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Abstract. Disastrous bushfires during the last months

of 2019 and January 2020 affected Australia, raising the

question to what extent the risk of these fires was exacer-

bated by anthropogenic climate change. To answer the ques-

tion for southeastern Australia, where fires were particularly

severe, affecting people and ecosystems, we use a physically

based index of fire weather, the Fire Weather Index; long-

term observations of heat and drought; and 11 large ensem-

bles of state-of-the-art climate models. We find large trends

in the Fire Weather Index in the fifth-generation European

Centre for Medium-Range Weather Forecasts (ECMWF) At-

mospheric Reanalysis (ERA5) since 1979 and a smaller but

significant increase by at least 30 % in the models. Therefore,

we find that climate change has induced a higher weather-

induced risk of such an extreme fire season. This trend is

mainly driven by the increase of temperature extremes. In

agreement with previous analyses we find that heat extremes

have become more likely by at least a factor of 2 due to the

long-term warming trend. However, current climate models

overestimate variability and tend to underestimate the long-

term trend in these extremes, so the true change in the like-

lihood of extreme heat could be larger, suggesting that the

attribution of the increased fire weather risk is a conserva-

tive estimate. We do not find an attributable trend in either

extreme annual drought or the driest month of the fire sea-

son, September–February. The observations, however, show

a weak drying trend in the annual mean. For the 2019/20 sea-

son more than half of the July–December drought was driven

by record excursions of the Indian Ocean Dipole and South-

ern Annular Mode, factors which are included in the analysis

here. The study reveals the complexity of the 2019/20 bush-

fire event, with some but not all drivers showing an imprint of

anthropogenic climate change. Finally, the study concludes

with a qualitative review of various vulnerability and expo-
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sure factors that each play a role, along with the hazard in

increasing or decreasing the overall impact of the bushfires.

1 Introduction

The year 2019 was the warmest and driest in Aus-

tralia since standardized temperature and rainfall obser-

vations began (in 1910 and 1900), following 2 already

dry years in large parts of the country. These condi-

tions, driven partly by a strong positive Indian Ocean

Dipole from the middle of the year onwards and a large-

amplitude negative excursion of the Southern Annular Mode,

led to weather conditions conducive to bushfires across

the continent, and so the annual bushfires were more

widespread and intense and started earlier in the season

than usual (http://media.bom.gov.au/releases/739/annual-

climate-statement-2019-periods-of-extreme-heat-in, last ac-

cess: 6 March 2021). The bushfire activity across the states

of Queensland (QLD), New South Wales (NSW), Victo-

ria (VIC), South Australia (SA) and Western Australia (WA)

and in the Australian Capital Territory (ACT) was unprece-

dented in terms of the area burned in densely populated re-

gions.

In addition to the unprecedented nature of this event,

its impacts to date have been disastrous (https://reliefweb.

int/sites/reliefweb.int/files/resources/IBAUbf050220.pdf,

last access: 6 March 2021). There have been at least 34

fatalities as a direct result of the bushfires, and the resulting

smoke caused hazardous air quality, adversely affecting

millions of residents in cities in these regions. About

5900 buildings have been destroyed. There are estimates

that between 0.5 and 1.5 billion wild animals lost their lives,

along with tens of thousands of livestock. The bushfires are

having an economic impact (including substantial insurance

claims, e.g. https://www.perils.org/files/News/2020/Loss-

Annoucements/Australian-Bushfires/PERILS-Press-

Release-Australian-Bushfires-2019-20-17-, last access:

6 March 2021), as well an immediate and long-term health

impact on the people exposed to smoke and dealing with the

psychological impacts of the fires (Finlay et al., 2012).

It has at times been difficult for emergency services to

protect or evacuate some communities due to the pace at

which the bushfires have spread, sometimes forcing resi-

dents to flee to beaches and lakes to await rescue. Inter-

ruptions of the supply of power, fuel and food supplies

have been reported, and road closures have been com-

mon. This has resulted in total isolation of some com-

munities, or they have been only accessible by air or

sea when smoke conditions allow (https://reliefweb.int/sites/

reliefweb.int/files/resources/IBAUbf050220.pdf, last access:

6 March 2021).

It is well-established that wildfire smoke exposure is as-

sociated with respiratory morbidity (Reid et al., 2016). Ad-

ditionally, fine particulate matter in smoke may act as a trig-

gering factor for acute coronary events (such as heart-attack-

related deaths) as found for previous fires in southeastern

Australia (Haikerwal et al., 2015). As noted by Johnston and

Bowman (2014), increased bushfire-related risks in a warm-

ing climate have significant implications for the health sec-

tor, including measurable increases in illness, hospital admis-

sions and deaths associated with severe smoke events.

Based on the recovery of areas following previous major

fires, such as Black Saturday in Victoria in 2009, these im-

pacts are likely to affect people, ecosystems and the region

for a substantial period to come.

The satellite image in Fig. 1 shows the severity of the fires

between October, illustrating two regions with particularly

severe events in the southwest and southeast of the country.

We focus our analysis on the southeast of the country due to

the affected population centres and the concomitant drought

in this region. The grass fires in the non-forested areas have

completely different characteristics and are not considered

here.

Wildfires in general are one of the most complex weather-

related extreme events (Sanderson and Fisher, 2020) with

their occurrence depending on many factors including the

weather conditions conducive to fire at the time of the event

and also on the availability of fuel, which in turn depends

on rainfall, temperature and humidity in the weeks, months

and sometimes even years preceding the actual fire event.

In addition, ignition sources and type of vegetation play an

important role. The types of vegetation depend on the long-

term climatology but do not vary on the annual and shorter

timescales we consider, and the dry thunderstorms providing

a large fraction of the ignition sources are too small to anal-

yse with climate models. In this analysis we therefore only

consider the influence of weather and climate on the fire risk,

excluding ignition sources, types of vegetation and weather

caused by the fires such as pyrocumulonimbus development.

There is no unified definition of what fire weather consists

of, as the relative importance of different factors depends on

the climatology of the region. For instance, fires in grass-

lands in semi-arid regions behave very differently than those

in temperate forests. There are a few key meteorological vari-

ables that are important: temperature, precipitation, humidity

and wind (speed as well as direction). Fire danger indices

are derived from these variables either using physical models

or empirical relationships between these variables and fire

occurrence, including observed factors such as the rate of

spread of fires and measurements of fuel moisture content

with different sets of weather conditions.

Southeastern Australia experiences a temperate climate,

and on the eastern seaboard hot summers are interspersed

with intense rainfall events, often linked with “east-coast

lows” (Pepler et al., 2014). Bushfire activity historically com-

mences in the Austral spring (September–November) in the

north and summer (December–February) in the south (Clarke

et al., 2011). In Australia the Forest Fire Danger Index

Nat. Hazards Earth Syst. Sci., 21, 941–960, 2021 https://doi.org/10.5194/nhess-21-941-2021
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Figure 1. Moderate Resolution Imaging Spectroradiometer (MODIS) active fire data (Collection 6, near-real-time and standard products)

showing the severity of bushfires from 1 October 2019 to 10 January 2020 with the most severe fires being depicted in red. The image also

shows the forested areas in blue. The polygon shows the area analysed in this article.

(FFDI, McArthur, 1966, 1967; Noble et al., 1980) is com-

monly used for indicating dangerous weather conditions for

bushfires, including for issuing operational forecasts during

the 2019/20 summer. The index is based on temperature, hu-

midity and wind speed on a given day as well as a drought

factor, which is based on antecedent temperature and rainfall.

Bushfire weather risk, as characterized by the FFDI, has

increased across much of Australia in recent decades (Clarke

et al., 2013; Dowdy, 2018; Harris and Lucas, 2019). Simi-

lar, increasing trends in fire weather conditions over south-

ern Australia have been identified in other studies, both for

the FFDI (e.g. Dowdy, 2018) and for indices representing py-

roconvective processes (Dowdy and Pepler, 2018). These ob-

served trends over southeastern Australia are broadly consis-

tent with the projected impacts of climate change (e.g. Clarke

et al., 2011; Dowdy et al., 2019). For individual fire events,

studies have shown that it can be difficult to separate the in-

fluence of anthropogenic climate change from that of natural

variability (e.g. Hope et al., 2019; Lewis et al., 2020).

An alternative index is the physically based Canadian Fire

Weather Index (FWI) that also includes the influence of wind

on the fuel availability (Dowdy, 2018). The latter is achieved

by modelling fuel moisture on three different depths includ-

ing the influence of humidity and wind speed on the upper

fuel layer (Krikken et al., 2019). While the FWI was orig-

inally developed specifically for the Canadian forests, the

physical basis of the models allows it to be used for many

different climatic regions of the world (e.g. Camia and Amat-

ulli, 2009; Dimitrakopoulos et al., 2011) and has been shown

to provide a good indication of the occurrence of previous

extreme fire events in the southeastern Australian climate

(Dowdy et al., 2009). A study on the emergence of the fire

weather anthropogenic signal from noise indicated that this

is expected around 2040 for southern Australia (Abatzoglou

et al., 2019) using the FWI. In this study we also consider

the monthly severity rating (MSR), which is derived from

the FWI and better reflects how difficult a fire is to suppress

(Shabbar et al., 2011). A more detailed analysis of the FWI

in the context of bushfires in southeastern Australia is given

in Sect. 2.1.

As the fire risk indices depend on heat and drought and

these were also extreme in 2019/20, we also consider these

factors separately. Previous attribution studies on Australian

extreme heat at regional scales have generally indicated an

influence from anthropogenic climate change. The “Angry

Summer” of 2012/13 – which until 2018/19 was the hottest

summer on record – was found to be at least 5 times more

likely to occur due to human influence (Lewis and Karoly,

2013). The frequency and intensity of heatwaves during this

summer were also found to increase (Perkins et al., 2014).

Other attribution assessments that found an attributable influ-

ence on extreme Australian heat include the May 2014 heat-

wave (Perkins and Gibson, 2015), the record October heat

in 2015 (Hope et al., 2016) and extreme Brisbane heat dur-

ing November 2014 (King et al., 2015a). However, at small

spatial scales, human influence on extreme heat is sometimes

less clear, as in Melbourne in January 2014 (Black et al.,

2015). It is worth noting that Lewis et al. (2020) found that

the temperature component of the extreme 2018 Queensland

fire weather had an anthropogenic influence, while no clear

https://doi.org/10.5194/nhess-21-941-2021 Nat. Hazards Earth Syst. Sci., 21, 941–960, 2021
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influence was detected on the February 2017 extreme fire

weather over eastern Australia (Hope et al., 2019). We are

not aware of any extreme event attribution studies on Aus-

tralian drought.

Thus, while it is clear that climate change does play an im-

portant role in heat and fire weather risk overall, assessing the

magnitude of this risk and the interplay with local factors has

been difficult. Nevertheless it is crucial to prioritize adapta-

tion and resilience measures to reduce the potential impacts

of rising risks.

We perform the analysis of possible connections between

the fire weather risk and anthropogenic climate change in

three steps. First, we assess the trends in extreme temperature

and conduct an attribution study using the annual maximum

of the 7 d moving average of daily maximum temperatures

corresponding to the timescale chosen for the FWI (Sect. 3).

Second, we undertake the same analysis but for meteorolog-

ical drought (i.e. defined purely as a lack of rainfall) in two

time windows, the annual precipitation as well as the driest

month within the fire season, which is September–February

in our study area (Sect. 4). The latter again roughly corre-

sponds to the timescale on which precipitation deficits factor

into the FWI, namely 52 d. Third, and most importantly, we

conduct an attribution study on the FWI and MSR as indices

of the probability of bushfires due to the weather (Sect. 5).

These three attribution studies follow the same protocol used

in previous assessments: heat waves in Kew et al. (2019), low

precipitation in Otto et al. (2018b), and the Fire Weather In-

dex in Krikken et al. (2019). The full and generalized event

attribution protocol has recently been documented in Philip

et al. (2020). In order to condense the lengthy analysis, we

provide short overviews of the heat and drought analysis in

the main paper, with extensive results in the Supplement,

and focus primarily on the FWI and MSR analysis. We also

provide a short analysis and discussion of other large-scale

drivers that were of potential importance during 2019/20,

such as El Niño–Southern Oscillation (ENSO), the Indian

Ocean Dipole (IOD) or the Southern Annular Mode (SAM),

in Sect. 6 with a detailed analysis in Sect. S3. Finally, we

briefly discuss non-climate factors, such as exposure and vul-

nerability, that have contributed to the impacts of the extreme

fire season of 2019/20.

2 Data and methods

2.1 General event definition

Since we are investigating several different indicator or driver

variables of fire risk, different event definitions are devel-

oped for different variables. The details of those definitions

are given at the beginning of the respective sections on tem-

perature, precipitation and fire weather indices (Sects. 3–5).

General parameters of the event definition are given here.

The fire season (September–February) serves as the gen-

eral event time window, and the region with the most intense

fires in 2019/20 in southeastern Australia serves as the gen-

eral event spatial domain; specifically this is the land area in

the polygon 29◦ S, 155◦ E; 29◦ S, 150◦ E; 40◦ S, 144◦ E; and

40◦ S, 155◦ E (as shown in Fig. 1), which corresponds to the

area between the Great Dividing Range and the coast.

The primary way we investigate the connection between

anthropogenic climate change and the likelihood and inten-

sity of dangerous bushfire conditions is through the FWI. The

FWI provides a reasonable proxy for the burned area in the

extended summer months, with the strongest relationship ob-

served from November to February. Figure 2 shows both the

Spearman rank correlation and the Pearson correlation of the

FWI with log-transformed burned area. The 95 % confidence

intervals are also shown. Given the similarity in the correla-

tion coefficients (r) within their confidence intervals, the log-

linear relationship appears to explain equal variability (r2) to

that of the ranks.

To capture spatial variations in the start of the fire season

at a given location within the event domain, we take for most

quantities first the maximum per grid point over the fire sea-

son (September–February) and next the spatial average over

the general event domain. This way the events do not need to

be simultaneous at separate grid points within the region. We

therefore investigate the question how anthropogenic climate

change influences the chances of an intense bushfire season,

rather than focusing on a single episode of intense bushfires.

In most years only very small areas are burned, but the ob-

servational record also includes events with extremely large

areas. Given this, we checked if the burned-area observations

were heavy-tailed (Pasquale, 2013). We found that monthly

burned area was not Pareto distributed and instead is reason-

ably approximated using a log-normal distribution. This sup-

ports using the log transformation and extrapolating this re-

lationship to the 2019/20 fire season. Temporal detrending of

the observations did not alter these conclusions.

2.2 Observational data

The observational data used in this study are described in

Sects. S1 and S2 in the Supplement and 5.3 for heat, drought

and the Fire Weather Index, respectively, including justifi-

cations for including or excluding certain datasets for cer-

tain research questions. For the global mean surface tempera-

ture (GMST) we use GISTEMP (Goddard Institute for Space

Studies Surface Temperature Analysis) surface temperature

(Hansen et al., 2010).

2.3 Model and experiment descriptions

Attributing observed trends to anthropogenic climate change

can only be done with physical climate models, as they

allow for isolating different drivers. For this purpose we

included as large a set of ocean–atmosphere coupled and

Nat. Hazards Earth Syst. Sci., 21, 941–960, 2021 https://doi.org/10.5194/nhess-21-941-2021
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Figure 2. (a) Correlation between the logarithm of area burned (10 log(km2), MODIS Collection 6) in the event domain and the 7 d maximum

Fire Weather Index for each month of the year. The correlations are based on the years 1997 to 2018, and the 95 % two-sided confidence

interval is based on bootstrapping those years. The horizontal line denotes the 5 % significance critical value for a one-sided test of the null

hypothesis that the correlation is zero against the alternative hypothesis that the correlation is positive. (b) Scatterplot and regression line of

the values for each month of the fire season (September–February). The grey lines denote the regression lines for the individual months; the

green line is for all months in the fire season.

atmosphere-only (i.e. sea surface temperature (SST) pre-

scribed) climate model ensembles as we could find within

the time constraints of this study in order to obtain estimates

of both the uncertainty due to natural variability and the

model uncertainty. A selection of large ensembles of climate

models from the Coupled Model Intercomparison Project

Phase 5 (CMIP5) has been used: CanESM2 (Canadian Earth

System Model), CESM1-CAM5 (Community Earth System

Model–Community Atmosphere Model), CSIRO Mk3.6.0

(Commonwealth Scientific and Industrial Research Organ-

isation), EC-Earth 2.3 (European community earth system

model), GFDL CM3 (Geophysical Fluid Dynamics Labo-

ratory Climate Model), GFDL ESM2M (GFDL Earth Sys-

tem Model 2) and MPI-ESM (Max Planck Institute for Me-

teorology Earth System Model). In addition, the HadGem3-

A N216 (Hadley Centre Global Environment Model) attribu-

tion model developed in the EUropean CLimate and weather

Events: Interpretation and Attribution (EUCLEIA) project,

the weather@home (HadAM3P, Hadley Centre atmosphere

model) distributed attribution project model, and the ASF-

20C (Atmospheric Seasonal Forecasts of the 20th Century)

seasonal hindcast ensemble have been used. These last three

models are uncoupled and forced with observed histori-

cal SSTs and estimates of SSTs, as they might have been

in a counterfactual world without anthropogenic climate

change. Finally, we used the coupled IPSL-CM6A-LR (In-

stitut Pierre-Simon Laplace Climate Model) low-resolution

CMIP6 ensemble. The GFDL-CM3 and MPI-ESM models

that did not have daily data were not used for the extreme-

heat analysis. A list of these climate models and their proper-

ties is given in Table 1. For the FWI analysis, which requires

daily data of relative humidity (RH), temperature, precipita-

tion and wind speed, the list of models used is shortened to

CanESM2, CESM1-CAM5, EC-Earth, IPSL-CM6A-LR and

weather@home.

2.4 Statistical methods

The methods employed in this analysis have been used pre-

viously for high and low temperatures (van Oldenborgh

et al., 2015; King et al., 2015b; van Oldenborgh et al., 2018;

Philip et al., 2018a; Kew et al., 2019), extreme precipita-

tion (Schaller et al., 2014; Siswanto et al., 2015; Vautard

et al., 2015; Eden et al., 2016; van Oldenborgh et al., 2016;

van der Wiel et al., 2017; van Oldenborgh et al., 2017; Eden

et al., 2018; Otto et al., 2018a; Philip et al., 2018b), drought

(King et al., 2016; Martins et al., 2018; Otto et al., 2018b;

Philip et al., 2018c; Uhe et al., 2018) and forest fire weather

(Krikken et al., 2019). A paper describing the methods in de-

tail was recently published as Philip et al. (2020).

Changes in the frequency of extreme events are calculated

by fitting the data to a statistical distribution. In this study

the highest temperature extremes and fire-risk-related vari-

ables (FWI and MSR) of the fire season are assumed to fol-

low a generalized extreme value (GEV) distribution, which is

the distribution that block maxima converge to Coles (2001).

While our event definition is not exactly block maxima, the

GEV fits the data well (see below for more details). The low

values of annual mean precipitation and lowest monthly pre-

cipitation of the fire season are fitted using a generalized

Pareto distribution (GPD), which describes the exceedance

below a low threshold and also allows for the specification of

https://doi.org/10.5194/nhess-21-941-2021 Nat. Hazards Earth Syst. Sci., 21, 941–960, 2021
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Table 1. List of climate model ensembles used.

Name Context Resolution Members Time Reference

ASF-20C seasonal hindcasts T255L91 (0.71◦) 51 1901–2010 Weisheimer et al. (2017)

CanESM2 CMIP5 2.8◦ 50 1950–2099 Kirchmeier-Young et al. (2017)

CESM1-CAM5 CMIP5 1◦ 40 1920–2100 Kay et al. (2015)

CSIRO-Mk3-6-0 CMIP5 1.9◦ 30 1850–2100 Jeffrey et al. (2013)

EC-Earth CMIP5 T159 (1.1◦) 16 1860–2100 Hazeleger et al. (2010)

GFDL-CM3 CMIP5 2.0◦ 20 1920–2100 Sun et al. (2018)

GFDL-ESM2M CMIP5 2.0◦ 30 1950–2100 Rodgers et al. (2015)

HadGEM3-A attribution N216 (0.6◦) 15 1960–2015 Ciavarella et al. (2018)

IPSL-CM6A-LR CMIP6 2.5 × 1.5◦ 32 1950–2019 Boucher et al. (2020)

MPI-ESM CMIP5 1.9◦ 100 1850–2099 Maher et al. (2019)

weather@home attribution N96 (1.8◦) 1520 × 2 1987–2017 Guillod et al. (2017)

a threshold that ensures the PDF (probability density func-

tion) is zero for negative precipitation.

The GEV distribution is

P(x) = exp

[

−
(

1 + ξ
x − µ

σ

)−1/ξ
]

, (1)

where x the variable of interest, e.g. temperature or precipi-

tation. Here, µ is the location parameter; σ > 0 is the scale

parameter; and ξ is the shape parameter. The shape parame-

ter determines the tail behaviour: a negative shape parameter

gives an upper bound to the distribution, for ξ ≥ 1 the tall

is so fat that the mean is infinite. The scale parameter corre-

sponds to the variability in the tail.

The GPD gives a two-parameter description of the tail of

the distribution above a threshold, where the low tail of pre-

cipitation is first converted to a high tail by multiplying the

variable by −1. The GPD is then described by

H(u − x) = 1 −
(

1 −
ξx

σ

)(−1/ξ)

, (2)

with x being the temperature or precipitation, u being the

threshold, σ being the scale parameter, and ξ being the shape

parameter determining the tail behaviour. For the low ex-

tremes of precipitation, the fit is constrained to have zero

probability below zero precipitation (ξ < 0, σ < uξ ). Calcu-

lations were conducted on the lowest 20 % and 30 % of the

data, which provide a first-order estimate of the influence of

using more or less extreme events. We cannot use less data,

as the maximizations of the likelihood function do not con-

verge anymore, and using more than 30 % would not qualify

as the “lower tail”.

Drought (or low precipitation) is particularly difficult to

model using the existing extreme value framework (Cooley

et al., 2019). While minima can be modelled by multiplying

by −1 (Coles, 2001), the applicability of the underlying ex-

treme value theory assumptions still needs to be validated. In

the case of low precipitation, year-on-year autocorrelations

are a concern. In southeastern Australia, these serial auto-

correlations are approximately r ≈ 0.2, so although they are

non-zero, they do not dominate the drought characteristics.

Despite these theoretical limitations, in practice the diagnos-

tic plots show that the generalized Pareto models are able

to describe the data reasonably well. In particular, they re-

spect that precipitation is non-negative. In general this is a

difficult problem, and the statistical extremes community is

developing solutions necessary for modelling drought events

(Naveau et al., 2016).

To calculate a trend in transient data, some parameters

in these statistical models are made a function of the 4-

year smoothed global mean surface temperature (GMST)

anomaly T ′. This smoothing is the shortest that on the one

hand reduces the ENSO component of GMST, which is not

externally forced and therefore not relevant for the trend, but

on the other hand it retains as much of the forced variabil-

ity as possible (Haustein et al., 2019). A longer smoothing

timescale would create problems with extrapolation in the

highly relevant last few years of the instrumental record. The

covariate-dependent function can be inverted and the dis-

tribution evaluated for a given year, e.g. a year in the past

(with T ′ = T ′
0) or the current year (T ′ = T ′

1). This provides

estimates and confidence intervals of the probabilities for an

event at least as extreme as the observed one in these 2 years,

p0 and p1, or expressed as return periods τ0 = 1/p0 and

τ1 = 1/p1. The change in probability between 2 such years

is called the probability ratio (PR): PR = p1/p0 = τ0/τ1. We

also estimate the changes in intensity (including uncertain-

ties): 1T for temperature, 1P for drought and 1FWI.

For extreme temperature we assume that the distribution

shifts with GMST as µ = µ0 + αT ′ or u = u0 + αT ′ and

σ = σ0 with α denoting the trend, which is fitted together

with µ0 and σ0. The shape parameter ξ is assumed constant.

For drought and FWI-related variables we instead make the

assumption that the distribution scales with GMST, the scal-

ing approximation (Tebaldi and Arblaster, 2014). In a GEV

fit this gives

µ = µ0 exp
(

αT ′/µ0

)

,

σ = σ0 exp
(

αT ′/µ0

)

, (3)
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and in a GPD fit, it is

u = u0 exp
(

αT ′/u0

)

,

σ = σ0 exp
(

αT ′/µ0

)

,

with fit parameters σ0, α and ξ . The threshold u0 is deter-

mined with an iterative procedure, and the shape parameter ξ

is again assumed constant. The exponential dependence on

the covariate is in this case just a convenient way to ensure a

distribution that is zero for negative precipitation and has no

theoretical justification. For the small trends in this analysis

it is similar to a linear dependence.

The validity of the other assumption, that the scale param-

eter or dispersion parameter are constant, is tested by compu-

tation of the significance of deviation of a constant of running

(relative) variability plots of the observations and model data

(Philip et al., 2020). The analysis of model data is more sen-

sitive to variations of these parameters over time due to the

large number of ensemble members but of course assumes

the effect of external forcing on the variability is modelled

correctly.

For all fits we also estimate 95 % uncertainty ranges using

a non-parametric bootstrap procedure, in which 1000 derived

time series, generated from the original one by selecting ran-

dom data points with replacement, are analysed in exactly the

same way. The 2.5th and 97.5th percentile of the 1000 output

parameters (defined as 100i/1001 with i being the rank) are

taken as the 95 % uncertainty range. For some models with

prescribed SSTs or initial conditions (in the case of the sea-

sonal forecast ensemble) the ensemble members are found to

not be statistically independent, defined here by a correlation

coefficient r > 1/e with e ≈ 2.7182. In those cases the same

procedure is followed except that all dependent time series

are entered together in the bootstrapped sample, analogous

to the method recommended in Coles (2001) to account for

temporal dependencies.

When using a GEV to model tail behaviour, note that tak-

ing the spatial average of the annual maxima does not have

the same statistical justification as taking the annual max-

imum of the spatial average (Coles, 2001). Given this, the

impact of the order of operations in the event definition was

examined. For the temperature extremes, we compared the

time series where we first take the annual maximum and next

the spatial average to the definition with the order reversed,

which can be approximated with a GEV. The Pearson corre-

lation was r = 0.95, which is likely due to strong spatial de-

pendence and the concentration of heatwaves at the peak of

the seasonal cycle. Therefore, in practice, an approximation

with a GEV is not entirely unsuitable for temperature, but

caution should be exercised. For the FWI and MSR, the order

of operations does make a clear difference. Indeed, we find

that the whole distribution is not described well by a GEV

for one climate model used (CanESM2). For that model we

take block maxima over five ensemble member blocks, effec-

tively looking only at the most extreme events. For this part

of the distribution the GEV fit agrees with the data points in

the return time plot, as expected from taking block maxima.

We evaluate all climate models on the fitting parameters

by determining whether the model-derived parameters fall

within the uncertainty range of observation-derived parame-

ters. We allow for a mean bias correction; i.e. we only check

the scale and shape parameters σ and ξ . Model biases are ac-

counted for by evaluating the model at the same return time

as the value found in the observational analysis. This was

found to give better results than applying an additive or mul-

tiplicative bias correction to the position parameter µ, as it

also corrects to first order for biases in the other parameters,

especially when the distribution has an upper or lower bound

(ξ < 0), which is the case in all the cases here.

Finally, estimates of the PR and change in observations

and all climate models that pass the evaluation test are com-

bined to give a synthesized attribution statement. First, the

observations and reanalyses were combined by averaging the

best estimate and lower and upper bounds, as the natural vari-

ability is strongly correlated, as they are largely based on the

same observations (except for the long reanalyses). The dif-

ference is added as representation uncertainty (white exten-

sions on light-blue bars in Figs. S6, S12, S13 and 6).

Second, the model results were combined by computing

a weighted average (using inverse model total variances), as

the natural variability in the models, in contrast to the obser-

vations, is uncorrelated:

X =
∑

i

Xi/σ
2
Xi

/

∑

1/σ 2
Xi

, (4)

with σXi
being the estimated uncertainty in model i and Xi

being either the temperature or the logarithm of precipitation,

FWI or MSR. The sums are over the Nmod models. Using this

we can compare the spread expected from the natural vari-

ability with the observed spread of the model results using

χ2 statistics:

χ2 =
∑

i

(

Xi − Xi

)

/

σXi
. (5)

If χ2/dof ≤ 1, with dof being the number of degrees of free-

dom, here N − 1, the spread of the results is compatible

with the uncertainty estimated from the fits due to variabil-

ity within the climate model, and the results can be taken

to be independent estimates of X and the weighted average

used. However, if χ2/dof > 1 the model spread is larger than

expected from variability due to sampling of weather noise

alone, so a model spread term was added to each model in ad-

dition to the weighted average (white extensions on the light-

red bars, Figs. S5 and S6) to account for systematic model

errors. This term is defined by requiring that χ2/dof = 1.

The total uncertainty of the models is shown as a bright-

red bar in these figures. This total uncertainty consists of a

weighted mean using the uncorrelated natural variability plus

an independent model spread term added to the uncertainty
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if χ2/dof > 1, which we do not divide by
√

N − 1; i.e. we

do not assume that by adding more models to the ensemble

the model uncertainty decreases. This procedure is similar to

the one employed by Ribes et al. (2020).

Finally, observations and models are synthesized into a

single mean and uncertainty range. This can only be done

when they appear to be compatible. We show two combi-

nations. The first one is computed by neglecting model un-

certainties beyond the model spread. The optimal combina-

tion is then the weighted average of models and observations,

shown as a magenta bar. However, the total model uncer-

tainty is unknown and can be larger than the model spread.

We therefore also show the more conservative estimate of an

unweighted average of observations and models with a white

box in the synthesis plots.

3 Extreme heat

The key takeaways from the attribution analysis of trends in

extreme heat are summarized here, while the details are given

in Sect. S1.

Taking advantage of the longer observational record for

temperature than for other variables, we analyse the highest

7 d mean maximum temperatures of the year (TX7x), aver-

aged over the event domain (Fig. 1), from 1910 (the begin-

ning of standardized temperature observations) to 2019.

Observations show that a heatwave as rare as observed

in 2019/20 would have been 1 to 2 ◦C cooler at the beginning

of the 20th century (Fig. S6). Similarly, a heatwave of this

intensity would have been less likely by a factor of about 10

in the climate around 1900 (Fig. S6). While climate mod-

els consistently simulate increasing temperature trends over

this time period, they all have some limitations for simulating

heat extremes: the variability of 7 d mean maximum temper-

ature is generally too high, and the long-term trend is only

1 ◦C (Figs. S5 and S6). We can therefore only conclude that

anthropogenic climate change has made a hot week like the

one in December 2019 more likely by at least a factor of 2 but

cannot give a best estimate or upper bound due to the model

deficiencies limiting our confidence in the exact magnitude

of the anthropogenic influence.

The reasons for the apparent model deficiencies in simu-

lating trends and variability in extreme temperatures are not

fully understood. In Sect. S3 we show that the temperature

variability explained by the Indian Ocean Dipole (IOD) and

Southern Annual Mode (SAM) is too small to explain these

mismatches as problems in the model representation of these

modes of variability. The literature suggests that shortcom-

ings in the coupling to land and vegetation (e.g. Fischer et al.,

2007; Kala et al., 2016) and in parametrization of irrigation

(e.g. Thiery et al., 2017; Mathur and AchutaRao, 2019) in the

exchange of heat and moisture with the atmosphere and also

in the representation of the boundary layers (e.g. Miralles

et al., 2014) are more likely to be the cause of the problems.

Given the larger trend in observations than in the models we

suspect that climate models underestimate the trend in ex-

treme temperatures due to climate change, although in prin-

ciple the difference could also be due to a non-climatic driver

that affects the trend in observations. The combination of a

weaker trend and higher variability in models compared to

observations yields an increase in the likelihood of such an

event that is much higher in observations than in models.

4 Meteorological drought

The key takeaways from the attribution analysis of trends

in low precipitation are summarized here, while the details

are given in Sect. S2. The conclusions below are shown in

Fig. S12 for annual mean drought, and those in Fig. S13 are

for the driest month of the year.

Observations show non-significant trends towards more

dry extremes like the record 2019 annual mean and a non-

significant trend towards fewer dry months like Decem-

ber 2019 in the fire season (Figs. S12 and S13). All 10 cli-

mate models we considered simulate the statistical proper-

ties of the observations well (Figs. S10 and S11). Collec-

tively they show trends neither in dry extremes of annual

mean precipitation nor in the driest month of the fire sea-

son (September–February). We conclude that there is no ev-

idence for an attributable trend in either kind of meteorolog-

ical drought extremes like the ones observed in 2019.

5 Fire risk indices

5.1 The fire weather of 2019/20

As discussed in the introduction, the fire risk as described

by fire weather indices was extreme in the study domain in

the 2019/20 fire season. The domain was chosen to encom-

pass these fires, and therefore the 2019/20 event cannot be

included in the statistical analysis.

5.2 Temporal event definition

We choose two event definitions in order to represent two

important aspects of the event, namely the intensity and the

duration. For intensity, we first select the maximum FWI

of a 7 d moving average over the fire season (September–

February) for every grid point over the study region, after

which we compute the spatial average, hereafter FWI7x-SM

(seasonal maximum). The 7 d timescale was chosen based on

a good correlation with the area burned (see Fig. 2) and good

correspondence with area burned in other forest fire attribu-

tions studies (Krikken et al., 2019).

For duration, we consider the monthly severity rat-

ing (MSR). The MSR is the monthly averaged value of the

daily severity rating (DSR), which in turn is a transforma-

tion of the FWI (DSR = 0.0272FWI1.71). The DSR reflects
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better how difficult a fire is to suppress, while the MSR

is a common metric for assessing fire weather on monthly

timescales (Van Wagner, 1970). For this study, we select the

maximum value of the MSR during the fire season over the

study area (MSR-SM). In contrast to the FWI7x-SM, we

first apply a spatial average of the study area and then se-

lect the maximum value per fire season. This event defini-

tion focuses more on changes in extreme fire weather for

longer timescales and larger integrated areas than FWI7x-

SM. Note that neither of the two event definitions includes

ignition sources or small-scale meteorological factors such

as pyrocumulonimbus development that could enhance the

fires.

5.3 Observational analysis: return time and trend

For the observational analysis we use the fifth-generation

European Centre for Medium-Range Weather Fore-

casts (ECMWF) Atmospheric Reanalysis (ERA5) dataset

for 1979–January 2020 (Hersbach et al., 2019). This reanal-

ysis dataset is heavily constrained by observations and thus

provides one of the best estimates of the actual state of the

atmosphere for all the variables needed to compute the FWI

over the study area. Other reanalyses did not yet include the

full 2019/20 event at the time of the analysis.

Figure 3 shows the time series of the highest 7 d mean FWI

averaged over the study area. Both for the FWI7x-SM and

MSR-SM the event is the highest over the 1979–2020 time

period. Note that for the MSR-SM, the value is considerably

more extreme than for the FWI7x-SM. The GEV fits (Fig. 3,

right) illustrate this further, with return times in excess of

1000 years.

A fit allowing for scaling with the smoothed GMST gives

a significant trend in the FWI7x-SM (Fig. 4). This fit gives

a return time for the 2019/20 fire season of about 31 years

(4 to 500 year) in the current climate and more than 800 years

extrapolated to the climate of 1900. This corresponds to an

infinite PR, with a lower bound of 4. The return time for the

MSR-SM is undefined and is thus estimated to be 100 years.

For the climate model analysis we thus use return times of

31 years for the FWI7x-SM and 100 years for the MSR-SM

to determine the event thresholds in individual climate mod-

els.

5.4 Model evaluation

We use four climate models with large ensembles, leaving

out CESM1-CAM5 because of its failure to represent heat

extremes (see Sect. 3). This is fewer than for the drought

and heat analysis because the FWI requires four daily in-

put variables, which are not available for all models. In con-

trast to the heat extremes and drought analyses, the fits to

the model output use as covariate the model GMST. We also

define our reference climates using GMST rather than years.

The years at which the climate is evaluated are taken from

the 1.1 ◦C temperature increase for the present-day climate

and the 2 ◦C increase for the future reference climate and

not 2019 and 2060. As the fits are invariant under a scaling

of the covariate, this does not make much difference.

First the models are evaluated on how well they represent

the extremes of the FWI7x-SM and MSR-SM. This is quanti-

fied by the dispersion parameter σ/µ and shape parameter ξ

of the GEV fit for the present-day climate. We do not check

the position parameter µ, assuming a multiplicative bias cor-

rection can be applied.

Figure 5 gives an overview of these parameters. Prefer-

ably, we would like the parameters to lie within the obser-

vational uncertainty of ERA5. For the dispersion parameter

CanESM2 and weather@home fall within the observational

uncertainty of the FWI. The other two models (EC-Earth and

IPSL CM6) show too much variability relative to the mean.

The same holds for the shape parameter. This implies that it

is difficult to draw strong conclusions from the model data,

given that they do not accurately represent the extremes of

the FWI7x-SM. In particular, the models with too much vari-

ability will underestimate the probability ratios. We continue

with all four models but keep these problems in mind.

The MSR is simulated better: all model dispersion and

shape parameters lie within the large observational uncertain-

ties, although they largely disagree with one another on the

dispersion parameter.

5.5 Multi-model attribution and synthesis

The model results are summarized by their PR, i.e. how more

or less likely such an event will be for present or future cli-

mate, relative to the early 20th century.

Figures 6 and 7 show the change in probability for both

the FWI7x-SM and the MSR-SM from 1920 to 2019 (denot-

ing the 2019/20 fire season). For the FWI7x-SM, all mod-

els agree on an increased probability for such an event in the

present climate relative to the early 20th century, although the

trend is not significant at p < 0.05 (two-sided) for one of the

models, CanESM2. As the spread of the models is compati-

ble with natural variability (χ2/dof < 1), we take a weighted

average across the models to synthesize them (Fig. 6). This

shows that such an event has become about 80 % more likely

in the models, with a lower bound of 30 %. Note that all

models severely underestimate the increased risk compared

to ERA5, which has a lower bound of the PR of a factor

of 4 relative to 1920 (extrapolated), above the upper end of

the model average. Note that the ERA5 value is probably bi-

ased high, as the positive contribution of trend towards a drier

climate over 1979–2019 is not present over 1900–2019; see

Sects. S2 and 5.6.

For a future climate of 2 ◦C warming above pre-industrial

levels we find that such events become about 8 times more

likely in the models, with a lower bound of about 4 times

more likely. Note that the estimate of future climate is only
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Figure 3. (a, c) Time series with the 10-year running mean of the area average of the highest 7 d mean Fire Weather Index in September–

February (a) and maximum of the monthly severity rating in September–February (c). (b, d) Stationary GEV fit to these data; the dots

represent the ordered years, and the grey bands represent the 95 % uncertainty ranges.

based on two climate models, CanESM2 and EC-Earth, due

to the absence of future data for the others.

For the MSR-SM the models on average show about a

doubling of probability for the present climate relative to the

early 20th century (Fig. 7). However, this trend is not signif-

icant, as the lower bound is 0.8; i.e. a decreased probability

is also possible within the two-sided 95 % uncertainty range.

In the fit to the ERA5 data we include 2019, as otherwise

the probability of the event occurring in the current climate

would be zero, contrary to the fact that it did occur. This fit

shows much higher probability ratios, with a lower bound

of a factor of 9. As there is no overlap with the model re-

sults we cannot combine the model and observational results

but only give a conservative lower bound as an observation–

model synthesis result. For a future climate relative to the cli-

mate of the early 20th century the models show an increase

in probability of about 4 times, with a lower bound of 2.

5.6 Interpretation

The underestimation of the observed trend in fire weather in-

dices in all models and the tendency for too much variability

in some models is reminiscent of the extreme-temperature

results in Sects. 3 and S1.

In order to better understand which input variables cause

the long-term increase in the FWI7x-SM and thus the con-

tribution to the 2019/20 FWI7x-SM value, we study the in-

put variables to the FWI7x-SM separately for each model as

well as observations. For precipitation we use the cumulative

precipitation (90 d) prior to each FWI7x-SM value. We cal-

culate the change from the early 20th century to the present

day in each input variable to estimate its long-term change,

which we then subtract from that variable’s observed value

in 2019/20. We then recalculate the FWI7x-SM but use each

detrended individual input variables in turn. Each of these

newly calculated FWI7x-SM values thus illustrates the in-

fluence of the long-term trend in a particular input variable

onto the observed 2019/20 FWI7x-SM value. This proce-

dure is applied to models and ERA5. In the models, the en-

semble mean change is used to estimate an individual vari-

able’s long-term trend, whereas in ERA5 a regression of

each variable onto GMST is used to estimate its value in

the early 20th century. The results of this analysis for the

2019/20 FWI7x-SM value are shown in Fig. 9.
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Figure 4. Fit of a GEV that scales with the smoothed GMST (Eqs. 1

and 3) of the highest 7 d mean FWI computed from the ERA5 re-

analysis, averaged over the index region. (a) Observations (blue

symbols), location parameter µ (thick line and uncertainties in 1900

(extrapolated) and 2019/20), and the 6 and 40 year return values

(thin lines). The purple square denotes the 2019/20 value, which is

not included in the fit. (b) Return time plot with fits for the climates

of 1900 (blue lines with 95 % confidence interval) and 2019 (red

lines); the purple line denotes the 2019/20 event. The observations

are plotted twice, shifted down to the climate of 1900 (blue stars)

and up to the climate of 2019 (red pluses) using the fitted depen-

dence on smoothed global mean temperature so that they can be

compared with the fits for those years.

The sum of the contributions from individual input vari-

ables to the 2019/20 FWI7x-SM anomaly match the effect

of changing all variables at the same time, so they can be

considered linearly additive (Fig. 9). The underestimation of

the extreme-temperature trends in the climate models carries

over into this analysis such that the temperature contribu-

tion to the observed 2019/20 value is underestimated. De-

spite this underestimation, temperature emerges as the most

important variable in EC-Earth and weather@home, as it ex-

plains roughly half of the increase in the FWI. For IPSL, the

simulated temperature increase explains about a third of the

FWI7x-SM increase, together with wind and RH. CanESM2

behaves differently, where it is mainly the decrease of RH

that explains the higher FWI7x-SM. Most but not all models

analysed here therefore derive the increase in the FWI7x-SM

largely from the increase in temperature extremes.

In ERA5 the increase in temperature also appears to be

the most important explanatory variable, followed by a de-

crease in RH and precipitation. As we did not find a signif-

icant trend in precipitation over longer time periods, we hy-

pothesize this trend to be due to natural variability over the

short 1979–2018 period in ERA5. We explicitly verified that

the dependence of the FWI7x-SM on temperature is almost

linear in a range of ±5 K around the reanalysis value (not

shown). Further, volumetric soil water (Fig. 8) at multiple

soil layers from ERA5 suggests that, despite the soil already

being very dry in 2018 and into 2019, the 2019/20 austral

spring–summer drought caused a further drying of the soil in

the study area. This suggests that the drought of late 2019 and

high temperatures did indeed cause an additional increase in

fire risk over preceding years.

5.7 Conclusions fire risk indices

The FWI7x-SM as computed from the ERA5 reanalysis as an

approximation to the real world shows that the 2019/20 val-

ues were exceptional. They have a significant trend towards

higher fire weather risk since 1979. Compared with the cli-

mate of 1900, the probability of an FWI7x-SM as high as

in 2019/20 has increased by more than a factor of 4. For the

MSR-SM the probability has increased by more than a factor

of 9.

The four climate models investigated show that the prob-

ability of a Fire Weather Index this high has increased by at

least 30 % since 1900 as a result of anthropogenic climate

change. As the trend in extreme temperature is a driving fac-

tor behind this increase and the climate models underestimate

the observed trend in extreme temperature, the attributable

increase in fire risk could be much higher. This is also re-

flected by a larger trend in the FWI7x-SM in the reanaly-

sis compared to models. The MSR-SM increased by a factor

of 2 in the models since 1900, although this increase is not

significantly different from zero. As with FWI7x-SM, the at-

tributable increase is likely higher due to the model under-

estimation of temperature trends and overestimation of vari-

ability in the TX7x.

Projected into the future, the models project that an

FWI7x-SM as high as in 2019/20 would become at least

4 times more likely with a 2 ◦C temperature rise, compared

with 1900. Due to the model limitations described above this

could also be an underestimate.

6 Other drivers

The attribution statements presented in this paper are for

events defined as meeting or exceeding the threshold set

by the 2019/20 fire season and thus assessing the overall

effect of human-induced climate change on these kinds of

events. In individual years, however, large-scale climate sys-

tem drivers can have a higher influence on fire risk than the
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Figure 5. Model verification for the FWI (a, b) and MSR (b, c). The left figures show the dispersion parameter σ/µ, and the right figures

show the shape parameter ξ . The bars denote the 95 % uncertainty ranges.

Figure 6. (a) The PR for an FWI as high as observed in 2019/20

or higher: (a) from 1920/21 to 2019/20 and (b) from 1900 to a cli-

mate globally 2 ◦C warmer than 1920. The last row is the weighted

average of all models, the spread of which is consistent with only

natural variability. (b) Same for a 2 ◦C climate (GMST change from

the late 19th century).

trend. A detailed analysis of the influence of ENSO, the IOD

and SAM is presented in Sect. S3.

Besides the influence of anthropogenic climate change,

the particular 2019 event was made much more severe by

a record positive excursion of the Indian Ocean Dipole and

a very strong negative anomaly of the Southern Annular

Mode, which likely contributed substantially to the precip-

itation deficit. We did not find a connection of either mode to

heat extremes. More quantitative estimates will require fur-

ther analysis and dedicated model experiments, as the linear-

ity of the relationship between these indices and the regional

climate is not verifiable from observations alone.

Figure 7. As Fig. 6 but for the monthly severity rating (MSR).

Figure 8. ERA5 volumetric soil water from multiple levels. The

data represent the spatial average over the study area. Please note

that the date format in this figure is year month (yyyy-mm).
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Figure 9. Sensitivity analysis of the FWI7x-SM to changes in individual contributions from relative humidity (RH, wind, temperature and

precipitation). The relative increases or decreases for the individual variables of the climate models are based on the average change in input

variables between the climate of the present day and the early 20th century (values above bars). For ERA5 the changes are based on a linear

regression of the respective variable onto GMST for the years 1979 to 2018 and then extrapolated to the early 20th century. These changes

are subtracted from the 2019 ERA5 data, after which the FWI is recomputed, where 1FWI is the original FWI minus the altered FWI.

In the “all” experiment all input variables are changed simultaneously. “Sum” is the sum of all the individual changes in the FWI. W@H:

weather@home.

7 Vulnerability and exposure

At least 19.4 × 106 ha of land has burned as a result

of the Black Summer bushfires of 2019/20 (https://

disasterphilanthropy.org/disaster/2019-australian-wildfires/,

last access: 6 March 2021). This has resulted in 34 di-

rect deaths and the destruction of 5900 residential and

public structures (https://reliefweb.int/report/australia/

australia-bushfires-information-bulletin-no-4, last ac-

cess: 7 March 2021). Nearly 80 % of Australians re-

ported being impacted in some way by the bushfires

(https://theconversation.com/nearly-80-of-australians-

affected-in-some-way-by-the-, last access: 7 March 2021).

In Sydney, Canberra and a number of other cities, air

quality levels of towns and communities reached hazardous

levels (https://www.nytimes.com/interactive/2020/01/03/

climate/australia-fires-air.html, last access: 7 March 2021).

Over 65 000 people registered on Australian Red Cross’

reunification site to look for friends and family or to let loved

ones know that they were alright (https://www.redcross.org.

au/news-and-media/news/bushfire-response-20-feb-2020,

last access: 7 March 2021). It is estimated that over

1.5 billion animals have died nationally (https://reliefweb.

int/sites/reliefweb.int/files/resources/IBAUbf050220.pdf,

last access: 7 March 2021). These impacts are not only

hazard-related but also related to various vulnerability

and exposure factors that each play a role in increasing

or decreasing risk and impacts. Vulnerability is defined as

“The propensity or predisposition to be adversely affected.

Vulnerability encompasses a variety of concepts and ele-

ments including sensitivity or susceptibility to harm and

lack of capacity to cope and adapt” (Agard et al., 2014).

It can also be defined as “the diminished capacity of an

individual or group to anticipate, cope with, resist and

recover from the impact of a natural or man-made hazard”

(https://www.ifrc.org/en/what-we-do/disaster-management/

about-disasters/what-is-a-disaster/what-is-vulnerability/,

last access: 7 March 2021). Exposure is defined as “The

presence of people, livelihoods, species or ecosystems, envi-

ronmental functions, services, and resources, infrastructure,

or economic, social, or cultural assets in places and settings

that could be adversely affected” (Agard et al., 2014).

Bushfires have been a part of the Australian landscape for

millions of years and are an ever-present risk for people liv-

ing in rural and peri-urban areas surrounded by vegetation,

bush and/or grasslands. In recent decades, significant bush-

fires occurred in 1974/75, 1983, 2002/03 and 2009, some of

them including grass fires, which can have different drivers

to forest fires like those in 2019/20. This frequent occurrence

of severe bushfires, with records extending back to the 1850s,

has resulted in robust preparedness and emergency manage-

ment systems which serve to reduce risk and aid in swift re-

sponse. Comprehensive risk assessments are undertaken at

the level of the local council, and bushfire preparedness and

contingency plans have been in place in most high-risk areas

for decades. However, these systems were severely strained

in the Black Summer bushfires.

7.1 Excess morbidity and mortality

The time of publication is too soon for a robust estimate of

excess morbidity and mortality specific to the 2019/20 Aus-

tralian bushfires. Such analysis is typically available weeks

to years following the end of an event. However, the

combined impacts of extreme heat and air pollution can be

deadly, as seen in the compounded heatwave and wildfire
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events in 2010 in Russia or 2015 in Indonesia (Shaposhnikov

et al., 2014; https://www.nature.com/articles/news.2010.404,

last access: 7 March 2021; Koplitz et al., 2016). Those most

at risk are the elderly; people with pre-existing cardio-

vascular, pulmonary and/or renal conditions; and young

children, as exposure to wildfire smoke can have acute

respiratory effects. Health officials in New South Wales

reported a 34 % spike in emergency room visits for asthma

and breathing problems between 30 December 2019 and

5 January 2020 (https://www.washingtonpost.com/climate-

environment/2020/01/12/australia-air-poses-threat-people-

are-rushing-hospitals-, last access: 7 March 2021). One

study of hospital admissions in Sydney, Australia, from 1994

to 2010 found that days with air pollution from extreme

bushfires (as measured by PM10) resulted in a 1.24 % admis-

sion increase for every 10 µg m−3 (Morgan et al., 2010). On

the other hand, it should be noted that Australia is a country

with a robust healthcare system, which significantly reduces

vulnerability to the short- and long-term consequences of

smoke and extreme heat.

There is also a need for increased mental health ser-

vices in the days, weeks and years following severe

bushfires. As of January 2020 the Australian gov-

ernment announced AUD 76 million in mental health

funding (https://www.abc.net.au/news/2020-01-12/

federal-government-funds-for-mental-health-in-fires-crisis/

11860660, last access: 7 March 2021). A study of the

2009 Black Saturday bushfires found that while the majority

of affected people demonstrated psychological resilience in

the long-term aftermath of the fires, a significant minority

of people in highly affected communities reported mental

health impacts 3–4 years following the event (Bryant et al.,

2014).

7.2 Early warning

There is no nationally standardized system for bushfire warn-

ings in Australia. However, recommendations from the royal

commission tasked with reviewing the 2009 Victoria bush-

fire (Teague et al., 2010) have helped to drive forward ef-

forts to establish a national system. In 2014 the National Re-

view of Warnings and Information was undertaken. It rec-

ommended the establishment of the dedicated, multi-hazard

National Working Group for Public Information and Warn-

ings. Part of the task of this group would be to ensure greater

national consistency of early warning information. One out-

come of this recommendation is the Public Information and

Warnings Handbook, which has been issued to provide guid-

ance to actors across national, state and territory govern-

ments in issuing warning information (https://knowledge.

aidr.org.au/media/5972/warnings-handbook.pdf, last access:

7 March 2021).

Bushfire warnings in Australia are issued by state and

territory fire authorities and generally follow the “Pre-

pare, Stay and Defend or Leave Early” approach. The

Fire Danger Rating system is also widely applied as a

way to communicate fire risks. The system, originally

developed in 1967, contained five risk levels ranging from

“low-moderate”, where fires can generally be controlled,

to “extreme”, where evacuation is recommended but home

defence may be possible under certain circumstances.

Following the 2009 Black Saturday bushfires a sixth “catas-

trophic” level was added where evacuation is deemed the

only survival option (https://www.emergency.wa.gov.au,

last access: 7 March 2021). This guidance was adopted

by all states, except in Victoria where it is called

“Code Red” (http://www.bom.gov.au/weather-services/

fire-weather-centre/fire-weather-services/index.shtml, last

access: 7 March 2021). In 2017, the system was revised

to update the metrics used in forecasting the most ap-

propriate level (https://www.abc.net.au/news/2017-12-13/

bushfire-danger-rating-system-trialled-summer/9203446,

last access: 7 March 2021). Threat level information is

provided via radio, television, social media and signs on

all major rural roads. Government websites also provide

information which is updated every few minutes and in-

cludes maps of fires and associated threat levels. In addition,

phone calls are made house-to-house when evacuation is

recommended.

While these efforts help to reduce vulnerability and expo-

sure to the wildfires, significant barriers to early action still

remain. People in bushfire areas are frequently not aware of

their risk, are unprepared to manage risk, wait until the final

moments to evacuate or, at times, even return to fire-affected

areas to defend property (Whittaker et al., 2020). This is par-

ticularly relevant in peri-urban areas which are not as fre-

quently exposed to bushfire risks. A 2020 study of people’s

reactions to bushfire warnings during the 2017 bushfires in

New South Wales found that people largely understood warn-

ings but that they did not respond to the warnings before

seeking and obtaining additional confirmation to avoid what

they might perceive as unnecessary evacuation and associ-

ated costs. Researchers recommend that rather than further

refining messages, confirmation mechanisms need to be im-

plemented into early warning approaches. There are further

barriers to acting on warnings, such as an incorrect assess-

ment of the defensibility of a building, attachments to pets

and personal items, and a “hero culture” around people who

did defend their home. These sociological barriers to life-

saving measures increase the risk of deadly impacts.

Furthermore, an inquiry into the 2009 Black Saturday

bushfires found that the Prepare, Stay and Defend or Leave

Early approach assumed that individuals had a fire plan in-

place, although many people did not. Therefore people were

left in a position to make complex decisions without adequate

guidance.
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7.3 Controlled burning and relation to weather

conditions

For this study, we did not assess vegetation cover and condi-

tion (dryness) ahead of the season in comparison with earlier

years, but it is clear that fire hazard management strategies

such as bush reduction, manual removal of undergrowth and

controlled burning can affect fire hazard

Note that the effectiveness of such measures depends not

only on the type of vegetation but also the specific condi-

tions of the bushfire. For instance, prior controlled burning

may be somewhat effective to suppress fire risk under av-

erage weather conditions but is much less so in cases of

very high temperatures, low humidity and strong wind, i.e.

when the fire risk is no longer dominated by the type, con-

dition and quantity of fuel but by weather conditions. Dur-

ing the 2009 fires in Victoria, recently burned areas (up to

5–10 years) may have reduced the intensity of the fires, but

they did not enough so as to increase the chance of effective

suppression given the severe weather conditions at the time

(Price and Bradstock, 2012).

In addition, it should be noted that controlled burning

requires a window during the cooler parts of the year

when conditions allow for controlled burning to take place.

The Queensland Fire and Emergency Services (QFES)

noted that controlled burning is highly dependent on

weather conditions and that not all planned 2019 burns

had been completed, given that in some areas, it rapidly

became too dry to burn safely (https://www.abc.net.au/news/

2019-12-20/hazard-reduction-burns-bushfires/11817336,

last access: 7 March 2021). Recognizing the highly non-

linear relationship between weather conditions through the

season (and in fact across several years) and anticipatory risk

management strategies, in this attribution study we have not

assessed the impact of these early-season weather conditions

on the ability to reduce risk and thus on fire risk itself.

7.4 Infrastructure and land use planning

Ageing electricity infrastructure may play a role in increas-

ing the risk of bushfire outbreaks from human-related igni-

tion (Teague et al., 2010). Electric-grid fires are primarily

due to elastic extension and fatigue failures and are made

increasingly worse by high wind speeds (Mitchell, 2013).

A 2017 study found that fires sparked by electricity fail-

ures are more prevalent during elevated fire risk and tend

to burn larger, making them worse than fires due to other

causes (Miller et al., 2017). Interestingly, a 2013 report also

notes that while electricity operators have the ability to dis-

connect electricity grids when there is a high risk posed to the

public, only South Australia has legislation in place to pro-

tect the operator from prosecution (Energy Networks Asso-

ciation, 2013). All of these factors coupled together increase

Australia’s vulnerability to bushfire outbreaks.

In contrast, stringent building codes have helped to reduce

vulnerability to fire risks. The Bushfire Attack Level (BAL),

as well as associated building codes, is the guiding resource

for assessing and managing risks of a building exposed to

heat, embers or direct fire. The BAL is applied nationwide;

however the Fire Danger Index, one of the key metrics used

in calculating the site-specific BAL, is under state and lo-

cal level jurisdiction. The highest BAL level was established

following the 2009 Black Saturday bushfires (Country Fire

Authority, 2012).

Land use planning at a community level is also crucial in

reducing bushfire risk, particularly for rural and peri-urban

areas which face the highest bushfire risks. This is recognized

and addressed through state and local government planning

processes, which include ensuring accessible bushfire evac-

uation routes and spaces. For example, the 2009 Victorian

Bushfires Royal Commission cited a need for planning which

“prioritized human life over all other policy objectives”. This

led to relevant policy changes through an amendment to

the Victoria Planning Provisions. The Bushfire Management

Overlay and associated guidelines are among the principle

aspects of this amendment. They provide direction for ap-

proval of new construction locations as well as siting and lay-

out requirements of approved spaces, although these guide-

lines do not apply to existing property, which puts a limita-

tion on their overall positive impact (Country Fire Authority,

2012).

7.5 Conclusions on vulnerability and exposure

Bushfires are a natural phenomenon, but their impact is also

strongly influenced by human choices. Overall, Australia is

one of the most prepared countries in the world to manage

bushfires, and thus the impacts from this season’s bushfire

outbreaks could have been dramatically worse if not for the

systems in place. This not only underscores the urgent need

to adapt to changing risks in all places, with a special focus

on the most vulnerable, but also highlights the limits to risk

reduction and preparedness.

As a result of the Black Summer bushfires, formal

inquiries have been launched in Victoria (https://www.igem.

vic.gov.au/vicfires-inquiry, last access: 7 March 2021), New

South Wales (https://www.nsw.gov.au/nsw-government/

projects-and-initiatives/nsw-bushfire-inquiry, last access:

7 March 2021), Queensland (https://www.igem.qld.gov.

au/queensland-bushfires-review-2019-20, last access:

7 March 2021) and South Australia (https://www.safecom.

sa.gov.au/independent-review-sa-201920-bushfires/, last

access: 7 March 2021). A federal royal commission has been

announced with an aim to improve resilience, preparedness

and response to disasters across all levels of government. The

commission will also seek to improve disaster management

coordination across local government and improve relevant

legal frameworks. These inquiries will shed additional light
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on the vulnerability and exposure elements of the Black

Summer bushfires and hopefully help mitigate future risk.

8 Conclusions

We investigated changes in the risk of bushfire weather

in southeastern Australia due to anthropogenic climate

change, underpinned by changes in extreme heat and extreme

drought. The latter have longer time series and are covered by

many more climate models, leading to more robust conclu-

sions. The fire risk is described by the Fire Weather Index,

which was shown to correlate well with the area burned in

this part of Australia.

The first conclusion is that current climate models struggle

to represent extremes in the 7 d average maximum tempera-

ture, which was chosen as the most impact-relevant defini-

tion of heat, as well as the Fire Weather Index. They tend to

overestimate variability and thus underestimate the observed

trends in these variables. Both of these factors give an under-

estimation of the change in probability due to anthropogenic

climate change (PR). We therefore do not give best-fit values

but only lower bounds for these variables.

We find that the probability of extreme heat has increased

by at least a factor of 2. We do not find attributable trends in

extreme drought, neither on the annual timescale nor for the

driest month in the fire season, even when mean precipitation

does have drying trends in some models. Commensurate with

this we find a significant increase in the risk of fire weather as

severe or worse as observed in 2019/20 by at least 30 %. Both

for extreme heat and fire weather we think the true change in

probability is likely much higher due to the model deficien-

cies.

The fire weather of 2019 was made much more severe by

record positive excursions of the Indian Ocean Dipole, even

when the ENSO teleconnection was removed from this. The

average effect of this mode is small, but the anomaly was so

large that this factor explains about one-third of the anoma-

lous drought in July–December 2019. The other factor was

the Southern Annular Mode, which was also anomalously

negative during this time, explaining another one-third of the

July–December drought. Both factors were predicted well

and gave good warning of the high fire risk in late 2019. The

variability due to these modes is included in our analysis, al-

though the simulated fidelity of the modes themselves and

their trends has not been assessed in detail here. It should be

noted that only a small fraction of the natural variability is

described by these modes.

Of course the full fire risk is also affected by non-weather

factors. The bushfire warning system in place in Australia

worked well, but research shows that many people do not

follow the guidelines as intended. The risk of bushfires is in-

creased due to anthropogenic factors like ageing electricity

infrastructure. Efforts to mitigate against that risk using con-

trolled burning are hampered by the very high fire risk due

to weather factors shrinking the window in which controlled

burning can be safely executed. Overall, however, Australia

is one of the most prepared countries in the world to manage

bushfires, and thus the impacts from this season’s bushfire

outbreaks could have been dramatically worse if not for the

systems in place. This underscores the urgent need to adapt

to changing risks in all places and especially the most vul-

nerable.

Although we clearly identify a connection between cli-

mate change and fire weather and ascertain a lower bound,

we also find, in agreement with other studies, that we need

more understanding of the biases in climate models and their

resolution before we can make a more quantitative statement

of how strong the connection is and how it will evolve in

the future. Ever more detailed attribution statements are de-

sired by society, and scientific progress in the modelling of

extreme events is therefore needed.
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