors [30–32]. In this
work, we assume cavity-based NV center platforms are
available, and use known techniques with this technology
to entangle light with NV centers and perform quantum
operations and measurements on them. These tools are
summarized in Sec. II A, based on which, we explain sev-
eral QR protocols and structures, and then finish this
section with our error models. Note that the methodolo-
gies developed here are also applicable to a broader class
of two-qubit memories, including silicon vacancy centers
[33].

Throughout the paper, we denote electron (nuclear)
spins with lower (upper) case letters, for instance, if |0〉a
and |1〉a represent the basis vectors corresponding to, re-
spectively, electron spin numbers mS = 0 and mS = −1,
then |0〉A and |1〉A represent the basis vectors corre-
sponding to, respectively, nuclear spin numbers mI = 0
and mI = −1 of the same NV center.

A. NV Center as a Toolbox

Here, we explain how specific features of NV centers
can be used to implement the main components of en-
coded QRs.

1. Entanglement distribution

One of the key ingredients of QR protocols is to es-
tablish entangled states over elementary links. Sup-
pose we want to share an entangled state |Φ+〉AB =
1√
2
(|00〉AB + |11〉AB) between nuclear spins A and B.

We can then first share an entangled state between the
corresponding electron spins a and b, and then map the
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state of a (b) to A (B). This mapping is performed by
initialising the nuclear spins in |00〉AB , performing cnot

gates within each NV center with the electron spin as the
control qubit, and then measuring the electron spins in
X basis.

There are several schemes for distributing entangled
states between the electron spins of two remote NV cen-
ters. In most of them, the entanglement distribution
involves generating a spin-photon entanglement at each
end of the link and then swapping entanglement in the
middle of the link [34–36]. Depending on whether the
spin-photon entanglement is in one optical mode (i.e.,
zero or one photon space), or two (e.g., the polarization,
or time-bin, space), the Bell-state measurement (BSM)
in the middle may rely on single-mode or two-mode in-
terference. If the BSM is conclusive then the entangle-
ment distribution task is heralded to be successful, other-
wise it needs to be repeated until success. The schemes
that rely on single-mode interference often require one
photon to safely travel to the middle of the link, hence
may have better rate scaling with distance for herald-
ing success. However, in order to obtain a high fidelity
entangled state, we should either keep the spin-photon
entanglement generation rate very low (e.g., around 1%)
[12, 37–39] or rerun the procedure to distill the entan-
gled state [29, 35, 40, 41]. In both cases the effective
success rate, in certain regimes of interest to this work,
could then become comparable to the two-mode schemes,
where the rate decays exponentially with the distance
between nodes A and B. For instance, in our setup,
where the optimum elementary link is typically below
20 km, the extra channel loss in the two-mode case is a
small factor, although one has to also account for addi-
tional coupling or detector efficiencies. But, aside from
the success rate of entanglement generation, another im-
portant factor is the amount of the initial noise, or loss
in fidelity, that we can tolerate in our system. The two-
mode schemes can, in principle, generate ideal entangled
states, whereas, in the single-mode schemes, some errors,
due to, e.g., generating one photon at each end, would be
inevitable. In a real experiment, one has to factor in all
these nuances, as well as practical restrictions on the sys-
tem, to decide which entanglement distribution scheme
may work best in their setting.

In order to encompass the essence of different en-
tanglement distribution schemes available, here, we as-
sume that a generic two-mode entanglement distribution
scheme is used where, at each of nodes A and B, the po-
larization of a single photon is entangled with the electron
spin of the NV center (see [42, 43], for example). These
photons are frequency converted, if needed, and will be
coupled to an optical channel. Using linear optics and
single-photon detectors, a partial BSM in the polariza-
tion basis is then performed on these two photons at the
middle of the link. Once a successful BSM is heralded,
this information will be sent back to nodes A and B, at
which point, the state of electron spins is transferred and
stored onto the corresponding nuclear spins. We model

FIG. 1. Quantum circuit for remote cnot gate. Note that
single-qubit measurements (trapezoidal boxes) are performed
on electron spins. Here, ai−Ai represent the electron-nuclear
spins in one NV center separated by a distance L0 from the
corresponding NV center, bi − Bi, at the other end of the
elementary link.

the generated entangled state as a Werner state as will
be explained later in the next section. Note that any
other entanglement distribution scheme can also be simi-
larly analyzed using techniques and procedures provided
in this work.

2. Encoded entanglement distribution

In this work, we consider encoded QRs with three-
qubit repetition codes, where the logical qubits are en-
coded as

|0̃〉 = |000〉 and |1̃〉 = |111〉. (1)

where |0〉 and |1〉 represent the standard basis for a single
qubit. This code can correct up to one bit-flip error.
Although this is not a strong error correction code, it
has been shown in our previous work that so long as we
rely on its error detection features it offers a reasonable
performance at short and moderately long distances [13,
14] as compared to more complicated codes. We therefore
analyse this particular code for our NV center platform.

The first step in an encoded QR is to ideally distribute
encoded entangled states in the following form:

|Φ̃+〉AB =
1√
2
(|0̃0̃〉AB + |1̃1̃〉AB), (2)

where here we consider two example memory banks A =
(A1, A2, A3) and B = (B1, B2, B3) at the two ends of
an elementary link. To this end, using the scheme de-
scribed in the previous subsection, we first generate Bell
pairs |Φ+〉AiBi

= 1√
2
(|00〉AiBi + |11〉AiBi), for i = 1, 2, 3.
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Once electron spins are available again in all NV cen-
ters of memory banks a and b, we initialize them in the
codeword states 1√

2
(|0̃〉a + |1̃〉a) and |0̃〉b. Finally, using

transversal remote cnot gates, shown in Fig. 1, we can
generate the state in Eq. (2) [7]. The same procedure is
applied to all elementary links.

Note that the remote cnot circuit in Fig. 1 is slightly
different from the one used in [13, 14]. In the latter work,
the remote cnot circuit requires measurements on qubits
that hold the initial Bell state, i.e., the nuclear spins in
our NV-center setup. In NV centers, however, a nuclear
spin is often measured by first mapping its state to an
electron spin, using a cnot gate, and then measuring
the electron spin [23, 44]. This is not, however, possible
in our case as this would ruin the initial state of the
electron spins. We have therefore slightly changed the
remote cnot circuit such that the measurements are only
done on electron spins with nuclear spins always in an
entangled state.

3. Entanglement Swapping

Once encoded entangled states are distributed between
the nuclear spins across all elementary links, the next step
is to perform entanglement swapping (ES) operations at
all intermediate stations to extend the entanglement to
the entire link. In the encoded repeater protocol, this
can be done by performing BSMs, in a transversal way,
on corresponding pairs of NV centers at each of the in-
termediate nodes. This operation would also allow us to
pick up some of the errors that might have been accumu-
lated by this stage, and help us distill the final entangled
state. For instance, in the 3-qubit repetition code con-
sidered here, the BSM is made of an X and a Z operator
measurement, the results of which specify the type of en-
coded Bell state that will be shared between the remote
nodes. Ideally, the results of the Z operator measure-
ments must be 000 or 111. Because of the errors in the
system, we may, however, get other combinations of 0
and 1, which correspond to detecting an error. The ma-
jority rule here can be used to specify the most likely
post-BSM encoded Bell state. It turns out [13], how-
ever, that for QKD purposes, detecting the error, and
using that information for post-selection, would provide
us with an effective way to boost the key rate, and error
correction, as envisaged in the original protocol [7], may
not be needed.

For the above process, a direct joint measurement on
the nuclear spins of two separate, although possibly co-
located, NV centers may not be possible. To do a deter-
ministic BSM on two separate nuclear spins, here, we dis-
tribute an additional Bell pair between the corresponding
electron spins of the two NV centers. ES operations can
then be performed by performing BSMs on the nuclear
and electron spins within each NV center [15]. This can
be done by first applying a cnot gate to nuclear and
electron spins followed by relevant single-qubit measure-

ments on each. Note that, in this procedure, we have to
first measure the electron spin, and then map the nuclear
spin state to the electron spin. The latter can be done
by initialising the electron spin in an appropriate state
and then performing a cnot gate on the two spins with
the nuclear spin as the control qubit. We can then mea-
sure the electron spin again, to effectively complete the
measurement on the nuclear spin. A similar procedure
can be used across the repeater chain. The measurement
outcomes need to be notified to the end users to adjust
the Pauli-frame on the final states, and/or for error cor-
rection or post-selection purposes.

Note that in the above procedure, the two NV centers
do not necessarily need to be co-located, and, in princi-
ple, one can assume an arbitrary distance between the
two memories. That would, however, change system re-
silience to memory decoherence. To study this, in the
following, we define several protocols for different QR ar-
chitectures and will analyse and compare them in the
forthcoming sections.

B. Quantum repeater structures and protocols

In this section, based on whether we employ coding
or not, and how deterministic BSMs are done, we define
four protocols, as explained below.

1. Protocols for encoded repeaters

Here, we describe the ideal implementation of the pro-
tocol proposed in Ref. [7] with three-qubit repetition
codes on NV center platforms. We consider two archi-
tectures, shown in Figs. 2 and 3, depending on whether
the BSM is done on co-located NV centers or those apart
by a distance L0, corresponding to the length of an el-
ementary link. In both structures, there are a total of
2n elementary links, where n is the nesting level of the
corresponding QR.

In what we refer to as protocol 1 (P1), we use the
structure in Fig. 2, and carry out the following steps:

• Step 1: distribute encoded entanglement across all ele-
mentary links; see Sec. II A 2. As this requires multiple
attempts to entangle all relevant pairs of NV centers,
we stop this process, whether or not all relevant pairs
are entangled, after a stoppage time T1 and move to
the next step.

• Step 2: perform BSMs at all intermediate nodes; see
Sec. II A 3. We again stop this procedure, whether or
not all relevant BSMs are completed, after a stoppage
time T2.

• Step 3: pass all measurement results to the two end
users. If there are missing entangled pairs, or incom-
plete BSMs, then we discard the state generated in that
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FIG. 2. Schematic QR structure for protocol 1 with the
following steps: (a) Distributing Bell pairs between electron
spins (small orange ovals) over all elementary links in a herald-
ing way. Transferring and storing the entangled states to the
corresponding nuclear spins (large blue ovals), followed by re-
mote cnot gate. (b) Performing ES operation on nuclear
spins at intermediate nodes by creating temporary Bell pairs
between the corresponding electron spins, and then perform-
ing a BSM within each NV center. (c) The final encoded
entangled state is created between the two end users. Based
on the measurement results at each middle node, the Pauli
frame of the final entangled state can be adjusted.

round. We will account for the effect of such discarded
states in our key rate analysis.

In what we call protocol 2 (P2), motivated by Refs. [16,
17], we use the structure in Fig. 3, and carry out the
following steps:

• Step 1: distribute encoded entanglement across every
other elementary link; see Sec. II A 2. We stop this
process after a stoppage time T1 and move to the next
step.

• Step 2: distribute uncoded entanglement across the
electron spins of all remaining links; see Sec. II A 1. We
stop this process after a stoppage time T2 and move to
the next step.

• Step 3: perform BSMs at all intermediate nodes, which
now only contain single NV centers; see Sec. II A 3.

• Step 4: pass all measurement results to the two end
users. If there are missing entangled pairs, or incom-
plete BSMs, then we discard the state generated in that
round.

Protocol 2 requires fewer NV centers and operations than
protocol 1, and, in that sense, may offer some advantage.
But, in the end, what matters is the overall performance,
normalized by the total number of memories used, which
we use for comparison between such protocols.

FIG. 3. Schematic QR structure for protocol 2 with the
following steps: (a) Generating encoded Bell pairs between
nuclear spins in every other link; (b) Distributing Bell pairs
between electron spins in all remaining links in order to facil-
itate BSM within each NV center at intermediate nodes. (c)
The encoded entanglement is extended to end users. Based
on the measurement outcomes gathered from middle stations,
one can adjust the Pauli frame of the final entangled state.

2. Protocols for uncoded repeaters

In order to better understand whether QRs with en-
coding will offer any advantages over their non-encoded
versions, in this work, we also consider protocols 3 (P3)
and 4 (P4), which are, respectively, the uncoded versions
of protocols 1 and 2. For simplicity, we do not consider
any distillations for protocols 3 and 4, as, without cod-
ing, that would turn them into probabilistic protocols. A
comparison between encoded QRs and probabilistic ones
is already available in [14]. In protocols 3 and 4, we just
need to replace Step 1 with the following revised step:

• Step 1’: distribute Bell pairs between nuclear spins in
all, for protocol 3, or every other, for protocol 4, el-
ementary links; see Sec. IIA 1. We move to the next
step after a stoppage time T1.

The remaining steps are as in protocols 1 and 2, respec-
tively.

C. Error models

In order to analyse the above QR setups, we consider
three major sources of imperfections as follows.
(1) Gate imperfections: The cnot gate for a control
nuclear spin J and a target electron spin j, within an NV
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center, is modeled as [1]

ρout = (1− β)UJ,jρ
inU †

J,j +
β

4
TrJ,j(ρ

in)⊗ IJ,j , (3)

where ρin (ρout) is the input (output) before (after) the
cnot gate, and UJ,j represents the unitary operator cor-
responding to an ideal cnot gate. The error in this two-
qubit operation is modeled by a uniform depolarization
of qubits J and j, represented by identity operator IJ,j ,
with probability β. We assume that a similar relation-
ship as in Eq. (3) would also model a cnot gate with
the electron (nuclear) spin as the control (target) qubit.
While not necessarily the case, for simplicity, we assume
that the parameter β is the same in both cases. In NV
centers, there are other common two-qubit gates, such
as controlled phase gates, that may be used in practice.
Using equivalent quantum circuits, however, such opera-
tions can often be modeled by a cnot gate with possibly
additional single-qubit rotations. In such cases, we as-
sume parameter β captures the total error in the equiv-
alent model. As in Ref. [13, 14], here, we assume all
single-qubit operations are perfect.
(2) Measurement errors: The projective measure-
ments to electron spin states |0〉 and |1〉 are, respectively,
represented by

P0 = (1− δ)|0〉〈0|+ δ|1〉〈1| and

P1 = (1− δ)|1〉〈1|+ δ|0〉〈0|, (4)

where δ is the measurement error probability. Similar
measurement operators, P±, are used for projective mea-
surement in |±〉 = 1/

√
2(|0〉 ± |1〉) basis. The projective

measurements of nuclear spins are modelled effectively in
the same format but with error parameters β/2+δ, since
there should always be a mapping operation performed
through a cnot gate as described in Sec. II A 3.
(3) Decoherence: We model the decoherence effect in
electron/nuclear spins by using a depolarizing channel.
For a single qubit a (A), after a waiting time tw, the
initial state ρ will be mapped to

Da
depol(ρ) = λe

2ρ+ (1− λe
2)(I2 − ρ),

DA
depol(ρ) = λn

2ρ+ (1− λn
2)(I2 − ρ), (5)

where

λ
e/n
2 (tw) =

1

2
+

e
− tw

τ
e/n

2
(6)

with τe/n being the coherence time for electron/nuclear
spins and Id being a d×d identity matrix. The expression
in Eq. (5) is a re-arranged form of the typical expres-
sion for a depolarizing channel, pρ + (1 − p)I2/2, with

p = exp (−tw/τe/n), in which λ
e/n
2 represents the fidelity

of the output state with respect to the input state, in the
case of pure input states. As shown below, this formula-
tion suits better the two special cases of interest we need
to deal with in the setup under consideration.

The first case of interest is when we have a two-qubit
system in an initial entangled state such as |Φ+〉AB(ab),
for nuclear spins (electron spins). After a waiting time
tw, both spins decohere according to Eq. (5) resulting in
DAB

depol(|Φ+〉AB〈Φ+|) as the output state for nuclear spins,

where DAB
depol = DA

depol ◦DB
depol, and similarly for electron

spins. As shown in Appendix A, for ρ = |Φ+〉AB(ab)〈Φ+|,
the output state can be written as

DAB
depol(ρ) = λn

4ρ+ (1− λn
4)(I4 − ρ)/3,

Dab
depol(ρ) = λe

4ρ+ (1− λe
4)(I4 − ρ)/3, (7)

where

λ
e/n
4 (tw) =

1

4
(3λ

e/n
2 (tw)− 1)2 +

3

4
(1− λ

e/n
2 (tw))

2 (8)

is the fidelity of the output state with respect to the en-
tangled input state. The same form as in Eq. (7) holds
for any other Bell states, or any mixed state diagonal in
Bell states, such as Werner states. For a general two-
qubit state, Eq. (7) acts as a conservative approximation
to decoherence effects given that it correctly specifies the
fidelity of the output state, while maximizing the noise by
using a maximally mixed state for all other off-diagonal
terms. We use Eq. (7) to model decoherence across the
elementary links as, in practical regions of interest, de-
viations from a Bell-diagonal state is reasonably small.
Note that the off-diagonal terms ignored by our approxi-
mation often do not contribute to quantum bit error rate
(QBER) in QKD systems.

The second case of interest is when the initial state is
of the form |Φ̃+〉AB, which is a six-qubit system, or a
slight deviation from it. With similar calculations, we
approximate the output state for an encoded entangled
state ρ by

DAB

depol(ρ) = λn
64ρ+ (1− λn

64)(I64 − ρ)/63, (9)

where

λ
e/n
64 (tw) =

1

64
[(3λ

e/n
2 (tw)− 1)6 + 33(1− λ

e/n
2 (tw))

6

+ 15(3λ
e/n
2 (tw)− 1)2(1− λ

e/n
2 (tw))

4

+ 15(3λ
e/n
2 (tw)− 1)4(1− λ

e/n
2 (tw))

2] (10)

is the fidelity of the output state, with respect to the
input state, if the initial state is the ideal encoded en-
tangled state |Φ̃+〉AB. Similar to the two-qubit case, the
above modeling of decoherence effectively treats all non-
desired states as a maximally mixed state while correctly
predicting the output fidelity; see Appendix A for more
detail.

III. ERROR ANALYSIS

In order to assess how well the NV-center based en-
coded QRs would operate, here, we obtain the final dis-
tributed state as a function of system parameters. In the
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case of measurement or gate errors, we have previously
devised analytical and numerical techniques to accurately
account for such issues and their impact on system per-
formance [13, 14]. In this work, we additionally account
for the effect of memory decoherence especially because,
in terms of coherence time, the electron spins in the NV
centers may impose some limitations on the achievable
rates and distance.

Accounting for the decoherence effect, in an analyti-
cal way, in a system with many individual NV centers,
where each decoheres on its own independently of oth-
ers, is by no means an easy task. Here, we devise an
approximation technique, in which, at each step of the
way, we calculate the average waiting time for memories
involved, and then assume all of them have decohered
by the same average time. This should provide us with
a reasonable approximation to what in practice can be
achieved, which is what we are looking for here in the
context of QKD as an application.

In the following, we calculate the relevant time param-
eters for each step of the proposed protocols and explain
our methodology to obtain the QR final state as a func-
tion of system parameters.

A. Entanglement distribution

Here, we first obtain the entangled state distributed
over an elementary link. This involves two steps: first,
generating an entangled state between two electron spins,
and, then, transferring that state to the corresponding
nuclear spins. In both processes, we deviate from an ideal
Bell pair because of gate errors and decoherence. We fol-
low the two-photon protocol described in Sec. II A 1. For
simplicity, we assume that the generated entangled state
without any decoherence is the ideal Bell pair |Φ+〉. By
the time that we hear about the success of entanglement
distribution, this ideal state of electron spins has already
decohered by the time it takes to transmit photons and
learn about the success of the entanglement distribution
protocol. In this work, we assume that, compared to
the transmission time (which for our setup is typically
on the order of tens of µs, or longer), the time it takes
for any local operation is negligible. In that case, this
waiting time, or, effectively, the repetition period for the
entanglement distribution protocol is given by

T0 =
L0

c
, (11)

where L0 = Ltot/2
n is the length of elementary links,

with Ltot being the total distance between the two end
users and n is the nesting level. During this time, the
desired target state |Φ+〉 decoheres in electron spins, ac-
cording to Eq. (7), yielding

ρee = F0|Φ+〉〈Φ+|+ 1− F0

3
(I4 − |Φ+〉〈Φ+|), (12)

which is a Werner state with

F0 = λe
4(T0), (13)

where λe
4 is given by Eq. (8).

This state is then immediately transferred onto the cor-
responding nuclear spins. This is being done by applying
one cnot gate on each end, with electron spins as the
control qubit and nuclear spins in an initial state |0〉, fol-
lowed by X measurements on electron spins. This process
has been analytically simulated, according to Eqs. (3)
and (4), by the symbolic software Mathematica to give
us the entangled state ρnn shared between two nuclear
spins at distance L0.

B. Encoded entanglement distribution

The next step in encoded protocols is to create encoded
entanglement across certain elementary links. In princi-
ple, once the three Bell pairs required in each leg are es-
tablished, we can proceed with the remote cnot gate op-
eration that distributes encoded entanglement across the
corresponding link. In our proposed protocols, we, how-
ever, wait for a time T1 before we proceed to the ES stage.
This means that the nuclear spins in our system have de-
cohered for an average time of T 1 = T1 − T0/P0(L0),
with

P0(L0) =
1

2
η2cη

2
t η

2
d (14)

being the success probability for each entangling at-
tempt, where ηc accounts for the emission probability
of a ZPL photon from the NV center, its collection
and coupling efficiency into and out of the optical chan-
nel, and the efficiency of any required frequency con-
version, ηd is the single-photon detector efficiency, and
ηt = exp[−L0/(2Latt)] is the transmissivity of a photon
through half of the elementary link. Note that, per el-
ementary link, 1/P0(L0) is the average number of times
that we have to repeat our entanglement distribution
scheme until it succeeds. We have to repeat this process,
in parallel, for M different pairs of memories, where, in
protocol 1, M = 3× 2n, in protocol 2, M = 3× 2n−1, in
protocol 3, M = 2n, and in protocol 4, M = 2n−1. Here,
the waiting time for each memory pair is by itself a ran-
dom variable, independent of, but identically distributed
with, other waiting times, for all of which the average
waiting time is given by T 1. Even if we define a statisti-

cal average waiting time variable, Tw = (1/M)
∑M

i=1 T
(i)
w ,

where T
(i)
w is the waiting time for the ith link, the ex-

pected value of Tw is equal to T 1, and its variance is
expected to be small for large values of M , as it is often
the case for structures of interest in our work. In short,
T 1 properly captures the average decoherence time in this
phase of our setup. As we will see later, T 1 is indirectly
a function of M as our choice of T1 would depend on M .

Based on our average approach to accounting for de-
coherence across the repeater chain, here we assume all
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nuclear spins have decohered for a time T 1 by the time
we apply the remote cnot gate operation for encoded re-
peaters. This effect can be modelled by Eq. (7) at λn

4(T 1),
with input state ρ = ρnn. We then model the operations
in the remote cnot circuit in Fig. 1, accounting for op-
eration and measurement errors [13, 14], to obtain ρ′nn as
the output state for this stage of the protocol. Note that,
for remote cnot operation, electron spins are initialized
into the codeword states. This can be done, e.g., using
techniques introduced in [45–47]. Based on these tech-
niques, in this work, we assume that the codeword states
are created error-free and the time it takes to prepare
them is embedded into T1. This is because the remote
cnot operation can be done at each elementary link once
the three required Bell states for that link are generated.
That implies that, in terms of timing, the additional de-
lay caused by the remote cnot procedure, including the
local preparation of the initial codeword states, would
only matter for the elementary link that gets entangled
the last. Given that T1, in typical regimes of operation,
is on the order of ms, and local operations are assumed
to be much faster, we neglect this additional timing pa-
rameter. If this is not the case in a certain experiment,
the parameter T1 can be adjusted accordingly for rate
calculations. In protocols 3 and 4, we follow the same
procedure but we do not include the remote cnot oper-
ation.

C. Entanglement swapping

Once encoded/uncoded entanglement is stored in the
nuclear spins, additional electron-electron entanglement
is established so that ES operations can be performed at
intermediate stations. For protocols 2 and 4, this process
is the same as what has been done for the distribution
of original Bell pairs, whereas, in protocols 1 and 3, the
Bell pairs are distributed only over a very short distance
between two co-located electron spins. In the latter case,
we assume that the corresponding electron-spin decoher-
ence happens over a negligible time, whereas in the for-
mer the electron-electron state has the same form as ρee
in Eq. (12).

Once electron-electron entanglement is established, the
corresponding ES operations between electron and nu-
clear spins are immediately performed. These ES op-
erations could therefore be performed at different times
for different memories. To estimate the decoherence dur-
ing this step, and to follow the simple scheme we have
adopted for decoherence analysis, we calculate the aver-
age time T 2(Ps) = Ts/Ps, to do ES operations across the
repeater chain, where Ts denotes the repetition period for
the electron-electron entangling attempt, and Ps denotes
its success probability. During this time, our state ρ′nn
would decohere. For protocol 1, the decoherence is mod-
eled by Eq. (9) with λn

64 calculated at tw = T 2(P0(0)) and
Ts being a small internal time constant. For protocol 2,
the decoherence is modeled by Eq. (9) with λn

64 calcu-

T 1, PS1 T 2, PS2

Protocol 1 M = 3× 2n, M = 3× (2n − 1),
q = P0(L0) q = P0(0), Ts fixed

Protocol 2 M = 3× 2n−1, M = 3× 2n−1,
q = P0(L0) q = P0(L0), Ts = T0

Protocol 3 M = 2n, M = 2n − 1,
q = P0(L0) q = P0(0), Ts fixed

Protocol 4 M = 3× 2n−1, M = 2n−1,
q = P0(L0) q = P0(L0), Ts = T0

TABLE I. The relevant values of M , q, and Ts for calculating
T 1, T 2, PS1, and PS2, for different protocols.

lated at tw = T 2(P0(L0)) and Ts = T0. For protocol 3,
the decoherence is modeled by Eq. (7) with λn

4 calculated
at tw = T 2(P0(0)) and Ts being a small internal time con-
stant. Finally, for protocol 4, the decoherence is modeled
by Eq. (7) with λn

4 calculated at tw = T 2(P0(L0)) and
Ts = T0.

Let us denote the resulting state after the above de-
coherence process as ρ′′nn. Using the error models in
Sec. II C, and the techniques introduced in [13, 14], we
can then calculate the final output state of the QR ac-
counting for gate, measurement, and decoherence errors.

IV. QKD PERFORMANCE

It would be interesting to compare different QR struc-
tures and protocols in terms of their performance for a
concrete application. Here, we choose QKD as our bench-
marking tool. We use the decoder modules proposed in
[14], which only rely on single-qubit measurements, to
generate a raw key bit. We also use the post-selection
technique proposed in [13], wherein only data points that
no errors has been detected in the ES stage are used for
key generation. References [13] and [14] offer a detailed
description of the analytical-numerical methods used to
calculate the shared state between the two end users,
from which secret key rates has been calculated in this
work.

Here, we first calculate the secret key generation rate
per entangled state between Alice and Bob for the
BBM92 protocol [48]. In the asymptotic limit, and,
for the efficient [49] entanglement-based QKD protocol,
where one basis is used more often than the other, this
parameter, known as the secret fraction [50], is given by

r∞ = Max{0, 1− h(ez)− h(ex)}, (15)

where h(p) = −plog2(p)− (1− p)log2(1− p) is the Shan-
non binary entropy function and ei is the quantum bit
error rate (QBER) in measurement basis i, i.e., the prob-
ability that Alice and Bob get discordant measurement
outcomes in that basis. Here, the secret fraction is cal-
culated for the better of two decoders proposed in [14].

In order to obtain the total secret key generation rate,
we need to multiply the secret fraction by the entangle-
ment generation rate R. Due to our assumptions that the
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time for local operations and measurements is negligible,
the overall timescale for the implementation of protocols
is determined by the sum of T1 and T2. Thus, the rate
to obtain a Ltot-distant entangled pair is expressed as

R =
PS

T1 + T2
, (16)

where PS = PS1PS2 denotes the probability that, in step
1, all required elementary links are successfully entangled
and, in step 2, all relevant BSMs are performed. The
success probability for step 1 is given by PS1 = (1− (1−
q)T1/T0)M , and, in step 2, conditioned on success in step
1, by PS2 = (1− (1− q)T2/Ts)M , where, in each protocol,
the corresponding values for q, M , and Ts are outlined
in Table I. In this work, we normalize secret key rate
by the number of NV centers to assess and compare the
performance of proposed protocols. The normalized key
rate is given by

RP1
QKD =

RP1rP1
∞

6× 2n
,

RP2
QKD =

RP2rP2
∞

3× (2n + 1)
,

RP3
QKD =

RP3rP3
∞

2n+1
,

RP4
QKD =

RP4rP4
∞

2n + 1
, (17)

for protocols 1 to 4, respectively, as specified by the su-
perscripts.

Based on above expressions, we compare the secret key
generation rate, in the nominal mode of operation where
no eavesdropper is present, for protocols 1 to 4. Our ob-
jective is to estimate the relevant parameters in Eq. (17)
to get some insight into how these protocols are expected
to perform in practice.

The nominal parameter values used in our numerical
results are as follows. We fix PS1 and PS2 to 0.99 each,
from which T1 and T2 can be calculated for each proto-
col. Note that T1 and T2 are increasing functions of M ,
which indirectly affects the waiting/decoherence time in
our protocols. For our set of parameters, T1 and T2,
respectively, end up to be somewhere between 1.5 to 2
times the average time that it takes to entangle all rel-
evant memory pairs. We then calculate T 1 and T 2 to
estimate the effect of decoherence on our system. We
set the coherence time of electron and nuclear spins as
τe = 10 ms and τn = 1 s, respectively, which is achiev-
able in practice [41, 51, 52]. The above values mostly
reflect the back action on nuclear spins, when electron
spins are being manipulated, but recent work with this
type of memory [12, 53–55] has shown some progress with
resolving this issue. We will therefore consider larger val-
ues of coherence time in our numerical results as well.
The detector efficiency is set to ηd = 0.9, which can be
achieved by using superconducting single-photon detec-
tors [56], offering negligible dark counts in our case. The

FIG. 4. Comparison of normalized secret key rate as a
function of cnot error probability β at (a) ηc = 0.5, Ltot =
500 km, (b) ηc = 0.5, Ltot = 300 km, (c) ηc = 0.3, Ltot =
300 km, and (d) ηc = 0.4, Ltot = 100 km, for protocols 1–4.
The result for an entanglement distribution link without en-
coding, i.e., effectively, protocol 3 at n = 0, is also calculated
(black solid curve in (d)). The optimum nesting level, nopt,
has been shown on each curve. Whenever the optimum nest-
ing level changes as a function of β, the transition point has
been highlighted on the graph with a large red oval. Up to
this point, the optimum nesting level is the higher of the val-
ues given. From this point on, the lower given value becomes
the optimum nesting level. The measurement error probabil-
ity is set to δ = 10−4. The coherence time of electron spins
and nuclear spins are τe = 10 ms and τn = 1 s, respectively.

distribution time for next-to-each-other electron-electron
entanglement is set to Ts = 5 µs, which is on the same
order of magnitude as the timing of internal operations
reported in [12]. We choose the optical fiber as our chan-
nel with the speed of light being c = 2 × 105 km/s and
Latt = 22 km.

Figure 4 illustrates the performance of different proto-
cols for generating secret keys as a function of cnot gate
error probability β, at electron-spin measurement error
probability of δ = 10−4, in the presence of depolarizing
noise. We have chosen several different values for the
coupling efficiency, ηc, as well as three nominal distances
of 100 km, 300 km, and 500 km. Such distances are per-
haps too short to have an immediate impact in practice,
but they are relevant to early demonstrations of quan-
tum networks as being pursued in, e.g., Netherlands [12].
For each value of β, we have found the optimum nest-
ing level, denoted by nopt on each curve, for each pro-
tocol, that maximizes the key rate in Eq. (17). Figures
4(a)-(d) show system performance at different combina-
tions of such parameters. Note that, for some parameter
regimes, some protocols have not been able to generate
a positive key rate, and, therefore, are absent from the
relevant graph. We make several interesting observations
from this figure, as summarized below:

• Observation 1: Among different values chosen, in
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our simulation, for the total distance, Protocols 3 and
4 could only generate non-zero secret key rates at
Ltot = 100 km. For the chosen measurement error
probability and coherence time parameters, even if we
improve the coupling efficiency to ηc = 0.7, there is
still no key at Ltot ≥ 200 km for these two proto-
cols. This behavior is mainly because no distillation is
considered in uncoded repeaters. Given that conven-
tional entanglement distillation techniques that do not
rely on quantum error correction codes are probabilistic
[5, 6], it is not expected that they offer any improve-
ment in key rate scaling either. The reason for this is
that whenever we need to do a probabilistic operation,
we need to repeat that until success. This requires ad-
ditional classical communication to herald the success
or failure of previous attempts, which results in addi-
tional delay and decoherence, both reducing the rate.
This implies that at sufficiently short distances we may
be better off not using any repeater node, and one can
directly distribute an entangled state between the far-
end users. This case is shown by the horizontal black
solid line in Fig. 4(d), and effectively represents the key
rate at n = 0 for protocol 3, given by

R0 =
P0(Ltot)× rP3

∞
2T0

. (18)

Because of the low number of operations needed in such
a scenario, P3 at n = 0 offers the best key rate for high
values of β. At Ltot = 100 km, if we restrict ourselves
to n ≥ 1, we observe that the highest secret key rates
are generated by protocol 4 at low values of β (hollow
ovals in Fig. 4(d)). The distance that can be covered
by such uncoded QRs is, however, limited. This ob-
servation implies that, without any encoding, the QR
protocols may only be able to cover short distances,
due to their low tolerance for errors.

• Observation 2: Among the four protocols, protocol
2 seems to offer the best performance across a wide
range of parameters. It even outperforms protocol 1,
which, at the cost of higher computational overhead,
is expected to have the best error correction/detection
capabilities. One key reason for the superiority of pro-
tocol 2 in our numerical examples seems to be the use
of freshly created entangled states for its entanglement
distillation part, enabled here by error detection. To
better understand this point, we need to compare the
timing parameters for this protocol versus that of pro-
tocol 1. The first point is to note that T 1 is lower
for P2 than for P1. This is because in protocol 1
there are more memory pairs that need to be entan-
gled, and that would make T1, and consequently T 1,
longer for this protocol than protocol 2. For instance,
at Ltot = 300 km, ηc = 0.5, and n = 5, T 1 is roughly
0.0056 s and 0.0051 s for, respectively, P1 and P2. The
second point is that, in the entanglement swapping
stage, while T 2 for protocol 2 is longer than that of
protocol 1, it is typically much smaller than T 1. For in-
stance, at the same parameters as above, T 2 is roughly

49 µs and 709 µs for, respectively, P1 and P2. This
is because T 2 corresponds to the entangling time for a
single pair of memories, whereas T 1 corresponds to en-
tangling time for many pairs. This results in T 1 + T 2,
which is the average time that nulcear spins have de-
cohered before doing the BSM, to be comparable in
the two protocols. In our example above, T 1 + T 2 is
roughly 0.0056 s and 0.0058 s for, respectively, P1 and
P2. Now, with this in mind, we can look at the situa-
tion when BSMs are performed in the two protocols. In
P1, for error detection, we are using pairs of entangled
links that have both decohered by roughly T 1+T 2. In
P2, however, one entangled link has roughly decohered
by T 1 + T 2, whereas the other is freshly prepared and
has only decohered for T0. Given that T 1+T 2 is almost
the same in the two protocols, this asymmetry in the
quality of entangled states used for distillation gives an
edge to P2 over P1 and makes P2 more resistance, as
compared to P1, against decoherence issues.

We should also bear in mind that the figure of merit
that we use is normalized to the number of NV centers
used, which, in the case of protocol 2, is almost half of
that of protocol 1. This factor 2 is, however, compen-
sated by T1 + T2 term in Eq. (16), which, in the case
of protocol 2 is less than two times that of protocol
1. In our example of Ltot = 300 km, ηc = 0.5, and
n = 5, T1 + T2 is 0.0067 s for P1 versus 0.0116 s for
P2. The overall effect is then governed mainly by the
decoherence time explained above, which is in favor of
protocol 2.

• Observation 3: We notice that, for the optimum
choice of nesting level, the inter-node distance varies
roughly from 5-20 km. This, as we will see, will be
a function of other relevant parameters such as coher-
ence times and coupling efficiencies, and can slightly
change either way in certain regimes. But, generally
speaking, this inter-node distance is more manageable
than that of third generation QRs, for which nodes are
only apart by a few kms [57–62]. It is, however, more
demanding than that of probabilistic QRs, where the
inter-node distance can be on the order of tens of kms
[4, 63]. Another interesting observation is that, in some
curves, the optimum nesting level goes down with β.
This can be attributed to the fact that, at large values
of β, it would be better to have fewer nodes so that
the total number of operations, and the error that will
be accumulated in the whole process, can better be
managed.

To further understand how protocols 1 and 2 compare
to each other, in Fig. 5, we investigate the sensitivity of
these protocols to the total distance Ltot, coupling effi-
ciency ηc, and coherence times of nuclear, τn, and elec-
tron, τe, spins. Figures 5(a) and (b) show the normalized
key rate versus total distance for two different sets of co-
herence times, where τn and τe in Fig. 5(b) are ten times
that of Fig. 5(a). We observe that, in both figures, proto-
col 2 offers a higher key rate than protocol 1 for majority
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FIG. 5. Comparison of normalized secret key rate as a
function of total distance Ltot at (a) ηc = 0.5, τe = 10 ms,
τn = 1 s, (b) ηc = 0.5, τe = 100 ms, τn = 10 s; and ηc at
(c) Ltot = 300 km, τe = 10 ms, τn = 1 s, (d) Ltot = 500 km,
τe = 100 ms, τn = 10 s; for protocols 1 and 2. The cnot

gate error probability and measurement error probability are
β = 10−3, δ = 10−4, respectively. Again, we have used large
red ovals to indicate the point where the optimum nesting
level, nopt, changes. In (a) and (b), the optimum nesting level
at short distances is 4 and it goes up by one at red circles. In
(c) and (d), it starts with the higher number and decreases
by one at red circles.

of distances. The two curves are closer at short distances
as the corresponding values for T 1 is too short for the co-
herence times considered. The two curves are even closer
initially in Fig. 5(b), where decoherence is less of an issue
than in Fig. 5(a). Figure 5(b) also shows that such sys-
tems can cover distances in excess of 2000 km provided
that coherence times are sufficiently long. At 2000 km,
the optimum value for L0 is over 30 km. The optimum
nesting level increases with total distance as expected.

The same tolerance to decoherence can be seen in
Figs. 5(c) and (d), where we compare the two protocols
versus ηc. Now the two curves get closer at high val-
ues of ηc, which corresponds to shorter values for T 1 and
lower optimum nesting levels. For the range of parame-
ters values considered in our numerical analysis, protocol
2 consistently offers higher key rates than protocol 1.

Finally, in order to see, at different parameter regimes,
which protocol would perform the best, in Fig. 6, we have
obtained the region plot highlighting the optimal QR
structure that offers the highest key rate, at δ = 10−4,
τe = 10 ms, τn = 10 s, in a three-dimensional param-
eter space. We first note that, even with the improved
nuclear coherence time, the uncoded QR protocols, i.e.,
protocols 3 and 4 still only work at Ltot = 100 km. At
such short distance, these protocols could offer the best
performance among all four. For longer distances and
larger error probabilities, protocol 2 is most often the op-
timal choice. This leads to a practical conclusion that, for
near-term implementations, the partially encoded QRs,

FIG. 6. The region plot showing the distribution of the
optimal QR protocol in a three-dimensional parameter space
at δ = 10−4, τe = 10 ms, and τn = 10 s.

which use fewer resources, might be the best option.

V. CONCLUSION

In this work, we analyse two quantum repeater pro-
tocols with three-qubit repetition codes on NV centers
in diamond platforms, with operation errors and deco-
herence noise being considered. We benchmark such
encoded repeaters against uncoded structures by using
QKD as a concrete application. We find that, the un-
coded QRs only work and possibly offer some advantage
at short distances. For longer distances, QRs with en-
coding are the optimal choice. We notice that, for most
practical regimes of interest, the protocol that relies on
only partially encoded entangled states, hence consuming
fewer physical resources, is the best-performing scheme.
This leads to a conjecture that, for the future implemen-
tation of encoded quantum repeaters, it seems that the
partially encoded structures, rather than the fully en-
coded structure, are of more practical use.

It is worth highlighting that, for any practical setup,
there might be other parameters and processes that need
to be properly modeled and accounted for in order to get
a closer match to the experimental results. The work here
offers some insight into and preliminary predictions for
what we may expect in such experimental setups, but it
does not replace the need for more accurate calculations
when it comes to implementing such setups. Neverthe-
less, the results we have obtained here are promising in at
least two aspects. First, they indicate that the required
parameter regime for a decent operational quantum re-
peater setup is not far out of reach. Secondly, while the
focus on experimental efforts today is mostly on simplest
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repeater structures, our work here shows that certain en-
coded structures should not be ruled out at this stage
and can be part of our experimental agenda in the com-
ing years.

Appendix A: Derivation of decoherence parameters

The decoherence model in Eq. (5) for a single qubit
system, where d = 2 can be rewritten as

Ddepol(ρ) =λ2ρ+ (1− λ2)(I2 − ρ)

=(2λ2 − 1)ρ+ (1− λ2)I2

=(2λ2 − 1)ρ+ (1− λ2)
ρ+XρX + Y ρY + ZρZ

2

=
3λ2 − 1

2
ρ+

1− λ2

2
(XρX + Y ρY + ZρZ)

(A1)

where X, Y and Z are Pauli operations. For a two-qubit
system, each qubit decoheres independently, which leads
to

DA
depol ◦ DB

depol(ρAB) = (
3λ2 − 1

2
)2ρAB +

(3λ2 − 1)(1− λ2)

4
[(XB , YB , ZB)ρAB





XB

YB

ZB



+ (XA, YA, ZA)ρAB





XA

YA

ZA



]

+ (
1− λ2

2
)2(XA, YA, ZA)(XB , YB , ZB)ρAB





XA

YA

ZA









XB

YB

ZB



 . (A2)

If the state ρAB is a Bell diagonal state, we can
verify that the output state obtained from (A2) is
equivalent to Eq. (7). Note that, in Eq. (A2), a
Bell state remains intact by the following operators:
IAIB , XAXB , YAYB , ZAZB . Therefore, the fidelity of the
output state with respect to the input Bell state is given
by the sum of the corresponding coefficients in (A2):

λ4 =
1

4
(3λ2 − 1)2 +

3

4
(1− λ2)

2, (A3)

which is the same as Eq. (8).
To obtain the decoherence effect on a six-qubit system,

we have to apply the single qubit depolarizing model in
Eq. (5) on each qubit independently, and calculate the
tandem effect. This results in a lengthy expression for
the output state, which we will not reproduce here. But,
it can be verified that the operators that map the encoded
Bell state |Φ̃+〉AB to itself are given by: I

⊗6, X⊗6, Y ⊗6,
Z⊗6, X⊗2Y ⊗4, X⊗4Y ⊗2, Z⊗4

I
⊗2 and Z⊗2

I
⊗4. Again,

one can calculate the corresponding fidelity for the out-
put state, with respect to |Φ̃+〉AB, by accounting for the
coefficients of the relevant terms to obtain

λ64 =
1

64
[(3λ2 − 1)6 + 33(1− λ2)

6

+ 15(3λ2 − 1)2(1− λ2))
4

+ 15(3λ2 − 1)4(1− λ2)
2], (A4)

which is equivalent to Eq. (10).
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