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Emotion Recognition with Facial Attention and

Objective Activation Functions

Andrzej Miskow1[0000−0002−9666−0411] and Abdulrahman
Altahhan2,3[0000−0003−1133−7744]

School of Computing, University of Leeds.

Abstract. In this paper, we study the effect of introducing channel and
spatial attention mechanisms, namely SEN-Net, ECA-Net, and CBAM,
to existing CNN vision-based models such as VGGNet, ResNet, and
ResNetV2 to perform the Facial Emotion Recognition task. We show
that not only attention can significantly improve the performance of
these models but also that combining them with a different activation
function can further help increase the performance of these models.

Keywords: Facial Emotion Recognition · Attention · Activation Func-
tions · VGGNet · Resnet · ResNetV2 · SEN-net · ECA-Net · CBAM

1 Introduction

Emotions are a crucial part of any interpersonal human interaction. The emo-
tions of another person directly influence our interaction with them. A study
showed that, during face-to-face human communication, only 7% of the informa-
tion is communicated linguistically via spoken words, and 38% is communicated
paralinguistically via vocal techniques, such as intonation and pitch. In contrast,
55% is communicated visually via facial expressions [13]. Hence, automatic detec-
tion of a user’s emotion and adapting to their state gives systems an important
innate ability to interact naturally with the user and further narrow the gaps
between human-to-human interaction and human-computer interaction.

The most recent breakthrough in emotion recognition is the idea of using
attention to improve the accuracy of the deep learning model. The methodol-
ogy behind visual-attention-based models was inspired by how humans inspect
a scene at first glance. [6] has found that humans retrieve parts of the scene
or objects sequentially to find the relevant information. Since neural networks
attempt to mimic how the human brain works to complete the desired task,
various methods were developed to imitate human attention. The discovery of
these attention mechanisms helped improve the accuracy of emotion recognition
models. In this work, we aim to discover the effect of introducing an attention
mechanism to existing deep learning models to recognise facial expressions and
how their performance can be further boosted via simple but effective changes to
their architectures. Additionally, the new architectures will be further improved
by modifying their activation functions from ReLU to ELU activation functions
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to solve the issue of bias shift. The paper proceeds as follows. In the next section,
we present related work, while in section 3, we show the methodology, and in
section 4, we show the results.

2 Attention

When processing a complex visual scene, human vision does not process the
entire image at once. Instead, we tend to only focus on a subset of the image
while ignoring the rest to speed up the visual analysis process. This process of
selecting a subset of the input, and ignoring the rest, is referred to as attention
[5]. Attention can be divided into two independent categories [14]: bottom-up
unconscious (implicit) attention, referred to as saliency-based attention that op-
erates on raw sensory input, and top-down conscious (explicit) attention, which
refers to the deliberate allocation of attention to certain features.

2.1 Attention in Facial Expression Recognition Context

In computer vision, attention mechanisms can be treated as a selection process
that weighs an input dimension and its features according to their importance
to the task. Each dimension defines a different input domain that contributes
to the task to a different extent. Furthermore, each portion of the input domain
has varied importance to the task.

From a deep learning perspective, attention can be infused into a CNN model
by further distinguishing higher-level features from low-level features and assign-
ing higher weights to crucial features, i.e., by attracting the model’s attention
to these features [7]. From this perspective, attention mechanisms can be di-
vided into three distinct categories; channel, spatial, and temporal attention.
Additionally, these categories can be combined to form other hybrid attention
mechanisms, namely: channel & spatial attention and spatial & temporal atten-
tion. Temporal attention will not be discussed as the work focuses on recognition
from static images, not sequential data.

Since the introduction of attention modules and their easy integration with
CNN’s models, researchers have switched their focus to using CNN classification
with attention for FER applications. In [4], authors proposed using attention
for FER tasks. They implemented spatial attention with a CNN and improved
the model’s performance by focusing less on irrelevant parts of the image and
training the model on ”where” to find the needed information. Additionally, [10]
has explored using channel attention which defines ”what” to look for in the
model by placing a higher value on more informative features. The combination
of spatial and channel attention for FER applications is envisaged to achieve
state-of-the-art results.

3 Methodology

We use three different CNN image processing models as our base model and
add attention to them to boost their performances. The models that we use are
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VGGNet, Resnet, and ResnetV2. These models are considered a good fit for
our problem due to their resilience to noise and ability to deal with degradation
and vanishing gradient problems. Each one of these models has its strengths and
weaknesses, and we want to study what happens when we add attention to them
in the context of FER.

In addition, we vary the depth of these architectures to study the effect of
different attention mechanisms on the depth of the architecture and whether
they aggravate or alleviate some of the issues associated with the depth of the
architecture. Furthermore, to make our study more comprehensive, we also study
the effect of the activation function on these architectures when integrated with
each attention mechanism.

This section starts by discussing the preprocessing stage that we adopted.
Then we move to the activation functions and show a preliminary comparative
study for a lab-based FER dataset, the CK+. We then discuss the different at-
tention modules and conclude the section by conducting preliminary experiments
on the reduction rate of the attention modules, again using the CK+ dataset.
This section is followed by full-fledged experimental results that compare all the
different architecture’s performances on the more challenging FER2013 dataset.

3.1 Face Detection and Pre-processing

We start by detecting the face in the image and removing the insignificant back-
ground pixels. Without this step, unwanted features in the image may be ex-
tracted and classified along with important information resulting in errors. Facial
detection can be achieved using standard object detection methods. This paper
uses a state-of-the-art facial detector built on top of the YOLO framework [15].
YOLO was chosen due to its efficient one-stage object detection capability com-
parable to the performances of two-stage detectors while offering significantly
better computational performance [1].

The default yolov5s weights were chosen due to their high performance and
accuracy after experimenting with different weights on a subset of the dataset.
More importantly, the original YOLO architecture was modified to ensure the
output images had a fixed image size of 80 × 80 pixels. Since faces bounding
boxes can have different proportions, cropped faces must be re-sized, so they all
have the same size. This stage can be considered an external attention layer for
our model.

3.2 Activation Functions

ReLU activation function has helped to solve the vanishing gradient prob-
lem, and hence it was utilised by the architectures discussed earlier. This is
because the gradients of the ReLU activation follow the identity function for
positive arguments and zero otherwise, meaning that large gradient values are
still used, and negative values are discarded. On the other hand, since ReLU is
non-negative, it has a mean activation larger than zero. As a result, neurons with
a non-zero mean activation act as a bias for the next layer causing a bias shift
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for the next layer. The shift in bias causes weight variance, leading to activation
function being locked to negative values, and the affected neuron can no longer
contribute to the network learning. Consequently, two activation functions have
been proposed that tackle the problem of bias shift differently while also solving
the vanishing gradient problem.

ELU function was proposed that allows negative gradient values, resulting in
the mean of the unit activations being closer to zero than ReLU. Like ReLU,
ELU applies the identity function for positive values, whereas it utilises the
exponential function if the input is negative. For this reason, ELU achieves
faster learning, and significantly better generalization performance than ReLU
on networks with more than five layers [3].

SELU function [9] was proposed to solves the issue of bias-shift through self-
normalization. Through this property, activations automatically converge to a
zero mean and unit variance. This convergence property makes SELU ideal for
networks with many layers and further improves the ReLU activation function.

Table 1: Performance of the activation functions on the CK+ dataset with
ResNet-50

Activation Function Accuracy

ReLU 85.16%
ELU 88.21%
SELU 87.91%

From the results table, we can observe that ELU achieved the best accuracy
on the ResNet-50 model on the CK+ dataset. This stems from the fact that
SELU performs much better on models with many layers. In both cases, the
change of the activation functions largely outperformed ReLU, which is utilised
in most of the modern CNN architectures.

3.3 Attention Modules

Attention modules are designed to be integrated with CNN models to improve
them further. Section 2.5 discussed how a CNN model could be improved via
channel and spatial attention relating to computer vision tasks. This section
expands on the research and will first discuss how attention is implemented in
each module, the benefits of each implementation, and possible improvements.
Lastly, the section will show how the attention modules integrate within the
implemented CNN architectures.
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SEN-Net The SEN-Net architecture was the first implementation of channel
attention in computer vision tasks [7]. The block improved the representational
ability of the network by modelling the interdependencies between the channels
of a convolutional layer. This is done through a feature re-calibration operation
split into two sequential operations: squeeze and excitation.

The primary purpose of the squeeze operation is to extract global information
from each channel in the input filter. Each filter has a set of local receptive fields
and cannot use information outside this region. This is an issue, particularly
in the deeper layers where the local receptive field is small. Therefore, global
average pooling reduces the channel, height, and width (C × H ×W ) filter to
channel only (C×1×1) to obtain global spatial information of each channel. The
output from the pooling operation is a scalar, defined as the channel descriptor,
and the operation is formulated in equation (1).

zc = Fsq (uc) =
1

H ×W

H
∑

i=1

W
∑

j=1

uc(i, j) (1)

where uc refers to a 2-d feature map of channel (filter) c and uc(i, j) is an
individual feature value of that map. Given that we are summing along the
height H and width W dimensions, we divide by H ×W to obtain the overall
channel activation average along its two dimensions. Effectively, this operation
allows the network to associate importance globally, on the channel level, so each
channel is given specific importance according to its role in extracting important
features.

The second operation, excitation, captures channel-wise relationships through
an adaptive weights scaling mechanism based on channel dependencies. It out-
puts a vector that contains each channel’s importance level. This operation can
be summarised by equation (2).

s = Fex(z,W) = σ(g(z,W)) = σ (W2δ (W1z)) (2)

The gating mechanism forms a bottleneck via two fully connected layers (FC),
W1 and W2. The input from the squeeze operation is defined as z and is passed
onto the first FC layer. The first FC layer is a dimensionality-reduction layer
containing a single hyperparameter r, which defines the reduction ratio. This
value varies the capacity and computational cost of the squeeze and extraction
blocks in the model. After the convolution, ReLU(δ) activation is used, followed
by the second FC layer, which increases the dimension back to the original
size. Lastly, A sigmoid(σ) function is used to output each channel’s importance
(excitation) level. This vector is then used to re-weight the feature maps to
generate the output of the SE Block, which can be fed into other layers.

A set of experiments was conducted on the CK+ dataset using ResNet-50 as
the backbone to find the optimal value of r in table 2.

ECA-Net ECA-Net [18] was developed to improve channel attention used in
SEN-Net. In SEN-net, the excitation module uses dimensionality reduction via
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Table 2: The Effect of Reduction Ratio Changes on the SEN-Net Attention
Module When Applied on the CK+ Dataset

Reduction Ratio(r) #Parameters Accuracy

4 33.56M 87.26%
8 28.53M 88.46%
16 26.02M 89.56%
32 24.76M 87.91%

two fully connected layers to extract channel-wise relationships. The channel fea-
tures are mapped into a low-dimensional space and then mapped back, making
the channel connection and weight indirect. Consequently, this negatively affects
the direct connections between the channel and its weight, reducing the model’s
performance. Furthermore, empirical studies show that the operation of dimen-
sional reduction is inefficient and unnecessary for capturing dependencies across
all channels [18]. The ECA-Net attempts to solve the issue of dimensionality re-
duction while improving the efficiency of the excitation operation by introducing
an adaptive kernel size within its excitation operation.

k = ψ(C) =

∣

∣

∣

∣

log2(C)

γ
+
b

γ

∣

∣

∣

∣

odd

(3)

A 1D convolutional layer performs the excitation operation with kernel size k.
The value of k is adaptively changed based on the number of channels. With this
operation, ECA captures channel-wise relationships by considering every channel
and its k neighbours. Therefore, instead of considering all relationships that may
be direct or indirect, an ECA block only considers direct interaction between each
channel and its k-nearest neighbours to control the model’s complexity. Table 3
shows the effect of utilising a static value of k over the adaptive, confirming that
the adaptive kernel size is the best option for FER applications.

Table 3: The Effect of Kernel Size Changes on the ECA Attention Module When
Applied on the CK+ Dataset

Kernel Size(k) #Parameters Accuracy

1 33.56M 88.46%
3 23.50M 89.65%
5 23.53M 89.11%
7 23.59M 87.36%
9 23.62M 88.56%

Adaptive 23.65M 90.23%

CBAM The last attention module implemented in this paper is the Convo-
lutions Block Attention Module (CBAM) [20]. CBAM proposed utilising both
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spatial and channel attention to improve the model’s performance, unlike the pre-
vious attention modules, which only utilised channel attention. The motivation
behind the CBAM stemmed from the fact that convolution operations extract in-
formative features by cross-channel and spatial information together. Therefore,
emphasising meaningful features along both dimensions should achieve better
results.

CBAM channel attention consists of squeeze and excitation operations in-
spired by the implementation of channel attention from SEN-Net[7]. However,
CBAM modifies the original squeeze operation from SEN-net to include average
and max pooling to capture channel-wise dependencies. The idea behind utilising
both pooling operations stems from the fact that all spatial regions contribute to
the average pooling output, whereas max-pooling only considers the maximum
values. Consequently, combining both should improve the representation power
of relationships between channels. The two pooling operations are used simul-
taneously and are passed to a shared network consisting of two fully connected
layers (W1 andW2), which perform the excitation operation (following the exact
implementation from SEN-Net). After the output of each pooling operation is
passed through the shared MLP, the resultant feature vectors are merged using
element-wise summation.

The design of the CBAM spatial attention module follows the same idea as
the CBAM channel attention module. To generate a 2D spatial attention map,
we compute a 2D spatial descriptor that encodes channel information at each
pixel over all spatial locations. This is done via applying average-pooling and
max-pooling along the channel axis, after which their outputs are concatenated.
This is because pooling along the channel axis effectively detects informative
regions as per [21]. The spatial descriptor is then passed to a convolution layer
with a kernel size of 7, which outputs the spatial attention map. The choice of
the large kernel size is necessary since a large receptive field is usually helpful
in deciding spatially important regions. The output is passed through a sigmoid
function to normalize the output.

Like SEN-Net, the reduction ratio r allows us to vary the capacity and com-
putational cost of the channel attention block, as shown in a set of experiments
that we conducted on the CK+ and summarised in table 4.

Table 4: The Effect of the Change of Reduction Ratio for CBAM Attention
Module on the CK+ Dataset

Reduction Ratio(r) #Parameters Accuracy

4 33.57M 90.46%
8 28.54M 89.01%
16 26.02M 91.21%
32 24.77M 90.66%
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3.4 Integration of Different Attention Mechanisms with Different

Deep Vision-Based Models

As mentioned, we integrate the three attention mechanisms discussed earlier
with three types of vision-based deep learning architectures. The chosen atten-
tion modules are versatile and are designed to be easily integrated within CNN
models.

Integration with VGGNet The creators of SEN-Net stated that the SE
block could be integrated into standard architectures such as VGGNet by the
insertion after the activation layer following each convolution. Through research
in the classification of medical images, it was shown that authors had used
three different ways to integrate attention in VGGNet: (1) placing attention as
described by SEN-Net [16], (2) placing the attention module before the last fully
connected layers [17] and (3) placing the attention modules at layers 11 and 14
[19]. Method 2 achieved the best performance for the emotion recognition task
as shown in table 5.

Table 5: Comparing different attention integration methods for VGGNet when
Applied on CK+ Dataset

Method #Parameters Accuracy

(1) 39.99M 89.01%
(2) 39.95M 90.11%
(3) 36.81M 87.91%

Integration with ResNet Even though ResNet is a more complicated ar-
chitecture, the creators of SEN-Net provided the most optimal way to integrate
their block within the residual block, where the attention module is added before
summation with the identity branch. Through research and experimentation, we
did not find more optimal ways to integrate attention within ResNet; therefore,
ECA-Net and CBAM followed the same integration method.

4 Results

4.1 FER Datasets

It is necessary to have datasets with emotions that are correctly labeled and
contain enough data to train the model optimally. For this reason, this paper
uses three datasets of different sizes, widely used in FER research. Extended

Cohn-Kanade Dataset CK+ dataset [11] is an extension of the CK dataset.
It contains 593 video sequences and still images of eight facial emotions; Neutral,
Angry, Contempt, Disgusted, Fearful, Happy, Sad, and Surprised. The dataset
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has 123 subjects, and the facial expressions are posed in a lab. The subjects
involved are male and female, with a diversity split of 81% Euro-American, 13%
Afro-American, and 6% other. JAFFE Dataset [12] consists of 213 images of
different facial expressions from 10 Japanese female subjects. Each subject was
asked to pose seven facial expressions (6 basic and neutral). FER2013 Dataset

[2] was introduced at the International Conference on Machine Learning (ICML)
in 2013 for a Kaggle competition. The training set consists of 28,709 examples,
and the public test set consists of 3,589 examples. The samples in the dataset
differ in age, race, and facial direction, which closely mimics the real world. The
human performance on this dataset is estimated to be 65.5% [8]. Hence, it is
widely used as a benchmark for emotion recognition models.

4.2 Evaluation of CNN-Based Models with an ELU Activation

Function

This section shows the results of applying the previously discussed CNN-based
models with a different activation function, ELU. This is necessary to estab-
lish ground truth and isolate the effect of changing the activation function from
adding attention (discussed in the next section). Table 6 displays the final eval-
uation accuracies of the CNN models on the three datasets. The evaluations for
CK+ and JAFFE were executed three times to ensure the results’ correctness;
with smaller datasets, evaluation accuracies fluctuate between the runs. Out of
the three executions, the highest value was chosen.

Table 6: Evaluation of CNN architectures with ELU on CK+, JAFFE and
FER2013
Architecture #Parameters CK+ Accuracy JAFFE Accuracy FER2013 Accuracy

VGG-16 39.92M 87.91% 64.44% 60.66%
VGG-19 42.87M 90.66% 68.89% 60.92%

ResNet-50 23.49M 87.91% 73.33% 58.61%
ResNet-101 42.46M 88.46% 60.00% 58.67%
ResNet-152 58.08M 85.71% 15.66% 59.36%

ResNetV2-50 23.48M 88.46% 77.78% 58.72%
ResNetV2-101 42.44M 88.62% 62.22% 59.07%
ResNetV2-152 58.05M 89.01% 66.67% 59.40%

Analysing the results, we see that VGG-19 achieved the best accuracy on
CK+ and FER2013, while ResNetV2-50 achieved the best accuracy on the
JAFFE dataset. This was an unexpected result as the initial assumption was that
the deeper ResNet models should outperform VGGNet, which was not the case.
We conclude that this is due to the modification of the activation function from
ReLU to ELU in the CNN models. This change improved the VGG-19 accuracy
from 87.91% to 90.66% on the CK+ dataset, significantly better than the deeper
ResNet models for the same modification. This finding indicates that residual
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learning is not required to achieve good performances. Even simple architectures
such as the VGGNet can achieve higher accuracy than a more complex archi-
tecture such as ResNet across different datasets by utilising the ELU activation
functions. Furthermore, the deeper ResNet models consist of more parameters
than VGG-19. Because deep CNNs are designed to be trained on large amounts
of data, the layers at the deeper stages cannot learn informative features. Con-
sequently, overfitting occurs, suggesting that shallower architectures are better
for the given dataset. It is yet to be discovered whether a larger dataset would
enhance the performance of the deeper architecture of ResNet.

From the previous table, it can be seen that ResNet performed better than
VGG on the smaller JAFFE dataset. To gain further insight into the baseline
performances of the two ResNet architectures, we drill down more by comparing
the relative training graphs of ResNetV1 and ResNetV2 on the JAFFE dataset in
Figure 1. Interestingly, the figures show that ResNetV2 performed significantly
better than ResNet on the smallest JAFFE dataset. Original ResNet showed
degradation in accuracy past depth 101 and could not increase training accuracy
past depth 152 on the JAFFE dataset. On the other hand, ResNetV2 can still
train on the deeper models, and the model of 50 layers performed better than
the original ResNet.

Fig. 1: raining and validation accuracy graphs of ResNet(left) and
ResNetV2(right) with 3 Different Depths (50, 101 and 152) on the JAFFE
dataset.

Relative graphs were chosen to separate the ResNet models as the larger mod-
els will have a longer computational time. Figure 1 shows that ResNetV2 con-
verges to optimal values faster, and the performance degradation in the deeper
layers is not as sudden as the original ResNet. From these results, we can con-
clude that the ELU activation function further enhanced the new residual blocks
due to its ability to facilitate a better flow of information. This, however, should
not be attributed only to the small size of the JAFFE dataset since the new im-
proved residual blocks also performed consistently better on CK+ and FER2013
datasets.



FER with Attention and Objective Activation Functions 11

4.3 CNNs with Different Attention Mechanisms

This section shows the results of augmenting the previously discussed CNN-
based architectures with different attention mechanisms. Table 7 summarizes the

Table 7: Evaluation of SEN-Net, ECA-Net and CBAM Attention Modules when
Infused in VGG, ResNet and ResNetV2 with Different Depths, with ELU Acti-
vation Function, Applied on CK+, JAFFE, and FER2013
Architecture Param CK+ Accuracy JAFFE Accuracy FER2013 Accuracy

VGG-16 39.92 M 87.91% 64.44% 60.66%
VGG-16 + SEN-Net 39.95M 88.46% 68.89% 63.05%
VGG-16 + ECA-Net 39.92M 89.01% 73.33% 62.72%
VGG-16 + CBAM 39.95M 89.56% 75.56% 63.46%

VGG-19 42.87M 90.66% 68.89% 60.92%
VGG-19 + SEN-Net 45.26M 91.21% 73.33% 63.23%
VGG-19 + ECA-Net 45.23M 91.76% 75.56% 63.49%
VGG-19 + CBAM 45.26M 92.31% (↑ 1.65%) 77.78% 64.07% (↑ 3.15%)

ResNet-50 23.49M 87.91% 73.33% 58.61%
ResNet-50 + SEN-Net 26.02M 89.01% 75.56% 58.84%
ResNet-50 + ECA-Net 23.65M 90.11% 77.78% 59.73%
ResNet-50 + CBAM 26.02M 91.21% 82.22% 59.90%

ResNet-101 42.46M 88.46% 60.00% 58.67%
ResNet-101 + SEN-Net 47.24M 89.01% 68.89% 58.92%
ResNet-101 + ECA-Net 42.81M 89.56% 73.33% 60.15%
ResNet-101 + CBAM 47.24M 90.11% 75.56% 60.92%

ResNet-152 58.08M 85.71% 15.66% 59.36%
ResNet-152 + SEN-Net 64,71M 88.46% 15.66% 59.73%
ResNet-152 + ECA-Net 58.60M 89.56% 15.66% 60.92%
ResNet-152 + CBAM 64.71M 90.11% 15.66% 61.54%

ResNetV2-50 23.48M 88.46% 77.78% 58.72%
ResNetV2-50 + SEN-Net 26.01M 88.66% 82.22% 59.36%
ResNetV2-50 + ECA-Net 23.64M 88.91% 82.22% 59.73%
ResNetV2-50 + CBAM 26.01M 89.01% 84.44%(↑ 6.55%) 60.15%

ResNetV2-101 42.44M 88.62% 62.22% 59.07%
ResNetV2-101 + SEN-Net 47,22M 89.01% 68.89% 59.73%
ResNetV2-101 + ECA-Net 42.79M 89.56% 70.83% 60.15%
ResNetV2-101 + CBAM 47.22M 90.66% 73.33% 60.92%

ResNetV2-152 58.05M 89.01% 66.67% 59.40%
ResNetV2-152 + SEN-Net 64.68M 89.56% 68.89% 60.72%
ResNetV2-152 + ECA-Net 58.57M 89.82% 73.33% 61.54%
ResNetV2-152 + CBAM 64.69M 90.11% 77.78% 62.05%

experimental results. The networks with attention outperformed all the baselines
significantly, demonstrating that attention can generalise well on various models.
Moreover, the addition of attention showed performance improvement across the



12 A. Miskow et al.

three studied datasets, displaying that attention could be applied to any problem
size.

Figure 2 shows the accuracy curves of the best-performing networks. In each
case, attention achieves higher accuracies and shows a smaller gap between train-
ing and validation curves than baseline networks.

Fig. 2: Accuracy curves for the best performing models on the CK+(left),
JAFFE(middle), and FER2013(right).

As expected, CBAM had the best improvement in accuracy over the other
attention modules due to the application of spatial attention. However, that
comes at the cost of a significant overhead in parameters. On the other hand,
ECA-Net achieved similar levels of performance increase compared to CBAM
while not significantly impacting the memory requirement of each network.
VGG19 still achieved the best performance on the CK+ and FER2013 datasets,
while ResNetV2-50 achieved the best performance on the JAFFE dataset. How-
ever, the increase in performance was significantly higher than expected in the
FER2013 dataset. Due to the size of the dataset, the expected improvement
should have been 1-2% which is the improvement authors of CBAM received
on the ImageNet dataset. However, CBAM achieved a performance increase of
3.15% on FER2013, displaying that attention modules can significantly impact
the network’s performance. Furthermore, the addition of CBAM enabled an in-
crease of 6.55% on the JAFFE dataset, demonstrating the ability of attention
modules to improve the network’s generalisation ability. Additionally, the intro-
duction of attention did not change the ranking order of the best-performing
networks from the baseline CNN comparisons, emphasising the consistency of
the expected boost in performance when the attention mechanism is added.

5 Conclusion

In this paper, we studied the effect of infusing three different attention mecha-
nisms, SEN-Net, ECA-Net, and CBAM, into three CNN-based deep learning ar-
chitectures, namely the VGGNet, ResNet, and ResNetV2, with different depths
to classify the seven basic human emotions on three datasets, namely CK+,
JAFFE, and FER2013. In addition, we have replaced their internal activation
function from RELU to ELU. As a result, there was a significant improvement
in their performances. We studied the effect of changing the activation function



FER with Attention and Objective Activation Functions 13

first, then infused the resultant architectures with attention. Along the way, we
showed that the new residual blocks presented in ResNetV2 perform significantly
better than the original ResNet on smaller datasets and show a slight improve-
ment on mid-sized and larger-sized datasets. Our results show that these amend-
ments refined the extracted features and improved the generalisation capabilities
of these models. The attention module hyperparameters were modified through
experimentation to maximize the models’ performance on emotion recognition
tasks.

Our work verified the attention mechanism’s effect on the performance of
CNNs. We have shown that each attention module outperformed the baseline
models on each dataset. Consequently, attention modules could successfully im-
prove the generalisation ability and refine the extracted features regardless of the
problem size. Furthermore, our work confirmed that utilising ResNet V2 with
attention modules yields better results than the original ResNet when attention
modules and ELU are applied. In the future, we intend to conduct a compre-
hensive study on the effect of simplifying the transformation operations used in
attention to speed its training time without losing competency.
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