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a b s t r a c t

Resonance effects in parallel jointed rocks subject to stress waves are investigated using transfer func-
tions, derived from signals generated through numerical modelling. Resonance is important for a range
of engineering situations as it identifies the frequency of waves which will be favourably transmitted.
Two different numerical methods are used for this study, adopting the finite difference method and the
combined discrete element-finite difference method. The numerical models are validated by replicating
results from previous studies. The two methods are found to behave similarly and show the same
resonance effects; one operating at low frequency and the other operating at relatively high frequency.
These resonance effects are interpreted in terms of simple physical systems and analytical equations are
derived to predict the resonant frequencies of complex rock masses. Low frequency resonance is shown
to be generated by a system synonymous with masses between springs, described as spring resonance,
with an equal number of resonant frequencies as the number of blocks. High frequency resonance is
generated through superposition of multiple reflected waves developing standing waves within intact
blocks, described as superposition resonance. While resonance through superposition has previously
been identified, resonance based on masses between springs has not been previously identified in
jointed rocks. The findings of this study have implications for future analysis of multiple jointed rock
masses, showing that a wave travelling through such materials can induce other modes of propagation of
waves, i.e. spring resonance.
� 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
1. Introduction

Stress waves propagating through a medium are modified by
the properties of that medium. If the medium is a rock mass, these
properties can include the intact blocks, joints between blocks,
spacing of joints and the properties of the wave itself. The intact
block properties dictate the velocity at which the propagating wave
travels; the joint, intact block and wave properties dictate the de-
gree of reflection and transmission of waves from the joints (Pyrak-
Nolte et al., 1990a; Cai and Zhao, 2000). The joint spacing influences
how many joints there are and so the number of individual re-
flections which can occur in a given volume of rock. As a stress
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
.

wave propagates through a jointed rockmass, thewave can have its
frequencies filtered, with joints acting similarly to a low pass filter.
Typically, high frequencies are filtered to a greater degree than low
frequencies, although this is not always the case in multiple jointed
rock masses. If certain frequencies maintain higher transmissions
than those around them through interaction with the joints within
the rock mass, these could be considered as resonant frequencies
for the rock mass. Eitzenberger (2012) highlighted that resonance
phenomena could be present in jointed rock masses excited by
dynamic loads; however, this concept was not examined. Reso-
nance is important to a range of engineering situations, such as rail
engineering (Yau, 2001; Hanson et al., 2012), seismic engineering
(Flores et al., 1987; Mucciarelli et al., 2004; Ariga et al., 2006), and
resonance enhanced drilling (Li et al., 2019), among others. A more
detailed understanding of what influences resonance in jointed
rock masses can aid in the accurate prediction of potentially highly
transmitted stress waves, potentially allowing these to bemitigated
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY
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early on in the design stage of a project. Transfer functions have the
ability to capture such effects by giving the ratio of the amplitudes
of an input signal to an output signal for a range of frequencies.

Stress waves interacting with joints in rock masses are a well-
studied aspect of rock mechanics, with analytical, numerical and
physical techniques having been used to study these problems
(Schoenberg, 1980; Pyrak-Nolte et al., 1990a, b; Cai and Zhao, 2000;
Zhao et al., 2006a, b, 2008; Hildyard, 2007; Barbosa et al., 2019;
Zheng et al., 2020; Fan et al., 2022; Wang et al., 2022; Xu et al.,
2022). Arguably, the simplest jointed problem is a planar wave
normally incident on a single planar joint with elastic material
properties. This case was investigated analytically by Schoenberg
(1980) and later validated using laboratory scale physical models
by Pyrak-Nolte et al. (1990a) giving closed form analytical expres-
sions for the reflection and transmission of shear and compres-
sional waves from fractures, given by Eqs. (1) and (2). These
expressions give the reflection (R1) and transmission (T1) co-
efficients, defined as a ratio of the amplitude of the input to output
signal, in terms of the joint specific stiffness (k), seismic impedance
of the blocks on either side of the joints (z) and the angular fre-
quency of the wave (u), where i is

ffiffiffiffiffiffiffi
�1

p
. These equations show that

increasing k increases transmission and reduces reflection, while
increasing the z or u reduces transmission and increases reflection.

T1 ¼ 2 k
zu

2 k
zu � i

(1)

R1 ¼ i

2 k
zu � i

(2)

The single joint analytical functions of Pyrak-Nolte et al. (1990a)
and Schoenberg (1980) have been found to behave well compared
to the theory of the method of potentials (Cai and Zhao, 2000), the
virtual wave source method (Zhu et al., 2011) as well as numerous
numerical models (Zhao et al., 2006b, 2008; Deng et al., 2012;
Zhang et al., 2019).

In most realistic situations, stress waves will encounter multiple
joints as they propagate through a rock mass. These more complex,
multi-joint cases have been investigated using the same techniques
as adopted for single jointed conditions. Pyrak-Nolte et al. (1990b)
used a laboratory experiment with a block composed of a stack of
equal thickness, identical, metal plates, which behaved as a parallel
jointed, homogenous rock mass. It was proposed that the trans-
mission coefficient for the rockmass (TN) could be approximated by
the single joint transmission coefficient raised to the power of the
number of joints (N), using Eq. (3). Other analytical equations have
been defined formultiple parallel jointed rocks including Zhao et al.
(2006b) and Li et al. (2012).

jTNj ¼ jT1jN (3)

Hildyard (2007) replicated the study of Pyrak-Nolte et al.
(1990b) using a numerical model solved using the finite differ-
ence method with joints modelled as displacement discontinuity
elements. It was found that the waveforms from numerical
modelling only matched the results from the physical model when
fractures are aligned parallel to the direction of wave propagation.
However, it was found that a closer match for perpendicular frac-
tures, in relation to the wave propagation, was achieved when a
stress dependent material model was adopted.

Numerical modelling studies further investigated multi jointed
cases, showing that Eq. (3) only gives an approximation of the
transmission coefficient. Cai and Zhao (2000) found that when
there are multiple parallel joints, it is possible for a transmission
coefficient to increase at certain dimensionless joint spacing (x ¼ s/
l, where s is the joint spacing, and l is the wavelength). It was
proposed that this was the effect of superposition between multi-
ple reflected and incident waves within the jointed rock mass.
Multiple waves, travelling in different directions, can constructively
interfere at certain frequencies, increasing the transmission coef-
ficient, and destructively interfere at other frequencies, reducing
the transmission coefficient. A similar study was conducted by
Zhao et al. (2006b) with similar conclusions, proposing that an
equivalent medium method could be used when the wavelength is
much larger than the joint spacing. Parastatidis et al. (2017) further
investigated the applicability of using an equivalent medium by
modelling localised effective continua in the region of joints and
comparing the results to explicitly modelled joints and a homog-
enous equivalent medium. It was found that a localised effective
continuum model gave a better approximation of the transmitted
waveform than a homogenous medium with anisotropic material
properties. Considering transmission coefficients, Zhao et al.
(2006b) also found that there was a zone of relatively high trans-
mission coefficients when x is at a critical value, typically between
0.1 and 0.3, as found by Cai and Zhao (2000).

Most studies have considered transmission and reflection co-
efficients of rock masses and joints, as opposed to resonance
(Pyrak-Nolte et al., 1990a, b; Cai and Zhao, 2000; Zhao et al., 2006b).
When the transmission at a particular frequency is higher than
surrounding frequencies, a resonant frequency for the rock mass
has been identified. It could be argued that Cai and Zhao (2000) and
Zhao et al. (2006b) identified resonance in their models, but in
terms of x. Resonance is an important consideration in many en-
gineering studies, not least railway engineering. Resonance in
buildings and the track structure are known to accentuate vibration
problems (Yau, 2001; Hanson et al., 2012; Connolly et al., 2016).
Resonance effects in rocks were explicitly studied by Li et al. (2019)
who used a three-dimensional (3D) finite element model to study
the resonance of different sized and shaped intact blocks using
different excitation frequencies, with resonance depending on the
block properties and dimensions. The reasons behind why such
frequencies were resonant were not well defined in the study. The
resonant frequencies in the study varied in a systematic manner
when the block size increased, which indicates that the resonance
may be due to the superposition of the incident wave and a re-
flected wave from the edge of the modelled block. A standing wave
could develop with the incident and reflected waves, causing wave
superposition and an increase in the transmission coefficient. The
outcomes of the study by Li et al. (2019) and Zhao et al. (2006b)
appear to differ, with the former identifying superposition at
much higher frequencies than the latter. Resonance from the su-
perposition of reflected waves has been identified by Nakagawa
(1998), who gave analytical equations for resonance, terming it
acoustic resonance. Acoustic resonance in natural stone blocks is a
reasonably well established effect, being the subject of a British
national standard (BS EN 14146:2004, 2004).

There appear to be overlapping effects occurring in regard to
stress wave transmission through jointed rock masses that have
been identified in the literature, although up to this point full
transfer functions have not been generally used in the analysis of
jointed rock masses. This study explores the effects that different
jointed rockmasses can have on a rockmass transfer function using
both the finite difference and combined discrete element-finite
difference modelling methods. Despite these numerical methods
being used previously (Cai and Zhao, 2000; Zhao et al., 2006b;
Eitzenberger, 2012; Parastatidis et al., 2017), the processing of the
data using the full waveform with a transfer function provides a
new lens in which to view rock mass transmission. Analysing the
full waveform allows a more accurate means of determining the
frequencies of waves that will be transmitted to a receptor.
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Mechanisms are proposed for the resonance effects identified and
simple analytical models derived giving fast and accurate predic-
tion of resonant frequencies for complex rock masses. This study’s
findings are interpreted in the context of previous research to un-
derstand the effects observed and further validation work is
highlighted.
2. Methodology

Two different numerical modelling techniques are used in this
study. A one-dimensional (1D) combined finite difference-discrete
element model, as used by Cai and Zhao (2000), Zhao et al. (2006b)
and Eitzenberger (2012), and a two-dimensional (2D) finite differ-
ence model, as used by Parastatidis et al. (2017) are created, solved
in the universal discrete element code (UDEC) (Itasca, 2014) and
WAVE2D (Hildyard et al., 1995), respectively. Two different nu-
merical models are used as a first step in verification of the results.

A 500 Hz signal frequency is used as the excitation source for
both models; however, different wave forms are generated, with a
Gaussian wave in UDEC and a modified Ricker wave in WAVE2D,
both shown in Fig. 1. As a transfer function method is adopted, the
difference inwaveformwill not present any issueswhen comparing
the results from the models.

No material damping is modelled and the plane wave fills the
full model height in both UDEC and WAVE2D, preventing any
geometrical damping. Therefore, there should be no decay of the
wave signal through the model and any modifications to the wave
will be caused by interaction with joints. The velocity responses of
the models are recorded before the joints, close to the excitation
source, and after the joints. This gives input and response wave-
forms from the model.

There are differences in the way the models treat joints and
blocks, the waveforms used for the excitation and the mesh sizes
used for each model. For instance, the frequency contents of the
Fig. 1. Input waves to UDEC and WAVE2D models: (a) Time series of sources, and (b) Freq
modified Ricker wave.
wave in the twomodels are not exactly the same, as shown in Fig. 1.
The treatment of the blocks and joints andmesh sizes are described
in the following sections. These differences will highlight possible
modelling artefacts as well as giving results that are more robust.
2.1. UDEC model description

UDEC, using the combined finite difference-discrete element
method, treats individual blocks as discrete elements with joints
being the interface properties between each of the blocks (Itasca,
2014). Joints in UDEC split the model up into blocks, which are
allowed to undergo significant degrees of movement. The blocks
are discretised using a finite difference mesh composed of quad-
rilateral elements, allowing deformations of the blocks. Fractures
within the model are treated as block interfaces, which behave as
linear-elastic displacement discontinuities.

A 1D model is generated, which is achieved in the 2D software
by only allowing the finite difference mesh to generate one node in
the out of plane direction (Fig. 2). The horizontal boundaries are
modelled as being fixed for velocity in the vertical direction, but
free in the horizontal direction, meaning that the single zone can
only move in one direction; therefore, making themodel effectively
1D. The plane wave is induced at the left hand model boundary as a
horizontal force function. This generates a compressional stress
wave, which propagates along the model from left to right (Fig. 2).
The vertical model boundaries are sited at a large distance from the
joints to prevent reflections from the model boundaries polluting
the signal. Despite this, the vertical boundaries are modelled as
absorbing boundaries, using a horizontal dashpot with material
properties of the intact rock, to reduce the risk of reflections.

All models used to generate the results in Section 3 have a P-
wave velocity (Cp) of 3328 m/s. Therefore, with a mesh size of
0.125 m, and observing the rule of wavelength needing to be
greater than 10 times the mesh size (Cai and Zhao, 2000), the
uency content of sources. UDEC is a 500 Hz Gaussian wave and WAVE2D is a 500 Hz



Fig. 2. UDEC model showing finite difference mesh. Mesh fills entire model. Not to scale.

Fig. 3. WAVE2D model showing finite difference mesh. Mesh fills entire model. Not to
scale.
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models will be able to accurately transmit frequencies up to
2662 Hz. This is greater than the frequency range of the wave
source applied to the UDEC model, as shown in Fig. 1.

2.2. WAVE2D model description

WAVE2D handles joints as special displacement discontinuity
elements within the model (Hildyard et al., 1995). These are given
the same properties as the block-block interfaces in UDEC; how-
ever, the blocks are not separate entities as they are in UDEC. The
joints are implemented in the mesh as two infinitesimally thin
planes and employing fictional stresses within the joint. A detailed
derivation of the joint deformation equations are given by Hildyard
et al. (1995).

A 2D model is used in WAVE2D with a plane wave induced
across the entire short axis of the model, which propagates along
the long axis. Although this model is 2D, the application of the
plane wave causes the model to behave as though it is 1D. This is
much like the pseudo-1D set up used by Cai and Zhao (2000). The
excitation is generated as a horizontal velocity function, generating
a compressional wave, which propagates from left to right. The
excitation source is located 0.8 m from the left-hand vertical
boundary. The source cannot be applied exactly on the boundary in
WAVE2D; however, the source has been applied as close to the
boundary as it can be, to give a similar modelling scenario as that
modelled in UDEC. A square mesh of finite difference quadrilaterals
is created, with edge lengths of 0.08 m. There are 4800 elements in
the long axis and 2080 elements in the short axis (Fig. 3), giving
dimensions of 384 m horizontally and 166.4 m vertically.

The vertical boundaries are modelled as absorbing with the
horizontal boundaries, orientated perpendicular to the wave
propagation direction, as plane wave boundaries.

The intact block properties of the WAVE2D models are the same
as those applied to the UDEC models, with a Cp of 3328 m/s. Given
the mesh size of 0.08 m, the models described here will be able to
accurately transmit waves up to 4160 Hz, which is much greater
than the frequency range of the source wave shown in Fig. 1.

2.3. Transfer functions

The numerical tools used for this study have been used for
similar problems (Cai and Zhao, 2000; Zhao et al., 2006a;
Parastatidis et al., 2017). The innovation in this study is to design
the models such that transfer functions can be extracted which
produces results across a broad band of frequencies through anal-
ysis of the full waveforms. Non-normalised material properties are
preferred for the relationships identified in this study. Despite
normalised stiffness and wave terms being used extensively in
studies of transmission of stress waves through joints (Cai and
Zhao, 2000; Zhao et al., 2006b; Li et al., 2012; Zheng et al., 2020;
Xu et al., 2022, among many others), normalised terms hinder the
use of transmission relationships with other areas of engineering.
These tend to give vibration sources in terms of absolute frequency,
such as high-speed rail (Connolly et al., 2016). Therefore, the re-
lationships defined in this study can be easily applied across en-
gineering disciplines.

Transfer functions describe the difference between the magni-
tude of the frequencies of two signals, such as a source and a
response. In this study, the signals are recorded as velocity-time
series at the source (signal) and some distance from the source
(response). To generate a transfer function, the time series are
decomposed into their harmonic components and the discrete
frequencies in the signal and response are compared. If the
amplitude of the signal and response at a given frequency are the
same, the transfer function for that frequency will be equal to 1. If
the response has an amplitude of half the source, the transfer
function for that frequency will be 0.5, and if the response has an
amplitude twice the source, the transfer function for that frequency
will be 2. Transfer functions represent a convenient method for
determining how a medium affects a propagating wave, regardless
of the amplitude and waveform of the input signal.

An example of the procedure of generating a transfer function is
shown in Fig. 4. The UDEC model shown in Fig. 2 was modelled
without joints and the source and response of the model recorded.
This also serves as a calibration case to show that the model is
performing as expected. As there is no material damping and the
model is 1D, eliminating geometrical damping, thewavewill not be
altered as it passes through themodel. The time series of the source
and response are plotted in Fig. 4a. The transfer function for these
two time series is plotted in Fig. 4b, which is shown to be equal to
1 at all frequencies.



Fig. 4. Example of a transfer function derived from a time series in an unjointed and undamped 1D UDEC model with a Cp of 3328 m/s and mesh size of 0.125 m: (a) Time series of
source and response, and (b) Frequency content of source and response and transfer function.
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3. Results

Modelling is undertaken in both UDEC and WAVE2D using the
models shown in Figs. 2 and 3, with more joints added when
required. To generate the database used for the analysis in this
study, awide range of models were considered. Models in the study
have joint numbers (Jn) of 2e8, Cp of 2365e5910 m/s, Young’s
modulus (E) of 11.1e88.3 GPa, joint spacing (s) of 1e8 m and ma-
terial densities (r) of 260e26,000 kg/m3. For brevity, not all results
are included here, although a sample of the data is shown in Table 1,
with additional results included in Appendix A. All models have a
mesh size of 10 times the minimumwavelength, up to a frequency
of at least 1800 Hz.

The transfer functions for the models included in Table 1 are
shown in Figs. 5e7. The figures show that some frequencies are
Table 1
Models used in sensitivity analysis in UDEC and WAVE with their resonant
frequencies.

r (kg/m3) Cp (m/s) Cs (m/s) E (GPa) kn (GPa/m) s (m) Jn Resonant frequency
(Hz)

UDEC WAVE2D

1st 2nd 1st 2nd

26,000 3328 1922 240 1 2 2 28 e 32 e

26,000 3328 1922 240 4 2 2 56 835 61 830
26,000 3328 1922 240 10 2 2 87 841 96 843
2600 3328 1922 24 1 2 2 87 840 96 845
2600 3328 1922 24 4 2 2 162 867 187 877
2600 3328 1922 24 10 2 2 235 914 250 932
260 3328 1922 2.4 1 2 2 237 914 250 932
260 3328 1922 2.4 4 2 2 342 1052 369 1082
260 3328 1922 2.4 10 2 2 387 1144 425 1165

Note: Cs denotes the shear wave velocity, kn denotes the joint normal specific
stiffness, and ‘-’ denotes no results visible in model.
transmitted through the joints with a greater transmission coeffi-
cient than others. Each transfer function shows that there are three
main bands with high transmission: very low frequency, low fre-
quency and high frequency. All of the models show a transmission
coefficient of 1 as the frequency approaches 0 Hz. This high trans-
mission at very low frequencies is not included in the results in
Table 1 as this is a consequence of a very low frequency wave
passing through the model unhindered by joints, as predicted by
Eq. (1). All models showa second peak at low frequencies, before an
area of low transmission. This low frequency resonant peak appears
tomove significantly as the density and joint specific stiffness of the
model change. For a high density block with a low joint specific
stiffness, as shown in Fig. 5a, the resonant frequency is less than
50 Hz, while for the same density model with a high joint specific
stiffness, as shown in Fig. 5c, the resonant frequency is at 100 Hz. In
the low density model with a low joint specific stiffness, as shown
in Fig. 7a, the resonant frequency is at 250 Hz, while the same
model with a high joint specific stiffness, as shown in Fig. 7c, the
resonant frequency is at 500 Hz. These both show a doubling of the
resonant frequency while the joint specific stiffness increases by an
order of magnitude, form 1 GPa/m to 10 GPa/m.

UDEC tends to show a slightly lower resonant frequency than
the equivalent WAVE2D models. The reason behind this is the
subtly different geometries used in UDEC andWAVE2D. Despite the
symmetrical boundaries applied to the UDEC model, the single
element in the out of plane direction means the models behave
slightly differently.

The high frequency resonant peak does notmove significantly as
the model properties change, although there are small variations,
with a greater variation occurring when the model has a low
stiffness, compared to a high stiffness. For instance, Fig. 5b and c
shows a high frequency resonant peak at approximately 830 Hz,
with joint specific stiffnesses of 4 GPa/m and 10 GPa/m, respec-
tively. The lowest joint specific stiffness, in Fig. 5a, does not show a



Fig. 5. High density (26,000 kg/m3) transfer functions from WAVE2D and UDEC for a material with Cp of 3328 m/s and Cs of 1922 m/s: (a) kn ¼ 1 GPa/m, (b) kn ¼ 4 GPa/m, and (c)
kn ¼ 10 GPa/m.

Fig. 6. Medium density (2600 kg/m3) transfer functions from WAVE2D and UDEC for a material with Cp of 3328 m/s and Cs of 1922 m/s: (a) kn ¼ 1 GPa/m, (b) kn ¼ 4 GPa/m, and (c)
kn ¼ 10 GPa/m.
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high frequency resonance. As these are from a model with a high
density, the elastic stiffness of the model will also be high when
compared to a model with the same velocity but a lower density, as
shown in Fig. 6. In Fig. 6a, the high frequency resonance is at
830 Hz, moving to 870 Hz in Fig. 6b and to 930 Hz in Fig. 6c. These
show an increase in the joint specific stiffness from 1 GPa/m to



Fig. 7. Low density (260 kg/m3) transfer functions from WAVE2D and UDEC for a material with Cp of 3328 m/s and Cs of 1922 m/s: (a) kn ¼ 1 GPa/m, (b) kn ¼ 4 GPa/m, and (c)
kn ¼ 10 GPa/m.
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10 GPa/m, which corroborate the qualitative remark made at the
start of this paragraph.

Some of the transmission coefficients, especially in the UDEC
models, reach a transmission coefficient greater than 1. This implies
that there is more energy at this frequency than was input to the
model; however, it is also possible that it is caused by noise in the
data generating an artificially high peak. Despite this, some trends
can be observed in the relative magnitude of the transmission co-
efficients. The amplitude of the lower density models, as shown in
Fig. 7, is higher than that of the higher density models, as shown in
Fig. 5. Therefore, it can be said that the joints in the lower density
models do not hinder the transmission of stress waves as much as
joints in the higher density models, which act to filter out certain
frequencies. This is likely to be due to the joints in the lower den-
sity, and therefore lower stiffness, models being stronger than, or
more similar to, the stiffness of the intact block material. Therefore,
these joints will not affect the waves as much as lower stiffness
joints. Some filtering effects would be expected as the joints do not
have an infinite stiffness, which is required for a welded interface.
The logical progression of this is that, for the same range of joint
specific stiffness used in Table 1, as the stiffness of the models in-
creases, the amplitude of the transfer function would reduce, with
this being more evident at higher frequencies. This can be seen in
Fig. 5a, where the high frequency resonance, which should be
somewhere near 800 Hz, is not visible in either model. The lower
stiffness models have a much less obvious low frequency resonant
peak, which occurs at a much higher frequency, when compared to
the higher stiffness models, where the low frequency resonance is
clear.

When additional data are studied, as shown in Appendix A,
further trends become apparent. The number of low frequency
peaks increases as the number of joints increases. Appendix A
shows that the number of low frequency resonant peaks is equal
to Jn�1. This effect is also shown in Fig. 8, with Jn of 2, 3 and 5 (not
all included in Appendix A), with the data generated from UDEC.
The frequency of the low frequency resonance does not appear to
relate to the Cp, as when kn, Jn and s are kept constant and Cp
changes this peak does not move significantly.

The frequency of the high frequency peaks appears to be related
to the wavelength of the wave. The first peak always has a wave-
length twice the joint spacing, the second awavelength equal to the
joint spacing, the third a wavelength two thirds of the joint spacing
and the fourth a wavelength of half the joint spacing. Fig. 8 shows
that there can be an equivalent number of peaks making up the
high frequency peak as there are low frequency peaks, although
these tend to be very close together and are treated as a single peak
in this study. The frequencies of these peaks are mainly influenced
by the s and Cp, and not greatly by kn. As the material stiffness
changes, due to the change in Cp, and kn increases, the first peak
diverges from having a wavelength equal to 2s. A low kn and rela-
tively high material stiffness appear to fit the trends most precisely.

4. Analytical expressions

It is postulated that the observed resonances result from two
separate physical mechanisms, i.e. a mass-spring resonance and a
superposition resonance. Therefore, attempts are made to derive
analytical expressions for the frequencies of these resonances
based on these two mechanisms.

4.1. Low frequency resonance e spring resonance

The low frequency resonance seems to show complex trends,
with the number of resonant frequencies increasing when the
number of joints increases (Fig. 8) and their frequency related to the
properties of the blocks and joints (Figs. 5e7). In order to explore
the trends in the data, it is beneficial to be able to link these to
simple physical cases with closed form solutions. To do this,



Fig. 8. Transfer functions for identical rock masses (s ¼ 2 m, Cp ¼ 2365 m/s, Cs ¼ 1922 m/s, kn ¼ 1 GPa/m, r ¼ 2600 kg/m3) with different numbers of joints: (a) 2 joints, (b) 3 joints,
and (c) 5 joints.

Fig. 9. A single degree of freedom mass between two springs used as an analogy for a
parallel jointed rock mass.
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initially, the simplest jointing case of two parallel joints will be
explored.

A model with two parallel joints is equivalent to a block be-
tween two springs which are fixed at their ends (Fig. 9). The block is
created by the joints, with the joints operating like springs. The
large blocks on either side of the joint generated block (Figs. 2 and
3) operate to fix the springs (joints) in position. This is not strictly
accurate as these end blocks can deform; however, for the purposes
of a simple analogy, this systemwill suffice. In the 1D models used
here, the mass can only move in a single plane. The block will
oscillate at a frequency related to the stiffness of the springs and the
mass of the block. Eq. (4) gives the frequency of oscillation of a mass
between two springs.

u ¼
ffiffiffiffiffiffiffi
2K
m

r
(4)

where m is the mass of the block, and K is the stiffness of the
springs.

Eq. (4) can be usedwith different stiffnesses on either side of the
block, inwhich case 2Kwould become K1þ K2, with K1 and K2 being
the different spring stiffnesses. The m is given by the block density
multiplied by the joint spacing (m ¼ sr).

To extend this analogy to more complex rock masses, additional
blocks and springs can be added. When there are more blocks
added, more resonant frequencies are generated, with the same
number of resonant frequencies as the number of blocks. Earlier it
was highlighted that there was one less low frequency resonant
peak than the number of joints, which is equal to the number of
blocks in the model, not including the blocks in contact with the
ends of the model. The u of the resonant peaks are given by the
eigenvalues (a) of Eq. (5).

KmX ¼ aMX (5)
Km is the stiffness matrix (Eq. (6)) andM is the mass matrix (Eq.
(7)):

Km ¼

2
664
k1 þ k2 �k2 / 0
�k2 k2 þ k3 1 «
« 1 1 �kj
0 / �kj kj�1 þ kj

3
775 (6)

M ¼

2
664
m1 0 / 0
0 m2 1 «
« 1 1 0
0 / 0 mj

3
775 (7)

wheremj is the jth blockmass, kj is the jth spring stiffness, and X is a
vector that satisfies Eq. (5).

Eq. (5) does not give the exact answer given by the numerical
models. The difference suggests that the numerical models are not
quite behaving like a rigid mass between two springs. The finite
difference method, in its essence, attaches a number of springs in
series, especially when modelled as a 1D material, as is the case
here. There are springs for the intact material with one stiffness,
attached to springs for the joints of another stiffness, again attached



Table 2
Wavelengths as a multiple of joint spacing for high frequency resonance in jointed
rock masses.

Peak number, n x

Jn 0.5
Jn þ 1 1
Jn þ 2 1.5
Jn þ 3 2
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to springs for the intact material, and so on. As the blocks are able to
accommodate deformations, not just the joints, the deformation of
the blocks could be changing the effective stiffness of the material.
The stiffness for a jointed rock mass can be calculated as the static
stiffness of a series of springs, using Eq. (8) (Ma et al., 2013), which
can be incorporated into Eq. (6) to account for the deformability of
the blocks.

Kc ¼ 1
1
Ei
þ 1

kn

(8)

where Kc is the combined spring stiffness, and Ei is the intact block
Young’s modulus.

Using Kc, calculated from Eq. (8), as the spring stiffness (kj) in Eq.
(6), the predicted resonant frequency reduces, bringing it closer to
the numerical modelling results, although they are still not exactly
the same. There is also a difference in the error associated with the
two numerical models, with UDEC having a greater error than
WAVE2D. The reason behind this being the slightly different ge-
ometries of the twomodels, meaning they are analysing to different
problems. Despite the disagreement between the exact resonant
frequency of the two numerical models, even for the simple cases
given here, the spring effects displayed by the models are clear.

A final equation for the prediction of the low frequency resonant
frequencies is given by Eq. (9), and in terms of the x, by Eq. (10). The
term low frequency resonance is quite ambiguous, thus this effect
will be referred to from now on as spring resonance.

fn ¼ 1
2p

ffiffiffiffiffiffi
an

p
(9)

x ¼ s
2pCp

ffiffiffiffiffiffi
an

p
(10)

where fn is the nth resonant frequency, an is the nth eigenvalue for
the system, and n is the peak number which has values from 1 to
Jn�1.

Spring resonance is considered to be applicable for all rock
masses which show linear elastic joint behaviour, and is not limited
to the range of properties shown in Table 1 or Appendix A.
4.2. High frequency resonance e superposition resonance

The wavelengths of the high frequency resonance appear to be
closely related to the joint spacing. The relationships in terms of x
are shown in Table 2. The peaks are numbered following on from
the resonances generated through spring resonance, of which there
are Jn�1 resonances. The frequency that gives these wavelengths
can be calculated from Eq. (11), with Eq. (12) giving the same
equation in terms of x. This equation is the same form as the clas-
sical equation which gives the frequencies which generate a
standing wave on a string fixed at its ends, of length s, and has been
found to give rock resonance by Nakagawa (1998). Using the
standing wave analogy, the string is the equivalent of a block and
the fixed ends are equivalent to the ends of the block, or joints.
Multiple reflected waves, travelling in opposite directions, can su-
perimpose, amplifying the transmitted wave. Therefore, a wave of
these wavelengths will have a greater transmission coefficient than
a wave of a higher or lower frequency. The length of s has no
physical limits, although in numerical modelling, it will be limited
to a maximum of the size of the model and a minimum of 10 times
the mesh size.
fn ¼ ðn� Jn � 1ÞCp
2s

(11)

x ¼ n� Jn � 1
2

(12)

where n is the peak number, including all spring resonance peaks.
This high frequency resonance will be referred to as super-

position resonance from now on, to avoid ambiguity in the term.
Eq. (11) does not give the exact resonant frequency and instead

serves as a reasonable estimate. The reasons behind this are likely
to be due to the deformation of the blocks during the analysis,
therefore changing the size of the blocks and the frequencies which
can form standing waves within them. This assumption is sup-
ported when viewing different block and joint stiffnesses. The
stiffness of the blocks appears to significantly affect the resonant
frequency, as shown in Table 1, with the very low stiffness blocks
diverging significantly from the frequency predicted by Eq. (11).
The resonant frequency from modelling increases as the intact
material stiffness decreases, giving a lower wavelength. A lower
material stiffness will allow the block to deform more; therefore,
allowing compression, reducing the size of the block. Increasing kn
also increases the frequency, further reducing the wavelength. A
stiffer joint will deform less; therefore, causing all deformation to
be focussed in the block, further reducing the block size and
reducing the wavelength. These effects are only evident in very low
stiffness materials with very high stiffness joints, which are not
likely in reality. In most realistic rock masses, Eq. (11) would be
expected to give a reasonable approximation of the resonant
frequency.

Theoretically, there are an unlimited number of superposition
resonant frequencies. However, as shown in Fig. 5, the high fre-
quency resonance may not be visible for low stiffness joints. This is
likely to be related to the effects shown by the single joint analytical
equations (Eqs. (1) and (2)) (Schoenberg, 1980; Pyrak-Nolte et al.,
1990a). A combination of a very low stiffness joint and a high
material stiffness will prevent energy from being transmitted.
Despite this generating a large degree of reflection to allow the
superposition, if energy cannot be transmitted through the joint,
there will be no increase in transmission on the other side of the
joints. Eq. (1) shows that the degree of transmission also reduces as
the frequency increases, hence this implies that as the order of the
superposition peak increases, which increases the frequency, its
magnitudewill decrease. Fig. 10 shows the results of a model with a
wide joint spacing, in order to generate a large number of super-
position resonant frequencies. This clearly shows that as the su-
perposition resonant frequency increases, the amplitude of this
peak reduces. The absolute amplitude of the resonances may be
incorrect due to noise in the data, although it is clear that the
relative amplitude of the peaks reduces as the frequency increases.



Fig. 11. Resonance mechanism verification using a numerical frequency sweep and
numerical transfer function. Resonance form analytical functions is also shown. Jn ¼ 3,
s ¼ 2 m, kn ¼ 1 GPa/m, Cp ¼ 3328 m/s, Cs ¼ 1922 m/s, r ¼ 2600 kg/m3.
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4.3. Verification of the resonance mechanisms

The mechanisms identified in the transfer functions are verified
using a numerical model excited by harmonic waves at a single
frequency. The frequency of the excitationwill be changed with the
response of the model recorded, giving a frequency sweep exper-
iment. The rationale behind this experiment is that when a reso-
nant frequency is applied, the numerical model will show a greater
response than when a non-resonant frequency is applied to the
model. The response recorded will be the peak particle velocity
(PPV) after the joints. The model set up is identical to the UDEC
model in Fig. 2, with the following properties: Jn ¼ 3, s ¼ 2 m,
kn ¼ 1 GPa/m, Cp ¼ 3328 m/s, Cs ¼ 1922 m/s, r ¼ 2600 kg/m3.

The frequency sweep of the model will be conducted between
10 Hz and 1000 Hz. The resolution of the frequency sweep will be
finer in the areas where resonance is predicted, given by Eqs. (9)
and (11), and coarser outside of these areas. The model used here
is expected to have spring resonance at 62 Hz and 107 Hz, with
superposition resonance at 832 Hz. The results of this experiment
are shown in Fig. 11.

In Fig. 11, the analytical resonance, numerical transfer function
and numerical frequency sweep methods show the spring reso-
nance effect at the same frequencies. These occur at the predicted
frequencies of 62 Hz and 107 Hz. The frequency sweep has been
targeted to find these resonances; however, the peak response of
the frequency sweep is much greater than the surrounding fre-
quencies, thus this effect is unlikely to be an effect of the experi-
ment set up.

Superposition resonance is seen at approximately 845 Hz in the
numerical frequency sweep data, which is slightly greater than the
analytical frequency of 832 Hz but similar to the numerical transfer
function frequency, seen at 836 Hz and 845 Hz. The peak of this is
quite low, although it is clearly a localised peak compared to the
data surrounding this.

There are clear differences with the response of the two nu-
merical experiments. The transmission coefficients of the fre-
quency sweep data are lower for the resonant frequencies, while
they are greater for non-resonant frequencies. Between 200 Hz and
Fig. 10. Resonance shown by a jointed rock with s ¼ 8 m (Cp ¼ 3328 m/s, Cs ¼ 1922 m/
s, r ¼ 2600 kg/m3, kn¼ 1 GPa/m, Jn ¼ 2). Numerical data are obtained from a 1D UDEC
model; spring resonance and superposition resonance are derived from Eqs. (9) and
(11), respectively.
800 Hz, the transfer function data show a transmission coefficient
of close to zero, while the frequency sweep data show a trans-
mission coefficient of approximately 0.5. The difference here is
likely to be due to the different techniques used to measure the
response of the models. The transfer function sends a single exci-
tation pulse and records the full waveform transmitted through the
joints, while the frequency sweep method applies a constant har-
monic excitation for the duration of the model run and records the
PPV of the model, which can occur at any time. Despite the dif-
ferences in the techniques used and the amplitude of the trans-
mission coefficients, the presence of the resonant frequencies is
clearly evident in the two different numerical experiments. This
supports the hypothesis that the two resonance mechanisms, of
spring and superposition resonances, do exist in jointed rock
masses.
4.4. Application of analytical models

The analytical equations for spring and superposition reso-
nances are given in terms of frequency and x in Eqs. 9e12. These
allow a more direct comparison with previous research into multi-
jointed rock masses (Cai and Zhao, 2000; Zhao et al., 2006b), using
the equations in terms of x, and application of the results to other
branches of engineering more easily, using the equations in terms
of frequency. For example, the results could be applied to vibration
research, such as high-speed rail, to determinewhether a rockmass
will preferentially transmit the frequencies generated by a vibra-
tional source. Results from such studies are typically given in terms
of frequency, instead of x. For example, Connolly et al. (2016) gives
excitations expected from rail traffic in terms of frequencies, which
can be directly compared to the results of Eqs. (9) and (11).

In order to test the analytical solutions, a series of arbitrary test
cases is modelled in UDEC and WAVE2D with the resonant fre-
quencies compared to those predicted by the analytical functions.
These cases have been run in themodels shown in Figs. 2 and 3. The
properties of the verification cases are shown in Table 3.



Table 4
Results of validation runs in UDEC and WAVE2D for analytical models. U: UDEC, W:
WAVE2D, A: Analytical.

Case Spring resonance Superposition resonance

Peak 1 Peak 2 Peak Jn Peak Jn þ 1

U W A U W A U W A U W A

1 77 86 91 156 174 175 442 448 416 840 845 832
2 75 83 84 n/a n/a n/a 839 840 832 1663 e 1664
3 45 50 52 n/a n/a n/a 303 305 296 595 595 591

Note: n/a denotes a resonance that does not exist, and ‘-’ denotes that a resonance
which is not visible in the data.

Table 5
Final spring and first superposition resonant frequencies from rock masses with
different numbers of joints. All rock masses have the same properties (s ¼ 1 m,
kn ¼ 10 GPa/m, Cp ¼ 5830 m/s, Cs ¼ 3840 m/s, r ¼ 2650 kg/m3).

Jn Final spring resonance (peak Jn
� 1) (Hz)

First superposition resonance (peak
Jn) (Hz)

2 376 2915
4 492 2915
8 522 2915
11 528 2915
101 532 2915
1001 533 2915
10001 533 2915

H. Holmes et al. / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 1076e10891086
(1) Case 1 contains three joints with the same stiffness, but with
different joint spacings. The first and second joints are
separated by 4 m and the second and third joints by 2 m.

(2) Case 2 contains two joints with different joint specific stiff-
nesses, where the first joint has a lower stiffness than the
second.

(3) Case 3 contains two joints with different stiffnesses, where
the first joint has a higher stiffness than the second.

Table 4 contains the results for Cases 1e3, solved in UDEC,
WAVE2D and the analytical models. Only the first two super-
position resonant peaks are shown. The analytical superposition
resonant frequencies for Case 1 are calculated using both joint
spacings, with the two lowest frequency peaks taken from this. In
some cases, the superposition resonance is not apparent in the
numerical data past the first peak, thus it is not included in the
tabulated numerical results. The results in Table 4 seem to show a
reasonable agreement between the numerical and analytical re-
sults. Cases 2 and 3 are diverse and different from the data set used
to define the analytical models, hence the agreement of the results
supports the hypothesis that the analytical models are performing
as expected. This also adds weight to the idea that the spring and
superposition mechanisms are realistic.

With the mechanisms behind the analytical models shown to
occur in more complex rock masses than the simple cases used to
identify the effects, and the resonance mechanisms verified using a
frequency sweep approach (Fig. 11), the analytical models can be
reasonably extrapolated beyond the data range used to define
them. Table 5 shows the final spring and first superposition reso-
nant frequencies for identical rock masses with different values of
Jn. This shows that the final spring resonant frequency tends to a
constant value as Jn increases, which is related to the properties of
the rock mass. As the number of joints increases, there will be more
blocks and thereforemore resonant frequencies, thus the frequency
spacing of the resonance will reduce. With a large number of joints,
the spring resonancewill resemble an increased transmission zone,
rather than having the peaked effect as shown in previous figures.
This is brought about by the frequency spacing of the resonant
peaks reducing as the number of resonances increases, with all the
resonances still being squashed into the same range. The previously
clear peaks and troughs, as shown in Fig. 8, will be less clear with all
the peaks merging into, effectively, a single wide peak. For instance,
the 10,000 resonant peaks for the rock mass in the final row in
Table 5 would have an average spacing of 0.05 Hz. While strictly
speaking these could be seen in the transfer function, for any
practical application, the peaks would merge. The first super-
position resonant frequency is always at the same frequency, as it is
generated by the superposition of waves of a particular wavelength
and is unaffected by the number of joints.

5. Discussion

The preceding sections have identified two resonant frequency
mechanisms in multiple jointed materials, spring and
Table 3
Test cases and their properties. Multiple values indicate different properties for
subsequent joints.

Case r (kg/m3) Cp (m/s) Cs (m/s) Jn s (m) kn (GPa/m)

1 2600 3328 1922 3 4, 2 3
2 2600 3328 1922 2 2 0.5, 1
3 2600 2364 1286 2 4 0.8, 0.4
superposition resonances. These mechanisms have been shown to
occur for materials with a wide range of different properties and
joint spacings. Therefore, the analytical models in this study can be
confidently applied to all jointed media, including natural jointed
materials from the weakest of sandstones through to the strongest
of granites, as well as synthetic jointed materials, such as aligned
metallic or mortar blocks (Pyrak-Nolte et al., 1990b; Zhao et al.,
2006a) and masonry structures.

While the superposition mechanism has been previously
described (Nakagawa, 1998), the spring resonance mechanism has
not been, despite being based on the simple system of masses be-
tween springs. Superposition effects are a common theme in rela-
tion to the transmission coefficient from jointed rock masses. Cai
and Zhao (2000) and Zhao et al. (2006b, 2008) identify an
increased transmission zone occurring when the x of the rock mass
is very low, which was explained as a superposition effect of mul-
tiple reflected waves. Cai and Zhao (2000) found that the greatest
transmission coefficient occurred with a x of 0.075, and an
increased transmission zone between x of 0.05 and 0.3, with no
increase in transmission at 0.5. Similar results were found by Zhao
et al. (2006b, 2008) and also replicated by Xu et al. (2022). The
values found by these studies are much lower than what would be
expected to generate superposition resonance. The previous
studies give analytical equations for the first arrivals of a sine wave
which is transmitted through joints based on superposition of
transmitted and reflected waves. These were found to performwell
against numerical results. Therefore, while the values of x given in
the previous studies are too low to be superposition effects based
on Eq. (12), it is considered that the mechanism proposed previ-
ously is still correct for first arrivals.

Despite this, it is curious that this study found that values of x
smaller than 0.5 tend to be associated with spring resonance as
opposed to superposition resonance. The reason behind this is
likely due to the way in which this study and previous studies
approach the calculation of the transmission coefficient. Previous
studies (Cai and Zhao, 2000; Zhao et al., 2006b) have taken the
amplitude of the first arrival after the joint and divide this by the
amplitude of the wave before the joint, with the rest of the



Fig. 13. Jointed rock resonance shown by a model with 8 joints (7 blocks) along with
the analytical spring and superposition resonances, plotted against dimensionless joint
spacing (x). Cp ¼ 3328 m/s, Cs ¼ 1922 m/s, r ¼ 2600 kg/m3, kn ¼ 1 GPa/m, s ¼ 2 m,
Jn ¼ 8.
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transmitted waveform ignored. However, this study takes the full
waveform before and after the joint and calculates a transfer
function from these, as described in Section 2.3, by decomposing
this into its harmonic components. This represents two methods of
characterising the transmission of stress waves through joints,
being a first arrival method, as used in previous studies, and a full
waveformmethod, as used in this study. While it can be considered
that for a first arrival, the superposition mechanism of Zhao et al.
(2006b) is correct, any receptor will experience the full wave-
form. Therefore, for practical applications, the analytical models
given in the current study are of value.

In order to test that the models considered in the current study
are modelling the same problem as Zhao et al. (2006b), a set of their
results has been replicated in Fig. 12. The results of Cai and Zhao
(2000) and Zhao et al. (2006b) are normalised for joint stiffness,
and thus cannot be directly compared to the results in this study.
Therefore, a bespoke analysis was undertaken to replicate their
results. Fig. 12 shows the results from Zhao et al. (2006b) for a
model with two joints with a normalised joint stiffness (kn/(zu)) of
0.494. A new model was generated to match this normalised joint
stiffness and two sets of modelling results were collected. The first
set modelled a single period of a 40 Hz sine wave, with the
amplitude of the first arrival recorded. The second set modelled a
500 Hz Gaussianwave, with a transfer function generated based on
the full waveform and the response at 40 Hz recorded. The first
arrival of data is synonymous with the approach of Zhao et al.
(2006b) and the full waveform synonymous with the transfer
function method in this study.

The first arrival data in Fig. 12 show that the model used in this
study agrees with the results from Zhao et al. (2006b). However,
when the full waveform is analysed to generate a transfer function
and the response at 40 Hz is taken from this, shown by the Full
Waveform data, it is clear that the results of this study reveal
something different to the Zhao et al. (2006b) study. The peak of the
full waveform is at a different x and with a greater transmission
coefficient than the peak of the first arrivals data. There is a low
transmission portion of the full waveform data series approaching a
x of 0.4; however, it is at a lower transmission than the first arrival
data.
Fig. 12. Transmission coefficients for jointed rocks with Jn of 2, plotted against
dimensionless joint spacing (x) with results from Zhao et al. (2006b) and from the
current study generated using the first arrival and the full waveform.
The differences exhibited highlights that different mechanisms
are occurring in the rock mass when a first arrival is considered in
isolation and the full transmitted waveform is analysed. In the full
waveform, it is not just superposition which is occurring, and such
superposition only occurs at much higher frequencies. This implies
that the spring resonance mechanism is not contained within the
first arrival. The spring resonance requires the blocks to oscillate,
with a period given by 1/f(n) from Eq. (9), thus it is unlikely that
these resonance mechanisms will be realised in a first arrival.

Fig. 12 shows that the results of Zhao et al. (2006b) appear to be
appropriate for first arrivals; although, as highlighted by the newly
identified jointed rock mass excitation mechanism of spring reso-
nance identified in this study, only studying first arrivals will miss
the nuances of transmission of the full waveform. This could
possibly lead to a miss-identification of the frequencies of a wave
that are preferentially transmitted through the rock mass.

It is clear from Fig. 12 that any resonance effects in the full
waveform method are not clear. This is brought about by the use of
the normalised joint stiffness. Instead of considering a range of
frequencies from a single model with a constant joint spacing, each
data point represents a new model with the same wave frequency
and a different joint spacing. As a consequence, the clear resonant
peaks identified in this study are not apparent. This is not to say
that resonance cannot be shown in dimensionless terms. For
instance, Fig. 13 shows the resonance of a numerical model with
eight joints modelled in UDEC, along with the analytical reso-
nances. This model does not have a constant normalised joint
stiffness, but represents a transfer function for a range of fre-
quencies for the same rock mass.

Much of this discussion has been conducted in dimensionless
terms in order for an easy comparison to previous research (Cai and
Zhao, 2000; Zhao et al., 2006b). However, the cases in Table 3 raise
an important question regarding the use of x for calculating the
response of a rock mass. In Case 1, there are two different joint
spacings of 2 m and 4 m. A single value of s is required to calculate
the resonance in dimensionless terms, as shown by Eq. (10).
Dimensionless terms only work in very simple rock masses with a
single joint spacing, which is unlikely in reality. Therefore, for
application to more realistic rock masses, it is considered that
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dimensional terms are most useful, giving resonance in terms of
frequency.

For superposition resonance, a joint spacing is required for the
calculation of the resonant frequency in Eq. (11), which is not
required for the dimensionless version in Eq. (12). With multiple
joint spacings, such as in Case 1, there could be multiple super-
position resonances at the same x, although they will occur at
different frequencies. Care must be taken with superposition
resonance to calculate the resonances for each joint spacing within
the rock mass.

The apparent agreement of the models of Zhao et al. (2006b)
and this study implies that if the full waveform was analysed,
then the resonance effects found here would have been identified
in the previous study as well. Zhao et al. (2006b) do not give clear
time series for the full waveform; however, these are given by Cai
and Zhao (2000) and are reproduced here in Fig. 14, as well as by
Li et al. (2012), Fan et al. (2022) and Xu et al. (2022). Cai and Zhao
(2000) give these in dimensionless terms for time, joint spacing
and joint stiffness, thus it is not possible to directly calculate the
resonances from the full waveform. Despite this, there are clear
oscillations occurring in the transmitted wave in the plots given.

Fig. 14 shows the initial wave in each of the plots followed by
oscillations. These are most clearly shown in Fig. 14b and c,
although they are evident in all of the plots. The dimensionless
period of the oscillations seems to reduce as the relative joint
spacing reduces, with the largest relative joint spacing in Fig. 14a,
and the smallest in Fig. 14d. As the joint spacing reduces, assuming
all other properties of the model are the same, resonance of the
models will occur at a higher frequency. With two joints, there will
be a single spring resonance, although there will also be additional
superposition resonant frequencies. The superposition resonance
would be at a very high frequency when the joint spacing is small,
but this will reduce as the joint spacing increases. This will lead to
the spring and superposition resonances overprinting on each
other in the transmitted waveform, which could be evident in the
complex time series given in Fig. 14a for the largest joint spacing.
Fig. 14. Transmitted waveforms from numerical model with two joints from Cai and Zhao
The two resonance mechanisms, of spring and superposition
resonances, have been identified and discussed in this study. Both
mechanisms have been shown to operate in two different numer-
ical modelling software with different input waves, treatment of
joints and model dimensions. The analytical equations derived
have been shown to accurately predict the resonant frequencies of
these models and are adaptable enough to handle complex rock
masses with a range of joint spacings and joint stiffnesses. The
superposition resonance mechanism is a reasonably well recog-
nised effect, being found by Nakagawa (1998), and having national
standard written for their identification (BS EN 14146:2004, 2004).
Anecdotal evidence of the spring resonance mechanism being
observed in previous studies (Cai and Zhao, 2000) is identified in
Fig. 14. Despite this, no physical experiments have been found
which show the spring resonance mechanism. This is a clear
omission in the research presented here, although undoubtedly the
spring resonance effect occurs in numerical modelling, as shown in
Fig. 11. If this is a yet unknown numerical modelling artefact, its
presence should be taken into account inmodelling associatedwith
vibrations. However, it does show the need for physical experi-
ments to verify the physical reality of the spring resonance
mechanism.

6. Conclusions

This study has modelled multiple jointed rock masses in the
combined discrete element-finite difference method and the finite
difference method, using the codes UDEC and WAVE2D, respec-
tively. The numerical models have been verified by replicating
previous studies using the magnitude of first arrivals. Rock masses
have been excited by a planewave and transfer functions have been
derived for waves that propagate through the joints using the full
waveform. Analysing the full waveform, which is an approach
which has not been used by previous studies, shows the presence of
resonance. Superposition resonance, which has previously been
found, has been shown to occur, and for the first time, a spring
(2000). X represents the joint spacing relative to wavelength (l) of incident sine wave.
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resonance mechanism has been isolated. Analytical equations were
developed for these resonance mechanisms based on classical
mechanics. The mechanisms were verified using a second numer-
ical experiment by modelling a frequency sweep in order to show
that the response of the model changes when an excitation at a
resonant frequency is applied.

Two distinct mechanisms have been identified, one operating at
lower frequencies and another operating at relatively high fre-
quencies. Resonance at low frequencies, referred to in this study as
spring resonance, is found to operate as masses between springs
and resonance at relatively high frequencies, referred to in this
study as superposition resonance, is created by the superposition of
multiple reflected waves within blocks. The analytical functions are
closed-form, exact and able to predict the resonant frequencies for
jointed materials with any properties and joint spacings, providing
an efficient method for the calculation of resonant frequencies of
any arbitrary jointed materials. The outcomes of this study have
consequences for future analysis of the transmission of stresswaves
through jointed materials as neglecting the full waveformwill miss
the frequencies that are preferentially transmitted through multi-
ple joints. Further validation of the effects is highlighted, with the
need for a physical experiment to verify the spring resonance
mechanism.
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