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Abstract. We investigate an interacting dark energy model which allows for the kinetic term of
the scalar field to couple to dark matter via a power-law interaction. The model is characterised
by scaling solutions at early times, which are of high interest to alleviate the coincidence
problem, followed by a period of accelerated expansion. We discuss the phenomenology of
the background evolution and of the linear scalar perturbations and we identify measurable
signatures of the coupling in the dark sector on the cosmic microwave background, the lensing
potential auto-correlation and the matter power spectra. We also perform a parameter
estimation analysis using data of cosmic microwave background temperature, polarisation
and lensing, baryonic acoustic oscillations and supernovae. We find that the strength of the
coupling between the dark sectors, regulated by the parameter α, is constrained to be of order
10−4. A model selection analysis does not reveal a statistical preference between ΛCDM and
the Kinetic model.
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1 Introduction

The existence of dark energy (DE) and dark matter (DM) is supported by multiple cosmological
observations, though their nature still remains unknown. The former is postulated as a
repulsive force acting on the largest scales, needed to explain the late time cosmic acceleration,
whereas the latter is a non-baryonic matter component, responsible for the formation and
evolution of large scale structures in the Universe. The Standard Model of Cosmology,
known as Λ-cold dark matter (ΛCDM), is based on General Relativity (GR) and includes
a cosmological constant, Λ, as the simplest model of DE and a cold dark matter (CDM)
component as weakly interacting non-relativistic particles. In this base scenario, it is assumed
that the two dark components do not directly couple to each other. Although it provides
a fairly accurate description of the Universe, there are some unexplained theoretical and
observational conundrums that indirectly affect the ΛCDM model [1–3]. Such is the case of the
Cosmological Constant problem or the need for a primordial inflationary period. Observational
tensions, if not stemming from systematics, pose an additional challenge [4] namely concerning
the mismatch in the estimation of the values of the Hubble constant, H0 [5–9], and the
amplitude of the matter power spectrum at present time, σ8 [10–12], when using high- and
low-redshift data from different surveys. These shortcomings might signal the need to go
beyond the vanilla ΛCDM model [13].

Promoting DE to a dynamical scalar field is an enticing approach to extend ΛCDM
and still achieve the late-time accelerated expansion. Recent experimental advancements in
particle physics have lead to the detection of a Higgs-like particle [14, 15] and scalar fields
also comprise the most promising proposal to solve the early Universe trinity puzzle (i.e. the
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horizon, flatness, and magnetic-monopole problems) [16–18]. The quintessence model [19–21]
was the first attempt to include a scalar degree of freedom, φ, portraying a time-varying DE
component with dynamics assigned by the form of the potential, V (φ), and its kinetic term,
X = −∂µφ∂

µφ/2.

In particular, it should resemble the cosmological constant at late times, that is, its
negative pressure must have a magnitude close to its energy density, pφ ≈ −ρφ, while not
revealing effective clustering properties at small scales. One appealing feature of this theory
(or, more in general, of scalar tensor theories) lies in obtaining, under particular conditions,
scaling solutions [4, 19, 22–43]. These are characterised by a constant ratio between the energy
density of the matter components and that of the scalar field. In this case the DE contribution
remains hidden throughout the radiation and matter domination eras, despite allowing the
energy density of the scalar field to be of the same order of magnitude as these components.
This mechanism is relevant in addressing the cosmic coincidence problem [44, 45], namely
why the magnitude of the energy densities for matter and DE are comparable at present,
while still preserving compatibility with the energy scale associated with particle physics.
Accordingly, here we will focus on a specific model that already revealed to feature scaling
solutions [41].

In this work we are interested in exploring a setting in which the scaling regime is
achieved through a “fifth-force” acting on DM particles, induced by a quintessence field. An
effective field theory formulation of such phenomenological interaction can be set at the level
of the action and provides a fully covariant way to construct theoretically viable models [46],
thus avoiding the propagation of unphysical modes on large scales [47]. One such approach
consists of considering the presence of a field dependent function f (φ) multiplying the CDM
Lagrangian, Lc, in the total action, that is, a coupling of the form f(φ)Lc [48]. Recently,
this formulation was generalised to accommodate interactions of the matter sector with the
kinetic term of the scalar as well, through a functional form f (φ ,X) Lc [41]. Lagrangian-
based models have been further explored in the context of the Schutz-Sorkin action [49–51],
allowing for the inclusion of interaction terms depending on single derivatives of the scalar
field in the action for CDM [52–54]. Along similar lines, in ref. [55] the energy exchange is
achieved via two terms of the form f1(φ,X)ρc(nc) and f2(nc, φ,X)Jµ

c ∂µφ, where ρc and nc

are the energy density and number density of CDM, respectively, and Jµ
c is a vector field

related to the CDM four-velocity [55]. In the presence of a f(φ)-coupling, scaling solutions
have been shown to exist for quintessence with an exponential potential [26, 56]. Likewise,
general forms of the Lagrangian allowing for scaling behaviour given either a constant or
field-dependent interaction, have been derived for k-essence [30, 31, 33, 57] and scalar-tensor
theories such as Horndeski [35, 39, 40, 58] and quadratic-order degenerate higher-order
scalar-tensor theory [59].

Setting cosmological constraints on the interaction between a scalar field and DM has
been the subject of many investigations [60–75]. A well tested class of proposals is the coupled
DE model in which DM particles interact with the scalar field due to a φ-dependent mass,
characterised by a constant coupling strength β. This parameter has been constrained to be
β = 0.036 ± 0.016 (Planck13 + WMAP + baryon acoustic oscillations (BAO)), deviating from
the vanishing interaction case at 2.2σ, and β = 0.066 ± 0.018 when including polarisation,
with increasing significance at 3.6σ [64]. Similar results were reported lately by the Planck
collaboration, also showing a tension at ∼ 2.5σ with ΛCDM when Planck15 + BAO +
Supernovae Ia + H0 data are considered [66], and in refs. [67, 70, 72] resorting to more recent
data sets. Additionally it has been realised that such constant coupling can remove the σ8
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tension if the background is assumed to be identical to the ΛCDM one [70]. Moreover in
ref. [62] the authors provided cosmological bounds for a variety of models, which differ from
each other through the form of the nontrivial coupling between the DM and the quintessence
field. The strength of the coupling was constrained to be less than 7% of the coupling
to gravity.

Let us remark that non-minimal couplings of the DE field to other matter components
have also been explored, e.g. to massive neutrinos [76, 77], to baryons [78] or to the electro-
magnetic field [79, 80]. A universal coupling has also been investigated and its magnitude
is tightly constrained through Solar System experiments [81, 82]. Therefore such couplings
are often chosen to be minimal, i.e. there is no additional coupling of the matter fields
to the scalar curvature, thus motivating the choice of a direct coupling between the dark
species only.

In this work we explore the model presented in ref. [41], in which a purely kinetic coupling
between the quintessence field and DM is considered. This coupling is expressed in terms of a
power law interaction function, f ∝ Xα, with α being a constant parameter quantifying the
strength of the interaction. Hereafter this will be referred to as the Kinetic model. At a more
fundamental level, the low-energy limit of a scalar field theory with a shift symmetry only
allows for kinetic couplings to matter [83], where the scalar field is identified as the Goldstone
mode of the broken symmetry. Although in the literature it is much more natural to consider
a universal coupling, such as in dilaton gravity [84], it is possible to construct a specific
(non-universal) interaction with an individual matter source [85] or it can even naturally
emerge in an effective description of a fundamental theory, such as Type II string theory [86].
The toy model considered in this present work also allows for scaling solutions at early
times [41], already found to be fruitful to tackle the cosmic coincidence problem. The specific
kinetic power law coupling here assumed was employed in the literature to couple quintessence
to electromagnetism [87] inducing a time variation on the fine-structure constant. The authors
showed that the theory encapsulates a plethora of new analytical coupled solutions motivated
by the dark energy kinematics. We remark that kinetically coupled models have never been
fully explored in terms of theoretical predictions at linear order in perturbations and, as
such, cosmological bounds on the parameters are not present in literature. In this work we
present such kind of analysis for the first time, by comparing the theoretical predictions to
the ΛCDM model for the temperature-temperature (TT) power spectrum, lensing potential
auto-correlation power spectrum and matter power spectrum. These are then used to provide
cosmological constraints by means of Markov Chain Monte Carlo (MCMC) methods. For this
purpose we resort to large sets of data including measurements of the background expansion
of the Universe, temperature fluctuations power spectra and those of gravitational potentials.

The manuscript is organised as follows. We lay down the theoretical framework in
section 2: the Kinetic model is introduced in section 2.1 and the explicit equations of motion
for the background dynamics and linear scalar perturbations in the Newtonian gauge are
presented in section 2.2 and section 2.3, respectively; in section 2.4 we discuss the parameter
space of the model in order to guarantee its theoretical viability. In section 3 we focus
on the cosmological properties of the Kinetic model, exploring the signatures left by the
dark coupling on the background expansion in section 3.1, and on the relevant cosmological
observables in section 3.2. Finally, in section 4 we present the observational constraints on
the free cosmological and model parameters along with a model selection analysis. Finally, we
summarise our findings in section 5. Appendix A provides the linear perturbation equations
for the Kinetic model in the Synchronous gauge as well.
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2 Theory

In this section we will present the theoretical formulation of the kinetically coupled dark
energy model in consideration. We present the covariant formulation and the corresponding
equations in section 2.1, followed by the background evolution and the framework for linear
scalar perturbations in sections 2.2 and 2.3, respectively. We then discuss the parameter
space in section 2.4.

2.1 The Kinetic model

Let us start by considering a phenomenological theory minimally coupled to gravity in the
Einstein frame, where the dark energy source is portrayed by a dynamical quintessence field,
φ, interacting with a dark matter component via the action [41],

S =

∫

d4x
√−g

[

M2
Pl

2
R+X − V (φ) + f(X)L̃c(ζ, gµν) + LSM(ψi, gµν)

]

, (2.1)

where g denotes the determinant of the metric tensor, gµν , R is the curvature scalar and
M2

Pl = (8πG)−1 is the Planck mass in units of c = 1, with G being the Newtonian constant.
The second and third terms in the action denote the scalar field Lagrangian, in which
X = −gµν∂µφ∂νφ/2 stands for the kinetic term of φ and V (φ) is the scalar self-interacting
potential. In this work we extend the conventional quintessence formulation by taking a
purely kinetic function, f(X) multiplying the Lagrangian of cold dark matter, L̃c, which
mediates a coupling of φ to the dark matter field ζ. Finally, LSM(ψi, gµν) denotes a collective
representation of Lagrangians of the uncoupled standard model fields, ψi.

Variation of the action in eq. (2.1) with respect to the metric gµν yields the following
field equations

M2
PlGµν = T (φ)

µν + T (c)
µν + T (b)

µν + T (r)
µν , (2.2)

with Gµν being the Einstein tensor and T
(i)
µν the energy momentum tensor for the ith species,

defined as:

T (i)
µν = − 2√−g

δ (
√−gLi)

δgµν
, (2.3)

where i = φ, c, b, r and c denotes the cold dark matter, b the baryons and r the radiation. Let
us note that, for the previous definition to be valid for all the fluids present in theory, we
define an effective dark matter Lagrangian as follows [41, 48, 55]

Lc ≡ f(X)L̃c, (2.4)

incorporating the effect of the coupling. We follow to consider that all the matter components
in the theory can be modelled as perfect fluids, with energy density ρi, pressure pi, and
equation of state (EoS) parameter wi = pi/ρi. Therefore, the energy momentum tensor of
each ith species becomes fully defined in terms of the fluid variables:

T (i)
µν = ρi

[

(1 + wi)u
(i)
µ u(i)

ν + wigµν

]

, (2.5)

with u
(i)
µ being the four-velocity vector associated with the ith species, under the individual

constraint gµνu
(i)
µ u

(i)
ν = −1. Regarding the EoS parameter, we have, wr = 1/3 for radiation,
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and wb = wc = 0 for baryons and cold dark matter, respectively. In view of these considerations,
the dark matter Lagrangian takes the particular form [48, 88],

Lc = −ρc . (2.6)

The scalar field admits a perfect fluid description as well [89], provided that

u(φ)
µ = − ∂µφ√

2X
, (2.7)

and X > 0, where the energy density and pressure associated to the quintessence field are
given by:

ρφ = X + V , (2.8)

pφ = X − V . (2.9)

The scalar field EoS parameter is
wφ = pφ/ρφ . (2.10)

The equation of motion for the quintessence field, or simply the Klein-Gordon equation,
is obtained through variation of the action in eq. (2.1) with respect to φ and reads:

�φ− V,φ = −Q , (2.11)

with V,φ = dV/dφ. The term on the right-hand side of eq. (2.11) includes the interaction in
the dark sector in terms of f(X) [41], and may be expressed as

Q = −Lc

{

f,X

f

[

�φ+ ∂µφ

(∇µLc

Lc
+
f,X

f
∂αφ∇µ∂

αφ

)]

− f,XX

f
∂µφ∂αφ (∇µ∂

αφ)

}

, (2.12)

where f,X ≡ df/dX and f,XX ≡ d2f/dX2. The uncoupled case (Q = 0) is naturally recovered
when f is a constant function. Let us note that eq. (2.11) could likewise be found through
the contracted Bianchi identities, yielding the following conservation relations,

∇µT
(c)µ

ν = −∇µT
(φ)µ

ν = Q∇νφ . (2.13)

These equations illustrate clearly the energy transfer between the scalar field and DM when f
is not a constant, meaning that the dark components are not individually conserved. However,
since radiation and baryons remain non-interacting, i.e.,

∇µT
(r)µ

ν = ∇µT
(b)µ

ν = 0 , (2.14)

then, consistently, the overall energy momentum tensor of the theory is conserved, rendering
the total action covariant.

In this work, we will focus on the case of a power-law interaction, motivated in [41], and
parameterised by the function

f(X) =
(

M−4
Pl X

)α
, (2.15)

where α is a dimensionless constant. Therefore eq. (2.12) becomes

Q = −ρc
α

X

(

�φ+
∂µφ∂νφ∇µ∂

νφ

X
+ ∂µφ

∂µρc

ρc

)

. (2.16)
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From eq. (2.16) it is straightforward to conclude that the parameter α governs the strength of
the coupling within the dark sector. Additionally, we fully specify the model by considering
the case of an exponential potential, that is,

V (φ) = V0e−λφ/MPl , (2.17)

where V0 is the energy scale of the potential (a constant with dimensions of mass4), and λ is
a dimensionless parameter depicting the steepness of the potential. The particular choices
in eqs. (2.15) and (2.17) are motivated by the possibility of having a scaling regime at early
times, which is then followed by a period of accelerated expansion driven by φ [41]. In terms of
a dynamical systems analysis, the kinetic coupling is indeed responsible for the emergence of
two novel critical points corresponding to scaling solutions. Finally, the role of the exponential
potential is to drive the evolution of the system out of this scaling regime and towards the
late time attractor.

We conclude this section by remarking that the theory described by the action eq. (2.1)
is mathematically equivalent (namely it reproduces the same field equations and thus leads to
equivalent cosmological dynamics) to that of the following scalar-tensor theory in the Einstein
frame [83]

S =

∫

d4x
√−g

[

M2
Pl

2
R+X − V (φ) + Li(ψi, gµν)

]

+ Sc [g̃µν(X), ζ] , (2.18)

where g̃µν is the Jordan frame metric. However, it is worth noting that their physical
interpretation differs: while in the action (2.1) the coupling is imposed directly through f , in
the action (2.18) the metric g̃(X) defines a posteriori the coupling. In order for both theories
to give rise to the same cosmological physics, the two metrics must be conformally related by
the following Weyl scaling

g̃µν = f2(X)gµν , (2.19)

with conformal factor given by the square of f . Note that the square term automatically
guarantees the signature of the metric to be preserved in both the Jordan and Einstein frames.
These conformally coupled theories can also be written in terms of a non-minimal coupling
to matter in the Einstein frame [56, 61, 85]; nevertheless it is most common to assume a
sole field dependence, i.e., g̃µν = Ω(φ)gµν [61, 70, 90]. The mapping between the different
formulations still applies as we have assumed in eq. (2.6) that the cold dark matter on-shell
Lagrangian can be described by its trace [91–93], T c, more generally,

Lc = T c ≡ gµνT c
µν . (2.20)

If a different form for the nature of the cold dark matter Lagrangian had been adopted,
departing from the perfect fluid description, then the relation in eq. (2.20) might not hold, in
which case the mapping between the theories would break down. Notice that the same power
law coupling, f ∝ Xα, was considered in ref. [87] to couple a quintessence field to Maxwell’s
electromagnetism. It was found that the model dynamics were mathematically equivalent
to a disformally coupled theory. The reason for this stems from the fact that radiation is
conformally invariant (since it has a vanishing energy-momentum trace T r = 0) thus one
needs to consider a more general Weyl scaling such as to induce an interaction at the level of
the field equations. This clearly shows that the correspondence between the theories strongly
depends on the nature of the matter fields one wishes to couple the scalar source to.

– 6 –
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2.2 Background equations

For what concerns the cosmological background dynamics, let us assume a flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, expressed in terms of the conformal time τ , as

ds2 = a(τ)2
(

−dτ2 + δijdxidxj
)

, (2.21)

where a ≡ a(τ) is the scale factor of the Universe.
The equations governing the background evolution can be derived from eq. (2.2), more

precisely the modified Friedmann equation and the conservation relations, eqs. (2.11), (2.13)
and (2.14), which become,

3M2
PlH2 = a2(ρc + ρb + ρr + ρφ) , (2.22)

φ′′ + 2Hφ′ + a2V,φ = a2Q , (2.23)

ρ′

c + 3Hρc = −Qφ′ , (2.24)

ρ′

b + 3Hρb = 0 , (2.25)

ρ′

r + 4Hρr = 0 , (2.26)

where a prime is used to refer to derivatives with respect to conformal time, H = a′/a is the
Hubble rate in conformal time, and the coupling term in eq. (2.16) may now be written as:

Q = 2αρc
3Hφ′ + a2V,φ

2αa2ρc + (1 + 2α)φ′2
. (2.27)

We can further define the energy density and pressure of the φ field at the background level,
through eqs. (2.8) and (2.9), as

ρφ =
φ′2

2a2
+ V , (2.28)

pφ =
φ′2

2a2
− V , (2.29)

respectively. Therefore eq. (2.23) can be written as:

ρ′

φ + 3H(1 + wφ)ρφ = Qφ′. (2.30)

Equations (2.24) and (2.30) imply that, when Qφ′ > 0, energy is being transferred from the
cold dark matter source to the scalar field, and, accordingly, the opposite holds when Qφ′ < 0,
and it is the φ-field granting energy to cold dark matter. At the classical level the energy
exchange in the dark sector may be interpreted as a mass variation for dark matter particles,
since mc = a3ρc, assuming conservation of the number of particles, i.e. Nc = Nc(τ0), with τ0

being the present conformal time. Integration of eq. (2.24) yields an expression for the total
energy density of coupled dark matter,

ρc = ρc(τ0)a−3 exp

(

2α

∫ τ

τ0

Q
φ′

ρc
dτ

)

, (2.31)

that can be expressed equivalently in terms of the mass of the dark matter particles:

mc(τ) = mc(τ0) exp

(

2α

∫ τ

τ0

Q
φ′

ρc
dτ

)

. (2.32)
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Finally let us note that the modified Friedmann equation, eq. (2.22), can be cast to the
form of the well-known Friedmann constraint:

1 = Ωφ + Ωm + Ωr , (2.33)

where we have defined a collective matter density ρm = ρc + ρb, and the fractional density
parameter of the ith species Ωi = ρia

2/(3M2
PlH2). Eq. (2.33) can be rewritten in the form

of a constraint on the present scalar field fractional density, Ω0
φ = 1 − Ω0

m − Ω0
r, where “0”

stands for quantities evaluated at the present time, Ω0
i = ρ0

i /(3M2
PlH

2
0 ), where H0 is the

Hubble parameter. For numerical purposes, V0, implicitly entering the definition of Ω0
φ, is

used to perform a shooting method that yields the fiducial value of Ω0
φ fulfilling the constraint

relation in eq. (2.33), while simultaneously avoiding degeneracies. As such, V0 will no longer
be considered a free parameter of the model, leaving {λ, α} as the model free parameters.

2.3 Linear cosmological perturbations

For the purpose of studying the background dynamics, we have assumed that the Universe
is homogeneous and isotropic on large scales. However, we know that the global picture is
far more complex and that, in particular, deviations to the homogeneous model are needed
in order to explain phenomena such as the formation of structures in the Universe. For the
purpose of this study, we consider small inhomogeneities of the geometry (encoded in the
metric) and the matter fields, and investigate their synergy through the Einstein equations
on linear scales.

Let us consider the perturbed FLRW metric in the so called Newtonian gauge, corre-
sponding to a line element written as follows [94]:

ds2 = a2(τ)
[

− (1 + 2Ψ) dτ2 + (1 − 2Φ) δijdxidxj
]

, (2.34)

where Ψ(~x, τ) and Φ(~x, τ) are the Newtonian potentials. We also consider linear perturbations
around the relevant background fluid variables:

φ(~x, τ) = φi(τ)+δφ(~x, τ) , ρi(~x, τ) = ρi(τ)+δρi(~x, τ) , pi(~x, τ) = pi(τ)+δpi(~x, τ) . (2.35)

In particular from eqs. (2.8) and (2.9) we derive the perturbations for the energy density and
pressure of the scalar field:

δρφ =
φ′

a2
δφ′ − φ′2

a2
Ψ + V,φδφ , (2.36)

δpφ =
φ′

a2
δφ′ − φ′2

a2
Ψ − V,φδφ . (2.37)

The perturbations of the energy-momentum tensor, eq. (2.5), for each species and at
first order, read

δT (i)µ
ν = (δρi + δpi)u

(i)µu(i)
ν + δpiδ

µ
ν + (ρi + pi)

(

δu(i)µu(i)
ν + u(i)µδu(i)

ν

)

, (2.38)

where δu(i)
µ is the perturbation on the four-velocity vector of the ith-species, i.e.

u(i)
µ = a(−1, v(i)

j), with vj being the peculiar velocity. In this study we will assume that
there is no anisotropic stress associated with the fluids under consideration.
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Then we compute the linearised Einstein equations where we include the modifications
introduced by the coupling function. These are expressed in terms of independent Fourier
modes that characterise the evolution of the perturbations for different scales:

k2Φ + 3H
(

Φ′ + HΨ
)

= −4πGa2
∑

i

δρi , (2.39)

k2 (Φ′ + HΨ
)

= 4πGa2
∑

i

ρi(1 + wi)θi , (2.40)

Φ′′ + H
(

Ψ′ + 2Φ′
)

+ Ψ
(

H2 + 2H′

)

+
k2

3
(Φ − Ψ) = 4πGa2

∑

i

δpi , (2.41)

Φ = Ψ . (2.42)

The first equation, corresponding to the time-time component, provides the energy density
constraint. Equation (2.40), computed from the time-space components of the perturbed
Einstein equations, gives the momentum constraint, where we have adopted the definition
of the velocity divergence θi = ∇ · v(i). The trace of the spatial components yields eq. (2.41)
and, finally, eq. (2.42) corresponds to the shear propagation for vanishing anisotropic stress.
This relation is expected due to the lack of a non-minimal coupling in action (2.1).

The equations governing the evolution of each fluid’s perturbations can be found through
the conservation relations, eqs. (2.13) and (2.14), perturbed at first order. For the non-
interacting species, i.e. baryons and radiation, these are respectively

δ′

i + 3H
(

δpi

δρi
− wi

)

δi + (1 + wi)
(

θi − 3Φ′
)

= 0 , (2.43)

θ′

i +

[

H(1 − 3wi) +
w′

i

1 + wi

]

θi − k2
(

Ψ +
δpi

δρi

δi

1 + wi

)

= 0 , (2.44)

where we have defined the dimensionless density contrast as δi = δρi/ρi. The dynamics for
the coupled cold dark matter is given by

δ′

c + θc − 3Φ′ =
Q

ρc

(

φ′δc − δφ′
)

− φ′

ρc
δQ , (2.45)

and the corresponding velocity divergence evolves according to

θ′

c + Hθc − k2Ψ =
Q

ρc

(

φ′θc − k2δφ
)

, (2.46)

with the perturbed coupling term, obtained from eq. (2.16), being defined as

δQ =
2αρc

2αa2ρc + (1 + 2α)φ′2

{

− 3Φ′φ′ − φ′θc +
[

3Hφ′ + a2(V,φ −Q)
]

δc +
(

2k2 + a2V,φφ

)

δφ

−
[

3Hφ′ + 2a2(V,φ −Q)
] δφ′

φ′
+ 2a2Ψ (Q− V,φ)

}

, (2.47)

with V,φφ = d2V/dφ2. One exceptional feature of the Kinetic model can be readily identified
at the level of the perturbed coupling parameter, eq. (2.47): it includes an explicit dependence
on θc. This is not usual in other coupled dark energy models explored so far, such as in
refs. [67, 95], and it arises due to the X-dependence of the coupling, in particular in relation
to the term containing ∇µLc in eq. (2.16).
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The evolution of the φ-field perturbation is given by the linearisation of eq. (2.11):

δφ′′ + 2Hδφ′ +
(

a2V,φφ + k2
)

δφ−
(

Ψ′ + 3Φ′
)

φ′ + 2a2ΨV,φ = a2δQ+ 2a2QΨ . (2.48)

For completeness we also provide the corresponding set of equations in the synchronous
gauge, see appendix A.

In sections 3 and 4 we will evolve the full dynamics of the gravitational potentials,
scalar and matter fields. However in order to have a glimpse at the phenomenology of the
Kinetic model we resort to the so-called quasi-static approximation (QSA) on sub-horizon
scales [96–98]. Under this approximation we find:

k2Ψ ≈ −3H2

2

(

Ωcδc + Ωbδb

)

, (2.49)

k2δφ ≈ a2∆

{

δc

[

Qφ′2 + ρc
(

φ′′ − Hφ′
)

]

− ρcφ
′δ′

c

}

, (2.50)

where we have defined the following time and scale dependent functions:

∆ = − 2αM2

φ′2Vφφ

(

1 + a2

k2 M2
) , (2.51)

M2 =
φ′2Vφφ

φ′2 − 2αa2ρc
. (2.52)

It follows that the equations for cold dark matter and baryonic fluids read

δ′′

c + H
(

1 + β
)

δ′

c − 3H2

2G

(

GccΩcδc +GcbΩbδb

)

≈ 0 , (2.53)

δ′′

b + Hδ′

b − 3H2

2

(

Ωcδc + Ωbδb

)

≈ 0 , (2.54)

with

β =
Gcb

GHρc

{

(

1 − a2ρc∆
)

[

8αHρc −Qφ′
(

1 + 2α
)

]

−Qφ′

}

, (2.55)

Gcc = G+
2G

3HρcΩcφ′2

{

φ′2
[

φ′Q′ +Q
(

φ′′ + 4Hφ′
)

]

+
[

Qφ′2 + ρc
(

φ′′ − Hφ′
)

]

×
[

φ′2Qa2∆ + 2α
(

φ′′ + 4Hφ′
)(

1 − a2ρc∆
)

]

}

, (2.56)

Gcb =
G

1 + 2α
(

1 − a2ρc∆
) . (2.57)

The cold dark matter perturbations are then modified by two effects emerging from the
coupling: a modified friction term, quantified by β, which inevitably influences the growth
rate of δc; and a modified effective gravitational potential encoded in

∇2Ψeff = 4π
(

Gccρcδc +Gcbρbδb

)

. (2.58)

The latter includes two effective gravitational couplings, Gcc and Gcb, defined in analogy
to [55]. We also find that Gcb is always an attractive contribution. These modifications

– 10 –



J
C
A
P
1
1
(
2
0
2
2
)
0
5
9

clearly show the emergence of a fifth force which is a standard signature of coupled scalar field
models. We expect that even a relative small value for the coupling parameter α can lead
to a significant effect on the cosmological observables given the evolution equation for the
cold dark matter perturbations, which impacts the baryons dynamics and the gravitational
potentials. Among others we foresee a modification in the lensing angular power spectrum
due to a modified lensing potential (φlens = (Φ + Ψ)/2 = Ψ). We will explore these signatures
in more detail in section 3. In the absence of the coupling, i.e. α = 0, we recover β = 0 and
Gcc = Gcb = G, corresponding to the standard case of quintessence.

2.4 The parameter space

In order for a model to be theoretically viable, there are specific stability requirements that
need to be satisfied. We will present and examine them below for the Kinetic model. Let us
stress that the identification of a physically motivated parameter space plays an important
role when testing particular gravity models with cosmological data [42, 99–104].

According to the results in ref. [41] the solutions with λ2 < 2 guarantee that the future
dark energy attractor is a stable fixed point of the system and describes an accelerated
expanding Universe. Albeit necessary at the attractor, this condition can be somewhat relaxed,
while still generating an accelerating behaviour at transient times. By allowing the attractor
to lie outside, but close to the accelerated region, with say λ2 = 2 + ǫ, the solution may still
feature an accelerated expanding scenario at present time, that is, with wφ(a0) < −1/3. We
further discuss this point in section 3.1 and we show some examples in the right panel of
figure 3. Let us note that under such condition, instead of accelerating forever, there should be
a turning point in the future when the expansion changes from accelerated to decelerated, i.e.
wφ(ax) = −1/3 at the crossover ax, and wφ(a) > −1/3 thereafter, for a < ax, as the attractor
is approached. From the critical points analysis conducted in ref. [41] we know that at the
attractor w⋆

eff = λ2/3 − 1, which using the following general identity

1

H

dH

d ln a
= −3

2
(1 + weff) , (2.59)

we find for the Hubble rate at the attractor:

dH⋆

d ln a
= −1

2
H⋆λ2 , (2.60)

from which the accelerated condition is derived [41]. Here we define a star superscript denoting
quantities evaluated at the attractor, and H = H/a is the Hubble function in cosmic time, t.
The relation above corresponds to a cosmological expanding behaviour described as,

H⋆ = H0a
−λ2/2 and therefore a⋆ =

(

1 +H0
λ2

2
t

)2/λ2

. (2.61)

Indeed, the explicit time dependence of the scale factor in eq. (2.61), a ∝ t2/λ2
, reveals

that λ2 = 2 is an inflection point of a(t), i.e. ä = 0 (with dots referring to derivatives with
respect to cosmic time), laying out the fine limit between an accelerated or decelerated setting.
Following the above discussion we will then consider λ > 0. Additionally, according to the
power-law role of α in eq. (2.15), we choose to consider cases with α > 0 only [41].

Furthermore, we take into account theoretical stability conditions to guarantee the
absence of ghost and gradient instabilities in the scalar sector [55, 105]. The first demands

– 11 –



J
C
A
P
1
1
(
2
0
2
2
)
0
5
9

for positive kinetic terms of the scalar field and cold dark matter perturbations (qs > 0 and
qc > 0, respectively), and the second for their positive speeds of propagation (c2

s > 0 and
c2

c > 0). It is possible to show that a very general way to write an action with an extra scalar
field and one matter component up to second order in perturbations, is the following [55]:

S(2) =

∫

dtdk3a3

[

~̇χtK~̇χ− k2

a2
~χtG~χ− ~χtM~χ− k

a
~χtB~̇χ

]

(2.62)

with ~χt = (δφ, δρc/k) being δφ and δρc the perturbations of the scalar field and cold dark
matter component respectively, the 2×2 matrices are defined in terms of background quantities
and their general forms can be found in ref. [55]. For the action (2.1), with f(X) and V (φ)
defined in eqs. (2.15) and (2.17) respectively we have [55]:

qs = K11 = 2M2
Pl

[

1 − α(2α− 1)

X
ρc

]

, (2.63)

qc = K22 =
(

M−4
Pl X

)α
, (2.64)

c2
s =

G11

K11
+

B2
12

K11K22
=

4M2
Pl

qs
− 1 , (2.65)

c2
c =

G22

K22
= 0 . (2.66)

For dark matter the conditions are trivial. The stability conditions for the scalar field are
more involved and need to be verified throughout the entire expansion history. We find that
both conditions are verified as long as:

− 1 < α(2α− 1)
ρc

X
< 1 , (2.67)

where the first inequality accounts for the no-ghost condition and the second one for the
positive (square) speed of propagation. This constraint then selects the viable range for
the parameter α. The initial condition φ′

i plays a role in securing the stability toward the
cosmological evolution.

Let us now discuss the initial conditions (ICs) for the scalar field, φi and its first
derivative, φ′

i which must be specified, deep in the radiation dominated epoch, namely around
redshift zi ≈ 1014 in order to solve the system of equations (2.23)–(2.26).

From the numerical study we concluded that for non-trivial ICs, the system rapidly
enters in the scaling regime. According to this feature we found that the choice of values
for φi and φ′

i has a negligible impact on the cosmological evolution.1 Hence, without loss of
generality, we set φ(zi) = 10−2 MPl.

The IC for φ′ is chosen such as to avoid instabilities according to eq. (2.67). Moreover,
it should be noted that when φ′

i is chosen to be positive, the condition λ > 0 must hold for
the accelerating attractor solution to exist [41].

Finally, we recall that V0 is not considered an extra parameter of the model as discussed
in section 2.2.

1We have numerically verified that the phenomenology of the cosmological observables, as discussed in
section 3, is not affected by the choice of ICs and neither are the cosmological constraints.
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3 Phenomenology of the Kinetic model

In this section we shall explore the signatures left by the Kinetic model on the background
expansion and on some cosmological observables such as the cosmic microwave background
(CMB), the lensing potential auto-correlation and the matter power spectra in sections 2.2
and 2.3, respectively. We use our own modification of the public version of the Einstein
Boltzmann solver CLASS [106–108].

3.1 Background evolution

We start by reviewing the background evolution in the kinetic coupled dark sector scenario.
A similar study has been previously presented in ref. [41] by means of a dynamical systems
analysis, with a particular focus on the late time dynamics (i.e. cosmological redshift z . 40),
neglecting the radiation and baryonic contribution. In this work we shall examine the
cosmological evolution starting from the early stages, deep into the radiation dominated epoch
(zi ≈ 1014) up to present time (z = 0). For the numerical investigation in this work we fix
the following cosmological parameters to be [5]: H0 = 67.56 km/s/Mpc, Ωbh

2 = 0.022 and
Ωch

2 = 0.12, with h ≡ H0/100. We also select some exemplifying values for the parameter α
controlling the coupling, namely α = 0.01 and α = 0.03, and we fix the slope of the potential
as λ = 0.2, with the aim of singling out the main phenomenology associated to the coupling
function. Moreover, for comparison purposes, we also include the case with α = 0, which
corresponds to an uncoupled scenario. It should be noted that the choice for the values of the
parameters associated with the scalar field are purely illustrative, but nevertheless still satisfy
the requirements discussed in section 2.4. They are chosen in such a way that the overall
effect of the coupling can be grasped, and therefore are not necessarily realistic. This will
be assessed in section 4, in which case these parameters are left to vary when performing a
parameter estimation according to cosmological data.

In the left panel of figure 1 we show the evolution with redshift, 1 + z, of the energy
densities for each species, ρi. We notice that the introduction of the coupling results in the
emergence of an early scaling regime, in direct contrast with the uncoupled case, for which
this behaviour can never be achieved. The onset of this scaling behaviour takes place during
the radiation dominated epoch, with energy density of the scalar field proportional to the
dark matter one, approximately according to the relation ρc/ρφ = 1/α, as shown in the left
lower panel of figure 1. Eventually the field will exit this scaling regime and head towards
the future attractor solution, in which case its energy density will remain forever diluting
as ρφ ∝ a−λ2

.

In the upper right panel of figure 1 we show the evolution of the coupling strength,
expressed as Qφ′/ρc, as a function of the redshift. The sign of this quantity is relevant to
assess the direction of the energy flow between cold dark matter and the scalar field.

We can notice that the interaction term is positive at all redshifts, establishing the direc-
tion of the energy transfer from the dark matter fluid to the scalar field. This is consistent with

the fact that the dynamics of the scalar field follows the relation φ′ > λV/
(

3M2
PlH

)

⇔ Q > 0

(see eq. (2.27)). Let us note that because we fixed the present day values of the fluid densities
this results in a larger value for the cold dark matter energy density at early times because it
is the CDM component granting energy to the scalar field at later times, with this feature
being more prominent for higher values of α. This effect is compensated as the matter energy
density decreases throughout time, while additional energy is being transferred for the scalar
field, when compared with the uncoupled case. We illustrate this behaviour in the middle

– 13 –



J
C
A
P
1
1
(
2
0
2
2
)
0
5
9

100102104106108101010121014
−50

−40

−30

−20

−10

0
lo
g
ρ
i
[G
ev

4 ]
ρr

ρ̃φ (α = 0)

ρφ (α = 0.01)

ρφ (α = 0.03)

ρ̃m (α = 0)

ρm (α = 0.01)

ρm (α = 0.03)

1014 1012 1010 108 106 104 102 100

1 + z

100
101
102

ρ
c/
ρ
φ

α = 0.01

α = 0.03

100102104106108101010121014

10−4

100

104

108

Q
φ
′ /
ρ
c

100102104106108101010121014

0
100

101
102
103

∆
ρ
m
/ρ̃

m
[%

]

α = 0.01

α = 0.03

100102104106108101010121014

1 + z

0

10

20

∆
H
/H̃

[%
]

Figure 1. Left upper panel: evolution of the energy densities ρi with redshift, 1 + z, of the scalar
field (pink), matter (black) and radiation (blue) for the uncoupled case (solid line), α = 0.01 (dotted
line) and α = 0.03 (dashed line). Left lower panel: ratio of the energy densities of cold dark matter
and dark energy, for α = 0.01 (solid line) and α = 0.03 (dashed line). Right panel: differences relative
to the uncoupled case, α = 0, for α = 0.01 (solid line) and α = 0.03 (dashed line), on the quantities
(from top to bottom): the coupling strength parameter; the fractional deviation of the energy density
of matter, i.e. ∆ρm/ρ̃m = ρm/ρ̃m − 1, where a tilde denotes variables in the uncoupled scenario, such
that ρ̃m = ρ0

ma
−3; and the fractional deviation of the Hubble rate of expansion.

right panel of figure 1, where we report on the deviations from the uncoupled case, denoted
by a tilde. As consequence there is a shift of the matter-radiation equality towards earlier
times for increasing values of α, as shown in the left panel of figure 2. From the same figure,
we can notice that because the φ field is acquiring energy at a rate that is proportional to its
energy density (see eq. (2.27)), then the matter-dark energy equality is achieved earlier.

Additionally, in the lower right panel of figure 1, we show the deviations in the Hubble
rate for the Kinetic model when compared with the uncoupled case, i.e. ∆H/H̃ = H/H̃ − 1.
No significant deviations on H are observed during the radiation dominated epoch, since any
interactions between the dark and radiation sectors have been excluded. However, when the
matter contribution becomes non-negligible, around z ≈ 106, the Kinetic models show an
enhanced value of H with respect to the uncoupled case, with this effect being larger for the
higher values of α.

Finally, it is also worth analysing the evolution of two fluid-related quantities: the
equation of state parameters for the scalar field, wφ, and for the total effective budget, weff .
These characterise the nature of the dark energy fluid description and the overall effective
dominating fluid contribution in the Universe, and are defined according to eq. (2.10) and

weff =

∑

i pi
∑

i ρi
, (3.1)

respectively. Their evolution with redshift is depicted in the right panel of figure 2. We
observe that during the scaling regime the field behaves as a stiff fluid, with wφ = 1, since
V ≪ φ′2, and in agreement with the findings of ref. [41]. As the field exits the scaling regime,
the Universe approaches the attractor scenario, for which wφ = −1 + λ2/3. During radiation
domination, the effective equation of state remains at a plateau with weff ≈ wr = 1/3. At
matter domination, and during the scaling regime, when radiation may be neglected and
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Figure 2. Left panel: evolution of the relative energy densities Ωi with redshift, 1 + z, of the scalar
field (pink), matter (black) and radiation (blue). Right panel: equation of state parameters, weff (pink)
and wφ (black), along redshift. In accordance with figure 1, we present the uncoupled case (solid line),
α = 0.01 (dotted line) and α = 0.03 (dot-dashed line).

under the limit V ≪ φ′2, the equation of state follows

weff ≈ α

1 + α
(

1 + ρb

ρφ

) . (3.2)

Note that, in ref. [41], a similar approximation was presented, though stated as weff ≈α/(1+α).
That is because the contribution of radiation and baryons was not taken into account in that
study, which focused mainly on the late time dynamics, for which it still stands as a good
approximation. By neglecting the baryonic contribution we may resort to the dynamical
system analysis employed in ref. [41] to find the behaviour of the Hubble rate and coupled
DM at matter domination during the scaling:

ρc ∝ H2 ∝ a−3 1+2α
1+α , (3.3)

which we numerically verified to be a good approximation. We remark that the transition
towards an accelerating state occurs later for increasingly larger values of α, owing to the
fact that, for a stronger interaction, the field remains frozen in the scaling regime for longer,
with wφ = 1. As a direct outcome, when the accelerating stage finally starts (that is, when
weff < −1/3), it will take place at a slower rate. This behaviour is illustrated in the right
panel of figure 2. Alternatively, this trend could be intuitively understood by inspection of
the deceleration parameter q = (1 + 3weff)/2, that scales linearly with the total equation of
state parameter of the Universe.

At this point, there is a subtlety that should be noted. Although the ICs for the scalar
field do not have any influence on the parameter constraints, there is a link between the initial
values of the velocity of the field and the dark energy density, as expressed in eq. (2.8), which
will have a subtle impact on the early behaviour of the quintessence. Increasing the initial
density of the field inevitably leads to an earlier onset for the scaling regime by taking higher
values of φ′

i. On the other hand, the value for the initial velocity is completely negligible when
it comes to setting the time for which the field exits the scaling and starts evolving towards
the accelerating attractor. This implies that the duration of the period in which the energy
density of dark energy scales with matter is extended for increasing values of φ′

i. This trend
is illustrated in the left panel of figure 3. Nonetheless this does not mean that φ′

i can take
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Figure 3. Left Panel: evolution of the energy densities of matter (black) and scalar field (pink)
for different ICs for the field’s velocity, φ′

i, with fixed α = 0.03 and λ = 0.2. Right Panel: effective
equation of state, weff , for different values of λ, namely λ = 1.4 (solid line), λ = 1.6 (dashed line) and
λ = 1.8 (dotted line), with fixed α = 0.03. The shaded green area corresponds to the region where the
Universe features accelerated expansion, i.e. weff < −1/3.

any arbitrary value, as the conditions in eq. (2.67) still have to be verified, in order to avoid
instabilities in the theory. On the other hand, the initial value for the field per se has no
influence over the dynamics. Indeed φi only appears in the exponential term of the potential,
eq. (2.17), which can be equivalently absorbed by the shooting parameter V0.

Finally, we conclude by providing some concrete examples to support the argument
in section 2.4, namely that values of λ2 > 2 can still give rise to present time accelerated
expansion under exceptional conditions. In the right panel of figure 3 we illustrate the
behaviour of the effective equation of state parameter close to the present epoch and up to
some time in the future for different values of λ, and for a fixed coupling parameter, α = 0.03.
Indeed we notice that transient acceleration phases around the present time are achieved for
λ2 > 2, before crossing the boundary given by weff < −1/3, and exiting this region at some
point in the future. Accordingly, these solutions may still stand as cosmologically valid, and
such values for λ need to be taken into account in the statistical analysis of section 4.

3.2 Cosmological observables

In this section we discuss the effect of the coupling on some relevant cosmological observables
such as the matter power spectrum and the CMB temperature-temperature (TT) and lensing
angular power spectra. We assume adiabatic perturbative initial conditions with an amplitude
of curvature fluctuations of As = 2.215 × 10−9, at the pivot scale kpiv = 0.05 Mpc−1, and
with the spectral index set to ns = 0.962 [5]. The remaining cosmological parameters and
λ are the same as used in the previous section. We adopt a different set of values for α,
which are one order of magnitude smaller than the ones used in the numerical analysis of
the background quantities, with the reason being that the latter would lead to drastic effects
on the cosmological observables. On the contrary, the values we will use to highlight the
features on cosmological observables do not produce any significant effects on the background
quantities. As a consequence the features we will show in this section are attributed solely
to the modifications to the linear perturbation equations presented in section 2.3. Then, for
illustrative purposes, we set α to be 1 × 10−3 and 2 × 10−3. Moreover, and without loss of
generality, we assume vanishing ICs for the scalar field perturbation and its velocity, that is,
δφ(zi) = δφ′(zi) = 0, respectively.
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Figure 4. Upper panel: the matter power spectrum as function of k, for the uncoupled case (dashed
line), α = 0.001 (dot-dashed line), α = 0.002 (dotted line) and ΛCDM (pink solid line). Lower panel:
percentage deviations of the matter power spectrum of the Kinetic model and the uncoupled case from
the ΛCDM model.

In the upper panel of figure 4 we present the linear matter power spectrum at present
time up to the scale kmax = 0.1h Mpc−1, above which the linear perturbative approximation
is expected to break down due to non-linear effects, dominant at smaller scales. In the
lower panel we also plot the fractional differences between the coupled scenarios and the
ΛCDM one. We note that the matter power spectrum of the Kinetic model is significantly
suppressed at intermediate scales, 10−3h Mpc−1 . k . 3 × 10−2h Mpc−1, with respect to
ΛCDM, and enhanced at the smaller scales. These signatures emerge as a combination of the
effects produced by the changes in the evolution of the background and the cold dark matter
perturbations due to the positive exchange of energy that flows from cold dark matter to
dark energy. Because the radiation-matter equality era is shifted towards earlier times, when
compared with the uncoupled case (see left panel of figure 2), the turnover in the matter
power spectrum is shifted to higher k. The growth of the matter perturbations is suppressed
at intermediate scales, with deviations from ΛCDM of ∼ 7% and ∼ 14% for α = 0.001 and
α = 0.002, respectively, and enhanced at the smaller scales, with deviations that can reach
∼ 45% for α = 0.002. This is illustrated in figure 5, where we can clearly see that the largest
deviations occur for scales 0.01h < k < 0.1h Mpc−1 and at large redshift, with some milder
modifications close to present time as well for k ∼ 0.1h Mpc−1. At larger scales k ∼ 0.01h
Mpc−1 the deviations are more accentuated at intermediate redshifts (z ∼ 10). The plots
also show that as expected the largest deviations are present for the higher values of α. As a
consequence, the value of the amplitude of the matter power spectrum at present time and
scale of 8 h−1Mpc, denoted by σ8, is expected to be larger for the Kinetic model.

In figure 6 we show the sum of the gravitational potentials Φ+Ψ (left panel) and their time
derivative (right panel), as a function of the redshift, for a fixed scale, k = 0.01 Mpc−1. The
evolution of the potentials is regulated according to the Poisson equation. We can infer that the
value of the lensing potential, given by φlens = (Ψ + Φ)/2, is lower in the Kinetic model when
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Figure 6. Left panel: (Top) Evolution of the sum of the gravitational potentials as a function of
the redshift at k = 0.01 Mpc−1 for the cases: uncoupled model (dashed line), α = 0.001 (dot-dashed
line), α = 0.002 (dotted line), and ΛCDM (pink solid line). (Bottom) Relative percentage difference
of Ψ + Φ computed with respect to ΛCDM. Right panel: (Top) Evolution of the time derivative of
the sum of the gravitational potentials as a function of the redshift (Bottom) Relative percentage
difference of Ψ′ + Φ′ computed with respect to ΛCDM.

compared to the standard cosmological scenario, resulting in a suppression of the lensing power
spectrum, as shown in figure 7. This effect becomes increasingly evident for larger value of α.
The quantity Ψ′ +Φ′ instead is directly connected with the integrated Sachs-Wolfe effect (ISW).
The latter affects the shape of the TT power spectrum as it enters in the radiation transfer
function. The total ISW effect is divided into: an early time contribution, produced during the
transition from radiation to matter dominated epochs, which in the Kinetic model is shifted
towards earlier times when compared to the standard scenario; and a late time contribution,
related with the presence of the dark energy component. The impact of the ISW effect on the
TT power spectrum is illustrated in figure 8, as a function of the angular multipole ℓ, exhibiting
an overall enhancement with respect to the reference case for ℓ . 300. While milder differences
are identified around the plateau at ℓ < 10, significant deviations can be appreciated around
10 < ℓ < 200, in particular for ℓ ∼ 50, being as large as ∼ 40% for α = 0.002. Moreover, there
is a clear increase in the amplitude of the first peak, accompanied by a broadening of its shape.

– 18 –



J
C
A
P
1
1
(
2
0
2
2
)
0
5
9

101 102 103

ℓ

0.0

0.5

1.0

1.5

2.0

ℓ(
ℓ
+
1)
C

φ
φ

ℓ
/2
π

×10−8

ΛCDM

α = 0

α = 0.001

α = 0.002

101 102 103

ℓ

0

100

200

∆
C

φ
φ

ℓ
/C

φ
φ

ℓ
[%

]

Figure 7. Upper panel: lensing angular power spectra for ΛCDM (solid pink line), α = 0.001
(dot-dashed line), α = 0.002 (dotted line) and the uncoupled case (dashed line). Lower panel: relative
difference between the lensing power spectra of each model and that of ΛCDM.
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Likewise, the presence of the coupling and the modifications to the background expansion
also induce small differences between the peaks and troughs at the higher multipoles.

These effects can be measured using cosmological data from background and large-scale
structure.
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Kinetic Model

Parameter Plk18 Plk18+BAO+SN Plk18+BAO+SN+len

S0
8 0.793+0.110

−0.064 0.875+0.037
−0.043 0.863+0.030

−0.039

Ω0
m 0.257+0.045

−0.025 0.2988+0.0072
−0.0036 0.2982+0.0070

−0.0035

H0 64.0+3.3
−1.8 67.14 ± 0.62 66.94+0.60

−0.54

10−9As 2.088 ± 0.035 2.096 ± 0.035 2.111 ± 0.031

ns 0.9667 ± 0.0047 0.9669 ± 0.0044 0.9655 ± 0.0041

λ 1.11 ± 0.48 0.42+0.18
−0.21 0.41+0.17

−0.22

104α 1.88 ± 0.95 1.37+0.67
−1.00 1.05+0.51

−0.87

Table 1. 68% C.L. bounds on the cosmological and model parameters for the Kinetic model for the
three different combinations of data sets: Planck, Planck combined with BAO and SN, and their full
combination with CMB lensing.

ΛCDM Model

Parameter Plk18 Plk18+BAO+SN Plk18+BAO+SN+len

S0
8 0.833 ± 0.016 0.831+0.013

−0.015 0.834 ± 0.013

Ω0
m 0.3163 ± 0.0085 0.3151+0.0060

−0.0075 0.3162 ± 0.0073

H0 67.31 ± 0.61 67.39+0.53
−0.45 67.32 ± 0.53

10−9As 2.102 ± 0.034 2.102 ± 0.034 2.105+0.028
−0.032

ns 0.9652 ± 0.0044 0.9656 ± 0.0039 0.9651 ± 0.0041

Table 2. 68% C.L. bounds on the cosmological parameters for the ΛCDM model for the three different
combinations of data sets: Planck 2018, Planck 2018 combined with BAO and SN, and their full
combination with CMB lensing.

4 Cosmological constraints and model selection analysis

In this section we present the constraints on the cosmological and model parameters of
the Kinetic model for different combinations of data sets. We perform a Bayesian Monte
Carlo Markov Chain (MCMC) analysis using the Metropolis-Hastings algorithm implemented
in the Monte Python2 sampler [109, 110] interfaced with our personal modified version of
CLASS3 [106–108]. The general aim is to estimate the sample posteriors that maximise the
likelihood associated to each data set, therefore minimising the statistical error distribution.
Subsequently, we analyse the MCMC chains and produce the results reported in tables 1
and 2, and in figures 9, 10, 11, and 12, resorting to the GetDist4 Python package [111]. For
comparison purposes we also report on the constraints derived for the standard cosmological
scenario. Finally we examine whether the Kinetic model is supported by the data over ΛCDM.

2https://github.com/brinckmann/montepython_public.
3https://github.com/lesgourg/class_public.
4https://github.com/cmbant/getdist.
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Parameter Prior

Ωbh
2 [0.005, 0.1]

Ωch
2 [0.001, 0.99]

100θs [0.5, 10]

zreio [0., 20.]

ns [0.7, 1.3]

log
(

1010As
)

[1.7, 5.0]

λ [0, 2]

α [0, 1]

Table 3. Flat priors on the cosmological and model parameters sampled in this work.

4.1 Data sets

For the present analysis we resort to the CMB Planck 2018 [112] data for large angular scales
ℓ = [2, 29] and a joint of TT, TE and EE likelihoods for the small angular scales. In detail, for
the latter case, ℓ = [30, 2508] for the TT power spectrum and ℓ = [30, 1996] for the TE cross-
correlation and EE power spectra. This will be our baseline data set and we will refer to it as
“Plk18” in what follows. Subsequently, we examine the changes when adding to the Plk18 data
set a compilation of BAO distance and expansion rate measurements from the Sloan Digital
Sky Survey (SDSS) DR7 Main Galaxy Sample [113], SDSS DR12 consensus release [114]
and the 6dF Galaxy Survey [115] (see text and figure 11 in ref. [5] for more details), and
distance moduli measurements of type Ia Supernova (SN) data from Pantheon [116], hereafter
simply “Plk18+BAO+SN”. Finally we consider the combination of “Plk18+BAO+SN” with
the addition of the CMB lensing potential data from Planck 2018 [112, 117], referenced as
“Plk18+BAO+SN+len” from now on. We note that both the CMB Planck 2018 temperature
and polarisation angular power spectra data used corresponds to the standard reference
likelihood from the 2018 release5 used in the Planck analysis. In particular this is given by
the product of the Commander, SimALL, and PlikTT,TE,EE likelihoods [112].

Our set of free parameters consists of the baseline ΛCDM cosmological parameters,
namely: Ωbh

2, Ωch
2, As and ns, the angular size of the sound horizon at recombination θs

and the reionisation redshift zreio; moreover we add the two free parameters associated to the
Kinetic model, α and λ. We impose flat priors for all the parameters sampled and these are
specified in table 3.6 We will then provide derived constraints on H0, and S0

8 = σ0
8

√

Ω0
m/0.3.

4.2 Cosmological bounds

We show the constraints on the model and cosmological parameters for the Kinetic model
in table 1 and the corresponding contour plots in figure 9, for all the data set combinations
considered. For comparison purposes, we include the results for the ΛCDM model in table 2
and in figure 10.

5http://pla.esac.esa.int/pla.
6We use a linear sampling for α but we have run chains using also a logarithmic sampling. Comparing the

results we concluded that the C.L. bounds and the marginalised posterior distributions found are in agreement
at 1σ level. This supports the robustness of the results reported on with a flat prior.
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Figure 9. 68% and 95% C.L. contours obtained in the Kinetic model under consideration for the
Planck 2018 data (grey), the Planck 2018, BAO and SN combination (yellow), and their combination
with CMB lensing (red).
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Figure 10. Comparison between the ΛCDM (dashed lines) and Kinetic model (solid lines) marginalised
likelihood of the cosmological parameters for the Planck 2018 data (grey), the Planck 2018, BAO and
SN combination (yellow) and their combination with CMB lensing (red).

We find that the parameter α is constrained to be of the order of 10−4, regardless of the
combination of data sets considered. The Planck data alone prefer the higher mean value of
α, mainly as this allows to better accommodate the TT likelihood; on the other hand, the
inclusion of the BAO and SN data results in a slight decrease of the mean value of α; at last,
adding the CMB lensing data leads to a shift of the peak of the posterior distribution for the
α parameter to an even lower central value. This feature is connected to the lensing excess
reported by the Planck collaboration [5, 118, 119]. As discussed in the previous section, the
lensing power spectrum is always suppressed in the Kinetic model, when compared to the
ΛCDM one, with higher values of α corresponding to lower amplitudes of the lensing power
spectrum (see figure 7). Therefore, in order to better accommodate the CMB lensing data, a
lower mean value for α is preferred.

Although the constraints on the cosmological parameters of the Kinetic model are
compatible with the ΛCDM ones within the errors, the cosmological standard model yields
higher mean values for H0 and Ω0

m, when compared to the Kinetic model. The latter is
characterised by a positive-correlation between Ω0

m and H0, contrary to the anti-correlation
that characterises the ΛCDM model, as shown in figure 11. In other words, a preference
for lower values of Ω0

m results in lower values for H0 alike. This characteristic correlation is
persistent through all the three data combinations considered. This trait can be ascribed to
the presence of a non-vanishing value for the α parameter, associated with an enhancement
of the TT power spectrum (see figure 8).

Furthermore, in figure 11 we depict the contour plots for the constraints in the S0
8 − Ω0

m

plane. The parameters are positively correlated for both the ΛCDM model and the Kinetic

– 22 –



J
C
A
P
1
1
(
2
0
2
2
)
0
5
9

58 62 66 70
H0

0.15

0.20

0.25

0.30

0.35

0 m

0.6 0.7 0.8 0.9 1.0
S08

Plk18 Plk18+BAO+SN Plk18+BAO+SN+len

Kinetic

65 66 67 68 69
H0

0.30

0.32

0.34

0 m

0.78 0.82 0.86 0.90
S08

CDM

Figure 11. 68% and 95% C.L. 2D contours obtained for the parameters H0 and Ω0
m (left panels) and

S0
8 and Ω0

m (right panels) in the Kinetic model (upper panels) and ΛCDM model (lower panels) for the
Planck 2018 data (grey), the Planck 2018, BAO and SN combination (yellow), and their combination
with CMB lensing (red).

model. For the latter we find S0
8 = 0.793+0.110

−0.064 at 68% C.L. with Plk18 data only, thus
alleviating the discordance with cosmic shear measurements [4, 10, 11] present in the standard
model, for which we report S0

8 = 0.833 ± 0.016. However, as seen in table 1 when the other
data sets are also taken into account the discrepancy arises again, reflecting a tension between
BAO and/or SN data under this framework. A similar situation has also been reported in
a Galileon model [103]. This contingency requires further investigation since it has been
suggested that there might be a bias towards ΛCDM-like models enclosed in the BAO
data [120].

The inclusion of BAO and SN data leads to narrower constraints on Ω0
m, which in turn

results in tighter constraints on other parameters, such as H0, S0
8 , and λ. The latter is directly

connected to the anti-correlation shown in figure 12 in the Ω0
m-λ plane, i.e. higher values of

Ω0
m select lower values for λ. This negative correlation is justified by considering that the

late time accelerated expansion, expressed in terms of wφ ≈ 1 − 2V/3H2, is mainly regulated
by two parameters, namely Ω0

φ and λ. The former is given by the Friedmann constraint

Ω0
φ ≈ 1 − Ω0

m, meaning that, in turn, higher values of Ω0
m are associated with lower values of

Ω0
φ. Therefore, and in order to have a cosmological constant-like scenario for the scalar field
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Figure 12. 68% and 95% C.L. 2D contours obtained for the parameters λ and Ω0
m for the Kinetic

model considering the Planck 2018 data (grey), the Planck 2018, BAO and SN combination (yellow),
and their combination with CMB lensing (red).

Plk18 Plk18+BAO+SN Plk18+BAO+SN+len

∆χ2
eff −0.9 0.7 1.0

∆DIC −0.3 0.8 1.6

Table 4. Results for the ∆χ2

eff
and ∆DIC obtained as the difference between the Kinetic and

ΛCDM scenarios.

at present times, w0
φ ≈ −1, the mean value of λ is pushed towards smaller values, explaining

the identified anti-correlation between Ω0
m and λ.

Finally, we wish to examine whether the Kinetic model is supported over the ΛCDM case
resorting to statistical indicators: the effective χ2 corresponding to the maximum likelihood,
namely χ2

eff, and the Deviance Information Criterion (DIC) [121]. The former will enable us
to assess whether the Kinetic model is preferred by the data against ΛCDM, by computing
∆χ2

eff = χ2
eff,Kinetic − χ2

eff,ΛCDM, with a negative outcome standing for a support for it, while a
positive result indicates no preference. The DIC will complement this analysis as a tool for
quantifying this preference, and it is defined as

DIC := χ2
eff + 2pD, (4.1)

where pD = χ2
eff − χ2

eff, with the upper bar denoting the average of the posterior distribution.
According to this definition, the DIC accounts for both the reliability of the fit, through the
χ2

eff term, and for the Bayesian complexity of the model, encoded in pD. Hence, more complex
models are disfavoured, in line with a quantitative Occam’s razor criteria. Hence, cosmological
models with smaller DIC should be preferred over models with larger DIC [42, 103, 122–128].
Finally, the quantity

∆DIC = DICKinetic − DICΛCDM , (4.2)

will indicate support for the Kinetic model over the ΛCDM scenario provided that ∆DIC < 0.
In table 4 we present the values for both the ∆χ2

eff and the ∆DIC. We gather that, by taking
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the Plk18 data alone, a better fit to the data for the Kinetic model is suggested, compared to
the ΛCDM case, since ∆χ2 = −0.9. However, when the other data sets are included, this
preference is no longer present. This is linked to the fact that the BAO and SN data spoil the
fit to the TT likelihood which, after the inclusion of the CMB lensing data, becomes worsened
as a result of the Kinetic model predicting a suppressed lensing amplitude, while the CMB
lensing data actually shows an excess of power. However, it should be noted that the support
of the Kinetic model by the Planck data over the standard cosmological scenario is not overly
significant (∆DIC = −0.3) and the remaining data combinations indicate a slight preference
for the ΛCDM model. Therefore, we conclude that there is no statistical evidence in support
for either of the two models in this analysis.

5 Conclusions

In this work we have thoroughly explored the evolution of the background and linear perturba-
tions of the Kinetic model, a coupled quintessence theory characterised by a power-law kinetic
interaction, with strength characterised by the parameter α. We studied the impact of the
coupling between the scalar field and the dark matter fluid on the cosmological observables
and we have provided cosmological constraints on the parameters of the theory using CMB,
CMB lensing, BAO and SN data.

We have derived the background and linear scalar perturbation equations and we have
modified the public Einstein Boltzmann code CLASS. For our study we have identified the
theoretically viable parameter space by enforcing stability requirements such as the absence of
ghosts and gradient instabilities. These mostly define the range of viability of the parameter
α. The other additional free parameter of this model is the steepness of the potential
function, λ, which has a crucial role in regulating the late time accelerated expansion. We
employed an extended viable range for λ compared to what had previously been presented [41],
as we allowed for transient accelerated regimes at the present time and not at the future
attractor only.

In section 3 we studied in detail the phenomenology of the Kinetic model. At the
background level we found that a non-vanishing value of α allows for the presence of a scaling
regime at early times, during the radiation dominated epoch, according to which the ratio
of the densities of the cold dark matter and the scalar field approximately scales with α.
The initial condition for the velocity of the scalar field sets how long the quintessence field
stays in the scaling regime, hence quantifying the deviations from a cosmological constant
behaviour. Furthermore we found that, due to the coupling in the dark sector, energy is being
transferred from the dark matter field to the scalar field. We also highlighted the presence
of a shift of the radiation matter equality towards earlier times. These two features have a
direct impact on the matter power spectrum: the latter leads to a shift in the position of
its peak towards higher k modes, generating in turn a suppression for scales k . 3 × 10−2h
Mpc−1, when compared to the ΛCDM case; the former affects the growth of the matter
perturbations on larger k, resulting in an enhancement with respect to the standard scenario.
Likewise, the differences in the growth of the matter perturbations influence the evolution of
the gravitational potentials through the Poisson equation. Consequently we found an overall
suppression of the lensing potential (and lensing power spectrum), with respect to ΛCDM,
along with a modified ISW effect which alters the shape of the TT power spectrum for large
angular scales.
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These theoretical predictions are then used to provide constraints on the model through
a Monte Carlo code for cosmological parameter extraction. We found that the S8 tension
is alleviated since S0

8 = 0.793+0.110
−0.064 at 68% with Planck data, while the H0 tension is still

present. Regardless of the combination of data considered, the parameter α is consistently
constrained to be of the order 10−4. We also reported on the bounds for the other parameter
of the model, λ, for which the strongest constraints are for the two combinations including
BAO and SN data. This is attributed to the strong constraining power of BAO data on Ω0

m,
which indirectly impact the bounds on λ. Finally we performed a model selection analysis
based on the effective χ2

eff and Deviance Information Criterion, but we were not able to
clearly identify the statistically favoured model between ΛCDM and the Kinetic model. We
want to stress that the purpose of our work is not to make any claim on the class of models
characterised by a kinetic coupling with cold dark matter but to provide constraints on the
parameters of the specific model analysed. The latter being the first tested model in such
class of theories. Actually the present analysis can be considered a starting point to construct
and test new kinetic coupling models with interesting cosmological signatures.

In conclusion, we remark that it would be of interest to consider the Kinetic model for
future investigations when new probes from upcoming surveys will be available. This progress
will help in shedding light on the tensions and the high accuracy data we expect to collect
will allow us to set a definite preference of one model over the other.
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A Synchronous gauge

In this appendix we write the linear perturbations equations of the Kinetic model in syn-
chronous gauge.

We use the following metric to describe perturbations in synchronous gauge

ds2 = a2(τ)
[

−dτ2 + (δij + hij) dxidxj
]

, (A.1)

where the scalar modes of the perturbation components hij are parameterised in Fourier
space,

hij(~x, τ) =

∫

d3k ei~k·~x
[

~̂ki · ~̂kj h(~k, τ) +

(

~̂ki · ~̂kj − 1

3
δij

)

6η(~k, τ)

]

, (A.2)
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with ~k = k~̂k. The perturbations in Newtonian gauge are related with the scalar quantities η
and h as follows [94]:

Ψ =
1

2k2

[

h′′ + 6η′′ + H
(

h′ + 6η′
)]

, (A.3)

Φ = η − H
2k2

(

h′ + 6η′
)

, (A.4)

where a prime denotes derivatives with respect to the conformal time τ . We can the write
the system of equations (2.39)–(2.42) in synchronous gauge as follows:

k2η − 1

2
Hh′ = −4πGa2

∑

i

δρi , (A.5)

k2η′ = 4πGa2
∑

i

ρi(1 + wi)θi , (A.6)

h′′ + 2Hh′ − 2k2η = −24πGa2
∑

i

δpi , (A.7)

h′′ + 6η′′ + 2H
(

h′ + 6η′
)

− 2k2η = 0 . (A.8)

Similarly one can find the equivalent of the linear perturbation equation for the matter
density perturbations and velocity:

δ′

i + 3H
(

δpi

δρi
− wi

)

δi + (1 + wi)

(

θi +
h′

2

)

= 0 , (A.9)

θ′

i +

[

H(1 − 3wi) +
w′

i

1 + wi

]

θi − δpi

δρi

k2

1 + wi
δi = 0 , (A.10)

and for the cold dark matter density and velocity perturbations:

δ′

c + θc +
h′

2
=
Q

ρc

(

φ′δc − δφ′
)

− φ′

ρc
δQ , (A.11)

θ′

c + Hθc =
Q

ρc

(

φ′θc − k2δφ
)

, (A.12)

where

δQ =
2αρc

2αa2ρc + (1 + 2α)φ′2

{

h′

2
φ′ − φ′θc +

[

3Hφ′ + a2(V,φ −Q)
]

δc +
(

2k2 + a2V,φφ

)

δφ

−
[

3Hφ′ + 2a2(V,φ −Q)
] δφ′

φ′

}

. (A.13)

It is worth noting that the synchronous gauge defines a frame which is always comoving with
cold dark matter. That is, in the absence of a coupling, Q = 0, and for an initial condition
θc(zi) = 0, the velocity divergence of CDM remains zero throughout time, as dictated by
eq. (A.12).

Finally we write the equation for the scalar field perturbation:

δφ′′ + 2Hδφ′ +
(

a2V,φφ + k2
)

δφ+
h′

2
φ′ = a2δQ . (A.14)
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