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Abstract

Data-driven fault detection techniques have attracted extensive attention in engineering, industry and many other areas in recent

years. In many real applications, the following situation often occurs: data for certain types of faults (unseen faults) are not

available to train models that are used for fault detection. Such a scenario can occur when data collection becomes highly time-

consuming or destructive. To address this challenging problem, a novel fault detection method using zero-shot learning (ZSL) is

proposed in this paper, which contains three phases: feature extraction, label embedding, and feature embedding. The method

first extracts features from raw signals by applying a one-dimensional convolutional neural network (1D CNN), then builds

semantic descriptions (human-defined) as fault attributes shared between seen faults and unseen faults, and finally uses a bi-linear

compatibility function to find the highest-ranking fault type. The proposed semantic space based zero-shot learning with 1D

CNN is called SSB-ZSL-1DCNN. The cosine distance is used to measure the similarity between feature embeddings and fault

attributes. An important characteristic of SSB-ZSL-1DCNN is that the model, trained using only samples of seen faults, can be

used to detect unseen defects. To evaluate the proposed method, two case studies are designed based on two well-known

benchmarks (the Tennessee-Eastman chemical control process and the rolling bearing experiments at the Case Western

Reserve University, respectively). The results demonstrate that the proposed method shows remarkable performance in detecting

unseen faults.

Keywords Fault detection . Zero-shot learning . Deep learning . Semantic description . Label embedding .

Convolutional neural network

1 Introduction

Fault detection and classification play an essential role in pro-

cess control, monitoring, health management and mainte-

nance because it builds a bridge between system monitoring

data and its health status [1]. In industry, many complex pro-

cess systems or plants comprise a large number of compo-

nents; many key components (e.g. rolling bearings commonly

used in machines) are expensive, vulnerable to damage, and

prone to fault. Therefore, carrying out condition monitoring

and fault detection of complex processes and machines are

paramount for either safety or economic purposes.

Traditional fault detection and diagnosis methods can be

roughly categorized into two groups: model-based and data-

driven methods. The former relies on explicit mathematical

models of the plant, while the latter uses historical data of

the plant to determine its health status [2]. Traditional methods

work under the following assumption: the distribution of the

training data is similar to that of the test data (e.g., the fault

samples), implying that the training data should contain a

good number of fault samples so that the models used for fault

detection are well trained. However, such an assumption may

be violated in many real applications due to the following

reasons. Firstly, it usually assumes that data are well collected

and sufficiently represent both health and all potential faults

status of the system (machine, plant, equipment, etc.) of inter-

est. In practice, however, it could be such a case where no or

few samples of target faults are available during system oper-

ation [3]. Secondly, few plants or systems would be allowed to

operate to an occurrence of a major fault or a number of minor

faults; therefore, normally it is very difficult (if not impossi-

ble) to collect a sufficiently large amount of samples to well
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train a fault detectionmodel, because faults are destructive and

can result in enormous losses [4]. Thirdly, systems (e.g. ma-

chines) typically gradually decline from health to failure, im-

plying that obtaining adequate fault samples for data-driven

approaches is time-consuming and costly.

A way to effectively solve fault detection tasks with small

and imbalanced data is to develop intelligent fault detection

(IFD) algorithms using, e.g., data augmentation-based strate-

gy and transfer learning [1]. Such an algorithm first augments

the data-by-data generation or data resampling, then uses the

augmented data to extract features with machine learning

models, e.g., neural networks, together with a feature adapta-

tion process (where necessary), and finally builds a suitable

fault classifier to identify the types of faults. However, in

practice there exists such a case where a certain type of fault

may not be observed or recorded due to some reasons.

In certain extreme circumstances, signals for specific fault

types or working conditions are unobtainable, implying that

diagnosis models cannot be well trained due to the lack of

training samples for unseen fault classes. Moreover, in data-

driven fault detection, identifying the unseen fault classes is a

challenging task for traditional IFD methods [1]. Still, in prac-

tice there is a high need to tackle a realistic and highly chal-

lenging scenario as follows: samples of one or more certain

fault types are not available at all or just a very limited small

number of samples are available. In recent years, a learning

method, called zero-shot learning (ZSL), has been widely

used in image classification due to its power to recognize

new objects ( not seen in the model training stage) based on

information inferred from seen classes [5]. ZSL provides a

powerful tool for solving the unseen fault detection problem

concerned in this work, and a reasonable solution is to com-

bine fault detection with zero-shot learning to classify the

certain (unseen) types of faults without using samples of these

types of faults. Inspired by the idea of zero-shot learning [6],

this paper proposes a new zero-shot fault detection method

based on a semantic space embedded model for industrial

systems or devices. The implementation of the proposed

method is as follows. Step 1: To build convolutional neural

networks for feature extraction from raw data; Step 2: To

define and specify a semantic based space for faults by creat-

ing a shared attribute form (matrix) for each type of fault; Step

3: To adopt and define a bilinear compatibility function to

learn the relationship between the extracted features and fault

attributes, based on which the highest-ranking unseen fault

class is determined.

The performance of the proposed method is tested and

assessed on real datasets, collected from a bearing and a com-

plex chemical system, respectively. Two case studies are pre-

sented accordingly. The first case is about the bearing, widely

used as a piece of crucial rotary equipment in many applica-

tions. We propose a method to detect ‘large-diameter faults’

by training classifiers only using samples of ‘small-diameter

faults’. The second case emphasizes an entire and comprehen-

sive industrial process control system, which aims to detect

different unseen types of faults (i.e., not used in the

training stage).

The main contributions of this paper are summarized as

follows:

1) We design a new zero-shot learning scheme for unseen

fault detection without using samples of the unseen faults

in the training stage. Specifically, for the bearing case, the

proposed approach can detect and identify large-diameter

in bearing, by training a model using data containing

small-diameter fault samples but without including sam-

ples of large-diameter faults.

2) To improve the adaptation of zero-shot learning to 1D

time-series (most industrial fault data are in such a for-

mat), we comprehensively analyze various feature extrac-

tion methods, including traditional methods and deep

learning based methods.

3) The proposed semantic space, which treats the fault attri-

butes as the side information, builds a bridge from seen

faults to unseen faults for zero-shot fault detection.

The remainder of the paper is organized as follows.

Section 2 provides a relevant literature review on traditional,

intelligent, and zero-shot fault detection. Section 3 presents

the details of our proposed method. Section 4 conducts two

case studies of fault detection to demonstrate and verify the

effectiveness of the proposed method. Case 1 is concerned

with the detection of the unseen faults of larger size diameters

occurring in the Case Western Reserve University (CWRU)

experimental dataset. Case 2 conducts experiments on the

Tennessee-Eastman process (TEP) dataset, aiming at detect-

ing unseen types of faults. Finally, Section 5 concludes the

main work.

2 Relevant literate review

2.1 Traditional fault detection and intelligent fault
detection

The procedure of traditional classification-based, data-driven

fault detection contains three main steps: data acquisition, fea-

ture extraction, and fault detection and classification [7]. In

practice, data are collected via different means including the

use of numerous sensors. Feature extraction is usually imple-

mented through linear or nonlinear transformation and data

decomposition. Commonly used linear methods includes prin-

cipal component analysis (PCA) [8] and independent compo-

nent analysis (ICA) [9]. Nonlinear data processing ap-

proaches, such as kernel based methods, are usually more

powerful for characterizing nonlinear relationships, for
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example, it has been proved that the kernel principal analysis

(KPCA)works better than its linear counterpart PCA for many

applications [10]. It is usually important and useful to reduce

the dimensionality of features or variables in the training space

for several reasons, e.g., to make the classification tasks easier

to implement, improve classification accuracy, or make the

models and results easier to explain. PCA performs poorly

when extracting features from a set of signals that are

nonlinearly associated to or dependent on each other. ICA

can work better for extracting non-Gaussian features from

multivariate signals [11].

Recently, 1D convolutional neural network (CNN) was

introduced to extract optimal damage-sensitive features auto-

matically for vibration-based fault detection. For example, in

[12], raw signals were transformed into two-dimensional

grayscale images based on wavelet transform and deep CNN

to extract robust features. In [13], a novel fault detection and

classification method was proposed by using the DWT and

CWT filter banks.

After feature extraction, the resulting features are fed into a

fault classification model to determine the system’s health

status. Many machine learning models have been developed

for fault detection and classification (see e.g., [14]). In [15], a

bearing fault diagnosis method was proposed based on deep

CNN and random forest (RF) ensemble learning.

As mentioned in Section 1, traditional fault detection

methods may not work well with small or imbalance data,

therefore intelligent fault detection methods are needed to

guarantee fault detection performance. A way to build intelli-

gent fault detectors is to use deep learning. Deep transfer

learning (DTL) methods have been introduced to the field of

fault detection to overcome the difficulty in data collection

(e.g., samples of certain faults are not enough or not avail-

able). DTL methods treat the insufficient samples as a cross-

domain learning task and aims to find a solution by perform-

ing domain adaptation [16] for handling different distributions

between source domain data and target domain data. Zhang

et al. [17] investigated an end-to-end method based on a deep

convolutional neural network to achieve high accuracy when

the working load changes. Wen et al. [18] used sparse auto-

encoder and the maximum mean discrepancy term to transfer

training features to testing features; in this way, none of the

target fault samples were needed for fault detection. In [19], a

new optimal transport-based deep domain adaptation method

was presented for rotating machine fault diagnosis. In [20], a

deep adversarial domain adaptation (DADA)methodwas pro-

posed for rolling bearing fault diagnosis; the method builds a

DADA network to better address the commonly encountered

challenge in real world applications: the distribution of the

target domain data is different from that of the source domain

data. Note that in typical deep transfer learning [21], it is

assumed that the same faults appear in both the training and

test stages.

2.2 Zero-shot learning

Recently, Lampert et al. [22] proposed a zero-shot learning

(ZSL) scheme, which has received significant attention in the

field of image recognition. Instead of using trained objects, it

uses a high-level description provided by field experts to de-

tect the target items. The description comprises semantic attri-

butes, e.g., colour, shape and even habits, which could be pre-

learned without samples of unseen classes. Roughly speaking,

ZSL is a method for training models for pattern recognition of

unseen types of images based on side information learned

from seen classes with relevant description [23]. ZSL has

two learning schemes: inductive and transductive models

[24]. In the inductive model, only data from seen classes are

available during the training stage While in the transductive

model, it is assumed that data of both the unseen classes (i.e.,

unlabeled classes) and seen classes are available for model

training, hence it is a type of semi-unsupervised learning.

This study is mainly concerned with the inductive scheme.

Zero-shot classification approaches under an inductive set-

ting could be broadly categorized into four groups, namely,

direct-attribute prediction based, semantic space embedded

based, non-linear multi-modal embedded based, and common

space embedded based [25].

For the direct-attribute prediction based method, the most

representative model is the direct attribute prediction (DAP)

method presented by Lampert et al. [26], which directly builds

the relationship between visual features and attributes, and

then uses the learned model to predict the attributes of the

unseen samples. Lampert et al. [26] also presented an indirect

attribute prediction (IAP) method, in which the unseen sam-

ples were first assigned to seen classes. Then the unseen sam-

ples were predicted using the semantic attribute relationship

between seen and unseen types. Note that direct-attribute pre-

diction methods suffer from several drawbacks. Firstly, the

two-step prediction method is an indirect approach to find a

solution by solving intermediate problems; the solution might

be optimal for predicting attributes based on attribute classi-

fiers, but it is not necessarily optimal for predicting classes.

Secondly, it is difficult for DAP to extend to incremental

learning scenarios. These drawbacks can be overcome by a

method based on semantic space embedding discussed below.

The method based on semantic space embedding learns a

mapping from features to a semantic space [27, 28]. Frome

et al. [29] constructed a deep visual-semantic model by learn-

ing a linear mapping from image features to the joint embed-

ding space based on an online learning-to-rank algorithm.

Akata et al. [6] presented a label-embedding method for learn-

ing a bilinear compatibility function between an image and a

label embedding to find the matching embeddings assigned a

higher score than the mismatching ones. Akata et al. [30] also

proposed a label embedding model for fine-grained classifica-

tion by combining supervised attributes and unsupervised
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output embeddings from hierarchies or text corpora. Romera

et al. [5] used squared loss as a compatibility function with a

regularizer to optimize classification accuracy. Kodirov et al.

[31] presented a semantic autoencoder to handle project do-

main shift problems by reconstructing features after projecting

to the semantic space. The approaches based on semantic

space embedding enable the representation of visual samples

in semantic space and allow recognition in such a space.

A non-linear multi-modal embedded model is usually ca-

pable of learning non-linear compatibility relations to opti-

mize projection accuracy or embeddings. Xian et al. [32] ex-

tended the bilinear compatibility function to multiple linear

(piecewise linear) compatibility functions, making a collec-

tion of maps highly interpretable.

Embedding both features and semantic descriptions into a

common space is referred to as the common space embedded

based method. Changpinyo et al. [33] proposed a synthetic

classifier approach for zero-shot classification, which used

linear combinations of base classifiers to train classifiers of

unseen classes. Hayashi et al. [34] proposed a cluster-based

method for multivariate binary classification in ZSL situation,

where classifiers (models) were trained based on seen classes

first and then used to separate the future data (test data) into

two classes: the seen class and unseen (unknown) class. In

[35], a novel one-class classification (OCC) method was pro-

posed and used for image classification. The proposed OCC

approach can effectively determine whether the input data of

interest were from the seen class or the unseen class; the meth-

od is potentially very useful for developing and adapting ZSL

methods and algorithms.

2.3 Zero-shot learning for fault detection

Zero-shot learning might bring breakthroughs in intelligent

fault detection, especially for classifying the types of unseen

faults under the condition that samples of these unseen faults

are not available for some reason. Many preliminary research

results on zero-shot fault detection have already been reported

recently in the literature. Lv et al. [36] used a hybrid attribute

conditional adversarial denoising autoencoder to tackle the

zero-shot fault diagnosis problem. Gao et al. [37] proposed a

ZSL method based on contractive stacked autoencoders for

bearing fault diagnosis under different working loads. Feng

et al. [3] introduced a novel fault description model based on

an attribute transfer strategy to classify zero-shot faults in

complex mechanical systems. Xing et al. [38] proposed a label

description space embedding model for detecting the unseen

compound faults of machines. Xu et al. [39] presented a zero-

shot intelligent diagnosis method for unseen compound faults

of devices using a visual space-based model.

It is worth highlighting that visual attributes ( e.g., colour

and shape) used for zero-shot image recognition are unsuitable

for sensor signal processing (e.g., vibration signals) [3]. When

a new type of fault occurs in a system or machine, we will first

notice the semantic attribute and description rather than indi-

vidual samples. For example, from the description “an equip-

ment that converts gas or vapour into liquid and transfers heat

from the tube to the air near the tube,” professional workers

can detect the object “condenser” without seeing it at all.

Similarly, if “high condensing temperature” is a pre-defined

fault type, then it is straightforward for us to know that such a

fault occurs in the condenser when we are told the high-level

attribute information that “high temperature gas from the com-

pressor does not exchange heat well”. Furthermore, it is re-

dundant to design separate attributes for each type of fault

because it is not helpful for us to explore that fault attributes

defined by humans transcend class boundaries [22], hence the

attributes should be shared with different classes of seen or

unseen faults. For example, both “reactor cooling water inlet

temperature change” and “reactor cooling water valve

change” [40] occur at “reactor”, so the attribute “related to

reactor” could be shared across the above two seen faults.

Then the attribute would be transferred to unseen faults in

the testing stage. In conclusion, the fault attributes could in-

clude many aspects such as the position of the fault, the related

process variable, the size of the fault, etc. The fault attributes

provide side information for unseen classes faults, which fa-

cilitate the model to detect unseen faults and directly solve the

zero-shot fault detection problem.

Feature extraction from raw signals is another considerably

crucial process for zero-shot fault detection. Feng et al. [3]

used supervised principal component analysis [41] to extract

features, under the assumptions that the process control sys-

tem is linear and follows Gaussian distribution. Such assump-

tions are strong since most of the data generated by complex

industrial processes are non-linear. In [39], 1D vibration sig-

nals of interest were transformed to time-frequency images

and then fed into a convolutional neural network (CNN) to

extract features. It is worth mentioning that converting 1D

vibration signals into 2D representations, an additional proce-

dure, is of high computational complexity and needs some

application-specific adaptation.

3 Proposed method

3.1 Problem formulation

Following [6], we assume that there is a training (seen) dataset

S ¼ xsi ; y
s
i

� �� �N s

i¼1
with xsi 2 X s, ysi 2 Y s, which consists ofN s

fault data samples and s classes of seen faults. Each sample xsi
corresponds to a label ysi . Likewise, given a testing (unseen)

datasetU ¼ xui ; y
u
i

� �� �Nu

i¼1
with xui 2 X u, yui 2 Y u, the dataset

consists ofNu fault data samples anduclasses of unseen faults.

Each sample xui corresponds to a label yui . The attributes of a
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fault are denoted as A ¼ As;Au½ � 2 RL�C , where L ¼ sþ u,

and C is the number of fault attributes. It is important to

point out that both As and Au are available in the

training stage because the fault attributes are class-

level common knowledge rather than expert knowledge.

We can obtain the fault attributes in advance. The sam-

ples and classes need to meet the following conditions

in zero-shot learning settings: Y s [ Y u ¼ Y , Y s \ Y u ¼ ϕ.

3.2 Model structure

The proposed method, SSB-ZSL-1DCNN, motivated by and

adapted from the idea of semantic space embedding, com-

prises three steps: feature extraction, human-defined label em-

beddings, and a feature embedding model. The overall struc-

ture of the method is presented in Fig. 1.

1) Feature extraction: 1D CNN is preferable when tackling

industrial fault 1D signals since 1D CNN is easier to train

and needs lower computational complexity than 2D con-

volutions [42]. Therefore, we use 1D CNN as the feature

extractor. The architecture of the designed 1D CNN is

shown in Table 1. It contains two convolution layers,

two max-pooling layers, one flatten layer and one fully-

connected layer. The inputs of the 1D CNN are the 1D

time-series signals, and the outputs from the fully-

connected layer are extracted features.

2) Human-defined label embeddings: In practical fault diag-

nosis, tagging each fault sample is complex and time-

consuming. Fault attributes (represented by a matrix A

in the Section 4) provide side information which can be

used to establish the relationships between seen faults and

unseen faults. Fault attributes allow for sharing character-

istics of faults such as fault position and fault effect,

which are easily annotated by experts and transformed

into computer-readable vector forms [30]. The de-

scription of each attribute could be a binary value

ϕ0;1 2 0; 1f g or a continuous value ϕC 2 0; 1½ � for

each class. The attributes for each fault class can be

written as:

Φ yð Þ ¼ ϕy;1; . . . ;ϕy;E

� �T
ð1Þ

Fig. 1 The structure of the proposed method

Table 1 The architecture of the designed 1DCNN for feature extraction

Layer Name Description Kernel Size Stride Kernel Number

C1 Convolution 1×3 3×1 128

P1 Max-pooling 1×4 / 128

C2 Convolution 1×3 3×1 128

P2 Max-pooling 1×4 / 128

F Flatten 1×128 / 1

FC Fully-connected 1×64 / 1

An effective zero-shot learning approach for intelligent fault detection using 1D CNN



where ϕy;1 could be one of the binary numbers in 0; 1f g

or a real number between 0 and 1; y denotes fault class,

and E denotes the dimension of attributes for a fault

class. Note that continuous attributes ϕC carry more

information than binary attributes ϕ0;1. For illustration

purposes here, we consider the attribute matrix in bina-

ry, but in the subsequent experiments, we set random

and continuous attributes rather than binary attributes.

If a fault does not have this attribute, set it to 0; if it has

this attribute, set it to a random number in the range of

(0,1).

3) Feature embedding model: We define a prediction

function f by maximizing the bi-linear compatibility

function F as follows:

f x;wð Þ ¼ arg
y 2 Y
max Fðx; y;wÞ ð2Þ

where w denotes the parameter vector of F and can be

written as a D� E matrix W that D is the extracted

features dimension and E is the attributes dimension.

The bi-linear form of the compatibility function F : X

�Y ! R between a raw fault data space X and a fault

label space Y can be defined as follows:

F x; y;Wð Þ ¼ θ xð ÞTWΦ yð Þ ð3Þ

where the extracted features are denoted by θ xð Þ and

fault label embedding is denoted byΦ yð Þ.F x; y;Wð Þ is

an optimized compatibility function based on the rank-

ing, enabling that the correct label will get the highest

rank than any other labels by learning W. This idea is

closely related to the web scale annotation by image

embedding (WSABIE) algorithm [43] which learns a

low-dimensional joint embedding space for both im-

ages and annotations to classify the annotations from

the ranked list of annotations. The significant differ-

ence between our method and WSABIE is that the

latter learns bothΦ yð Þ andW, whereas the former only

learns W and uses fault attributes as side information

Φ yð Þ.

4) Parameterestimation: similar to the formulation de-

fined in the unregularized structured SVM [43], the

weighted approximate ranking objective function is

to minimize:

X

y2Y

�rΔðxn ;ynÞ

rΔðxn;ynÞ

X

y2Y
max 0; s xn; yn; yð Þf g ð4Þ

where

s xn; yn; yð Þ ¼ Δ yn; yð Þ þ F xn; y;Wð Þ

� F xn; yn;Wð Þ ð5Þ

�k ¼
Xk

i¼1
�i ð6Þ

rΔðxn;ynÞ
¼

X

y2Y
1ðs xn; yn; yð Þ > 0Þ ð7Þ

Here, s xn; yn; yð Þ is misclassification loss function with

margin Δ yn; yð Þ, where Δ yn; yð Þ ¼ 1 if y 6¼ yn and 0

otherwise. As suggested in the WSABIE algorithm,

we choose �i ¼ 1=i . rΔðxn;ynÞ
is the upper bound on

the rank of fault label yn related to fault data xn . The

ranking-based function (4) aims to obtain higher com-

patibility between the feature extraction and fault label

embedding of the target fault label than between the

feature extraction and fault label embedding of the

wrong fault labels.

In the training stage, we use the extracted features θ xð Þ and

fault attributesΦ yð Þ, which are only from seen fault classes, to

learn W. We apply stochastic gradient descent (SGD) to opti-

mizeW and then find the highest scored class y, if arx y2Ymax

sðxn; yn; yÞ 6¼ yn :

W tð Þ ¼ W ðt�1Þ þ ηt�bN�1
k
cθ xnð Þ Φ ynð Þ � Φ yð Þ½ �T ð8Þ

where ηt is the learning rate at iteration t; in this study, a

constant step size ηt ¼ η is used. Based on WSABIE, rΔðxn;ynÞ

is approximated as rΔðxn;ynÞ � bN�1
k
c, where N is the number

of fault labels and k is the number of wrong fault labels. After

the completion of the training stage, the best W can be

obtained.

In the testing stage, we embed a feature onto the bestW and

use the cosine similarity measure to search for the nearest fault

attribute vector, which belongs to one of the unseen fault

classes.

4 Experiments

This section presents two case studies for two real datasets:

rolling bearing fault dataset created by Case Western Reserve

University (CWRU) and chemical process control fault

dataset known as Tennessee-Eastman process (TEP). The

two case studies were carried out from different perspectives

to comprehensively evaluate the performance of the proposed

method.
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4.1 The Case Western Reserve University (CWRU)
dataset

4.1.1 Introduction to the CWRU dataset

The CWRU dataset, consisting of vibration-based rolling

bearing fault data, is from the Case Western Reserve

University Bearing Data Center [44]. The test bench, shown

in Fig. 2, contains a 2 hp reliance electric motor, a torque and a

dynamometer. In addition, an acceleration sensor is installed

above the bearing housing at the fan-end and drive-end to

collect the vibration acceleration when collecting the fault

data.

The faults are located on drive-end bearing and fan-end

bearing, respectively, which contain inner race fault, rolling

element fault and outer race fault with four working loads

(0,1,2 and 3 hp). The fault dimeter for each type of faults

ranges from 0.007 to 0.028 inch on the bearings using

electro-discharge machining (EDM). As for the variables in

each class of faults, there are drive-end acceleration data (DE),

fan-end acceleration data (FE), base plate acceleration data

(BA) and motor speed (RPM). The sampling rate of signals

for the dataset is 12 kHz.

We chose to use the 12 kHz drive-end bearing fault data as

our experimental dataset. Overall, there are four groups of

experiments, namely, 0 hp, 1 hp, 2 hp and 3 hp. For each

group, there are nine kinds of faults in total, and only DE is

selected as a variable because the vibration signal, collected at

the drive-end, is more comprehensive and less infected by

other components and environmental noise. For graphical il-

lustration purposes, the vibration signal samples of the rolling

race fault with 3 hp and 0.021 inch fault diameter are shown in

Fig. 3, where the top panel shows the waveform of the signal

in the time domain and the bottom panel shows the corre-

sponding spectrum. For each type of fault, the first 102,400

data for DE are considered; the data were then pre-processed

and rearranged with an overlap sampling approach, with the

overlap ratio of 50%, resulting in a total of 200 samples, each

consists of 1024 data points. The details of faults in the dataset

are given in Table 2.

Note that different sizes (diameters) of failures can damage

the equipment to different degrees, some operating conditions

do not allow for larger size failures, and few factories will be

allowed to run to large size failures and collect samples for

training. Therefore, the largest size failures might have zero

sample for model training, it is extremely difficult (if not im-

possible) for traditional multi-classification methods to detect

unseen faults. As a result, the proposed zero-shot fault detec-

tion method is meaningful and realistic.

4.1.2 Model implementation

The first stage of this method is feature extraction. The de-

signed 1D CNN was applied to extract fault features from raw

data. As shown in Table 1, the architecture of the 1D-CNN

model for vibration signals is constructed with two Conv

layers and one FC layer. The input signal of the 1D-

CNN is of size 1 × 1024 and the output of the FC layer

is of size 1 × 64.

To illustrate the feature extraction results intuitively, the t-

SNE (t-distributed stochastic neighbor embedding) algorithm

was employed to provide a 2D representation of the features

as the output of the FC layer. Taking the case of 1 hp working

load as an example, the distributions and clusters of the nine

types of faults after t-SNE are presented in Fig. 4, where the

horizontal and vertical coordinates represent the first two prin-

cipal components extracted from t-SNE, respectively.

The second stage is to build human-defined fault label em-

beddings for the preprocessed experimental dataset, i.e., the

fault attribute matrix A, which is shown in Fig. 5, and the

meaning of each attribute is displayed in Table 3. For each

bearing fault, seven fine-grained fault attributes were specified

by using the statements given in Table 2. Note that the attri-

bute matrix does not distinguish the same type of faults under

Fig. 2 The CWRU test bench
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different working loads. For example, the two types of faults 1

hp 0.007’’ inner race fault and 2 hp 0.007’’ inner race fault

have the same attributes. Once fault attributes are obtained in

the preparation and training stage, the resulting classifier can

then detect unseen faults without using samples of the unseen

faults in the training stage.

Finally, we put the extracted features into the feature em-

bedding model to match the most similar fault attributes to

find the corresponding unseen fault categories. The ordinary

cosine distance was used to measure the similarity between

attributes.

There are a total of 36 types of bearing faults in total,

divided into four groups of experiments; each group has nine

types of faults. The dataset was split as follows: four types of

0.007’’ (inch) and 0.014’’ faults were used for training the

models, two types of 0.007’’ and 0.014’’ faults were used

for validation, and the rest three types of 0.021’’ faults belong

to the test set. The data split for the train/validation/test sets is

displayed in Table 4. The numbers of training, valida-

tion and test samples are 4 × 200 = 800, 2 × 200 =

400, and 3 × 200 = 600, respectively.

As for performance evaluation, we are interested in the

accuracy of each type of unseen fault, so the average per-

class top-1 defined below is used to measure the accuracy

[28]:

acc ¼
1

kY uk

XkY uk

yu

#correct detections in yu

#samples in yu
ð9Þ

where yu is an unseen fault of large size and Y u is the

number of the unseen faults.

4.1.3 Accuracy of zero-shot fault detection

The results of zero-shot fault detection are presented in

Table 5. We used six types of 0.007’’ and 0.014’’ bearing

faults to train the models, and then used the resulting classifi-

cation models to detect three types of 0.021’’ bearing faults.

The accuracies vary from 66.67 to 87.67%, under different

working loads from 0 hp to 3 hp. Clearly, the performance

of the proposed method is significantly better than the chance

level of 33.33%, which indicates that it is possible to detect

unseen large size fault without using their samples in the train-

ing stage, and this was achieved by sharing fault attributes

with seen small-size faults and unseen large-size faults.

As for the individual result of each group, the proposed

method performs better for the groups of 0 hp and 2 hp work-

ing loads than for 1 hp and 3 hp working loads. We analyzed

Fig. 3 The 3 hp 0.021’’ rolling

element fault signal (time

domain) and its spectrum

(frequency domain)

Table 2 Fault labels (9 features in each working load)

Fault Number Fault Description

1 0.007’’ inner race fault (0–3 hp)

2 0.007’’ rolling element fault (0–3 hp)

3 0.007’’ outer race fault (0–3 hp)

4 0.014’’ inner race fault (0–3 hp)

5 0.014’’ rolling element fault (0–3 hp)

6 0.014’’ outer race fault (0–3 hp)

7 0.021’’ inner race fault (0–3 hp)

8 0.021’’ rolling element fault (0–3 hp)

9 0.021’’ outer race fault (0–3 hp)
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the confusion matrices for these two groups, which show that

fault 9 (0.021’’ outer race fault) has a chance of being

misclassified to fault 7 (0.021’’ inner race fault). To investi-

gate the reason of the misclassification, we further analyzed

the time-domain signals of fault 7 and fault 9 in 3 hp and their

frequency-domain properties (spectra) which are shown in

Fig. 6, from which it can be observed that the two signals

nearly have the same resonance band at around 3000 Hz in

the frequency domain. Therefore, inner race fault and outer

race fault are similar in the frequency domain, implying that it

is more difficult to distinguish these two types of faults than

the rolling element faults. Nevertheless, in the following ex-

periments we will demonstrate that our results are pretty com-

petitive compared with many state-of-the-art methods.

Fig. 4 The t-SNE results of the

output features of the FC layer for

the case of working load 1 hp.

The horizontal and vertical coor-

dinates represent the first two

principal components extracted

from t-SNE, respectively

Fig. 5 Fault attribute matrix A

Table 3 Side Information of the Attributes for the CWRU dataset

Attribute Number Fault Attributes

att1 Centered position

att2 Occurred at inner ring

att3 Occurred at outer ring

att4 Occurred at rolling element

att5 Fault diameter 0.007’’

att6 Fault diameter 0.014’’

att7 Fault diameter 0.021’’

Table 4 The Four groups of data split for the CWRU dataset

Group. Training Faults Validation Faults Test Faults

0 hp 1, 2, 4 ,6 3, 5 7, 8, 9

1 hp 1, 2, 4, 6 3, 5 7, 8, 9

2 hp 1, 2, 4, 6 3, 5 7, 8, 9

3 hp 1, 2, 4, 6 3, 5 7, 8, 9
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4.1.4 Comparison with other ZSL methods

We compare five state-of-the-art zero-shot learning methods

mentioned in Section 1 (Introduction), namely, SJE [30],

DEVISE [29], SAE [31], ESZSL [5], and the zero-shot fault

detection method from [3], under the same setting. It should

be noticed that these methods were designed for image clas-

sification, where image attributes were defined and used for

discrimination purposes. However, the visual attributes pro-

posed in these methods are not applicable to time series signal-

based fault detection tasks. Hence, in this study, we incorpo-

rate the newly designed fault attribute matrix (shown in Fig. 5)

to our proposed SSB-ZSL-1DCNN model, and use it to re-

place the image attributes and label information employed in

these compared methods. For a fair comparison, we train SJE,

DEVISE, SAE and ESZSL models using the same raw data.

The results produced by the trained models are presented in

Table 6.

From Table 6, it is clear that our method significantly out-

performs the five compared methods: the first four are seman-

tic space embedded ZSL methods and the fifth is a fault

description-based attribute transfer approach for ZSL. The

main reasons that these compared methods show very low

classification accuracies may be explained as follows. These

methods which were initially designed for 2D data (images)

could work well for image recognition and classification tasks

based on the extracted features. However, for 1D data consid-

ered in this study, these methods may experience considerable

degradation since they could not find useful image features

from the given 1D vibration signals, and the required visual

attributes are not available, either. All this suggests that the

exploration and use of good feature extraction methods which

can effectively find most useful and representative features for

1D time-series fault data are highly needed. Hence, in the

following, we apply two groups of feature extraction methods

to the experimental dataset and evaluate their accuracy perfor-

mances: deep learning based methods (VGG16, VGG19 and

Resnet50) and traditional methods (PCA, ICA and KPCA).

4.1.5 Performance comparison of feature extraction methods

In this section, we evaluate the performance of the proposed

method for feature extraction and compare it with other two

groups of feature extraction methods: three deep learning-

based methods and three traditional feature extraction

methods.

Most CNNs are designed for learning from 2D data (e.g.

images). However, in the field of fault detection and diagnosis

of industrial systems, signals are represented as 1D time series

in most cases. Typical CNNmodels cannot be directly applied

to such tasks. A way of using CNNs to handle 1D signals is to

convert 1D signals to 2D data. In this study, we use

Table 5 The zero-shot

fault detection results for

the CWRU dataset (%)

Group. Step Size Accuracies

0 hp 4 78.50

1 hp 0.01 66.67

2 hp 0.01 87.67

3 hp 4 66.78

Fig. 6 Time-domain signal and frequency-domain signal of fault 7 and fault 9 in 3hp

Table 6 Performance comparison of different zero-shot learning meth-

od for fault detection of the CWRU dataset (%)

Group. 0 hp 1 hp 2 hp 3 hp

SJE 38.17 39.17 32.17 39.50

DEVISE 39.67 38.83 29.33 40.50

SAE 24.17 31.50 26.67 33.17

ESZSL 56.50 28.30 60.00 27.76

Reference [3] 51.34 59.59 54.34 61.42

SSB-ZSL-1DCNN 78.50 66.67 87.67 66.78
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continuous wavelet transform to obtain time-frequency im-

ages. As a result, each output image is a 3-channel RGB image

of 236 × 236 × 3. In order to avoid the effect of the network

colour bars, the RGB image is transformed into a 224 × 224

time-frequency grayscale image. Next, each type of fault im-

ages are fed into the following three 2D deep neural network

methods: VGG16, VGG19 [45] and Resnet50 [46], all of

which were pre-trained on ImageNet 1 K classes to

determine the initial values of the parameters. The de-

tailed information about these three models is shown in

Table 7. The implementation procedures of the three

methods are depicted in Fig. 7.

For the three traditional feature extraction methods, we

firstly perform an overlap sampling procedure to the raw sig-

nals, to generate input data for PCA, ICA and KPCA. The

output of each of the feature extraction methods is a 64 × 1

dimensional vector, whose length is the same as that of the 1D

CNN proposed in this study.

The performances of six compared methods and the pro-

posed method are shown in Table 8, fromwhich it can be seen

that the 1D CNN model designed in this study performs far

better than the other three deep CNN methods. These results

strongly confirm that 1D CNN is very efficient and promising

for solving fault detection of industrial systems. It has the

following advantages: (1) 1D CNN has much lower compu-

tational complexity than 2D CNN; (2) 1D CNN has fewer

hidden layers and simpler architecture than 2D CNN, which

means that less time is needed to train and implement; (3)

Unlike 2D CNNs which need GPU or high performance com-

putational resources, 1D CNN is feasible to implemted and

operate in normal CPU, this significantly reduces cost inmany

real applications.

Meanwhile, compared with the three traditional feature ex-

traction methods, the propsoed SSB-ZSL-1DCNNmodel also

shows significantly much better performance, especially when

comparedwith the two linear feature extractionmethods, PCA

and ICA. For the case of ‘3 hp’, our proposed method, SSB-

ZSL-1DCNN, achieves an accuracy performance of 66.78%,

which is slightly better than that of KPCA. However, for other

cases, SSB-ZSL-1DCNN peforms far better than the best re-

sults of the three basline methods, with 18.67%, 11.00% and

27.17% increase in accuracy, respectively.

In addition, when compared with the attribute transfer

method [3], our model performs better for all the cases, espe-

cially for the two gropus of 0 hp and 2 hp. There are several

reasons that may explain the better performance of the

propsoed method. Firstly, SSB-ZSL-1DCNN is an end-to-

end model. The structure of the model used in the baseline

method is not in an end-to-end manner, as it just trains an

attribute learner for each attribute, and classify the faults based

on the outputs of attribute learners, making the classification

results rely heavily on the accuracy of the attribute learners.

Secondly, the classifiers used in the compared method are

LSVM (linear support vector machine), RF (random forest)

and NB (naïve Bayes), of which LSVM is a linear approach.

The results from LSVM are much worse than from the other

two. In the comparisons, we used the average accuracy of the

three classifiers. Thirdly, the feature extractionmethod used in

the baseline method is supervised PCA, which is a linear fea-

ture reduction method, requiring the training samples to fol-

low a Gaussian distribution; such a requirment, however, may

not be met for the CWRU dataset.

Regarding computational cost, the two groups of feature

extaction methods need completely different running times, as

shown in in Table 9. The average running time of the three

traditional methods is 1.83s, whereas the average running time

of VGG16, VGG19 and Resnet50 is 2485.06s. The overall

time used by proposed SSB-ZSL-1DCNN method is 71.98s

for 20 epochs. Clearly, the deep learning based methods need

far more time for training, and usually the deeper the CNN, the

more time it needs. Compared to other convolutional net-

works and traditional methods, the propsoed 1D CNN model

only needs a relatively small amount of time and shows obvi-

ously, significantly better results. Putting running time and

classification accuarcy together, SSB-ZSL-1DCNNhas excel-

lent adaptability to 1D time series signals and shows high

efficiency.

4.2 The Tennessee-Eastman Process (TEP) dataset

4.2.1 Introduction to the TEP dataset

The Tennessee-Eastman dataset [39] was collected for a com-

prehensive industrial chemical process by Eastman Chemical

Company. This dataset is widely studied in the field of fault

detection. The process contains five major operations, includ-

ing a reactor, a product condenser, a vapor-liquid separator, a

recycle compressor and a product stripper. Since this plant-

wide industrial process has many kinds of faults, it could be

challenging to collect enough samples to build a fault

Table 7 Experimental settings for

deep learning-based feature ex-

traction methods

Feature Extraction Method Input Shape Output Layer Output Shape

VGG16 224×224 The second fully-connected layer 4096×1

VGG19 224×224 The second fully-connected layer 4096×1

Resnet50 224×224 The last global average pooling layer 2048×1
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detection system and might bring considerable losses to the

factory; a zero-shot fault detection method therfore becomes

necessary to detect specific faults for such a system without

their samples in the training stage.

A total of 15 types of faults are exploited in this case study,

and the details are introduced in Table 10. Each type of fault

contains 480 samples, and each sample invovles 52 variables

(fetures) in total.

4.2.2 Model implementation

The structure of the 1D CNN is the same as that for CWRU

described in Section 4.1.2. As for the fault attribute matrix in

the second step, we use the fault attribute matrixA proposed in

[3], which is shown in Table 11; Fig. 8. There are a total of 20

human-defined fault attributes shared between seen faults and

unseen faults.

Fig. 7 Procedure of 2D feature extraction

Table 8 Performance comparison of different fault feature extraction

methods for the CWRU dataset (%)

Group. VGG16 VGG19 Resnet50 PCA ICA KPCA 1D CNN

0 hp 32.83 40.17 46.33 35.00 35.83 59.83 78.50

1 hp 33.17 40.17 33.33 36.83 38.67 55.67 66.67

2 hp 50.83 51.50 61.67 29.00 30.33 60.50 87.67

3 hp 51.00 63.17 51.33 36.50 37.00 62.00 66.78

Table 9 Computational time of different feature extraction methods for

the CWRU dataset

Feature Extraction Method Computational time (s)

PCA 1.435524

ICA 2.174596

KPCA 1.873985

VGG16 1483.859375

VGG19 1522.639438

Resnet50 4448.684739

SSB-ZSL-1DCNN 71.978182

Table 10 Fault description for the TEP dataset

Fault

Number

Fault Description Type

1 A/C feed ratio, B composition

constant

Step

2 B composition, A/C ratio constant Step

3 D feed temperature Step

4 Reactor cooling water inlet

temperature

Step

5 Condenser cooling water inlet

temperature

Step

6 A feed loss Step

7 C header pressure loss Step

8 A, B,C feed composition Random variation

9 D feed temperature Random variation

10 C feed temperature Random variation

11 Reactor cooling water inlet

temperature

Random variation

12 Condenser cooling water inlet

temperature

Random variable

13 Reaction kinetics Slow drift

14 Reactor cooling water valve Sticking

15 Condenser cooling water valve Sticking
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As for the experimental setting, we split the 15 types of

faults into three parts: eight for training (seen), four for vali-

dation and three for test (unseen) faults. To comprehensively

evaluate the proposed method, we follow the practice in [3] to

divide the TEP data into five groups, the details are shown in

Table 12. The number of training samples is 5760, and the test

samples is 1440. The evaluation criteria are the same as that of

CWRU dataset.

4.2.3 Fault detection accuracy with ZSL

The fault detection results of ZSL for the 5 groups with of the

TEP data are shown in Table 13. The detection accuracies

vary from 59.72 to 96.67% for different types of unseen faults.

The accuracy details of each unseen fault are presented in the

confusion matrices in Fig. 9. For some specific classes, such

as fault 8 in GroupC and fault 2 in Group D, the accuracies are

39% and 33%, respectively, a sort of chance level of 33.33%,

but none is below that the chance level. From the fault de-

scription in Table 9, we can see that fault 2 and fault 8 are two

complicated faults, involving three-quarters of the compo-

nents in the chemical reactions. Hence, given the nature and

mechanism of ZSL method, it is more difficult to train an

accurate model based only on the seen fault data with few

fault attributes, to detect the unseen faults which invovlve

much more fault attributes.

From Table 13, the proposed method shows a much better

performance in Group A, B, C and E, although its accruacy is

slightly below that of [3] in Group D. Note that for Group E,

the accuracy of our method is far higher than that reported in

[3]. To explain such a large differenc in accruacy, we checked

the confusion matrices presented in [3], the accuracy was 26%

for fault 5 and 21% for fault 9, which are below the random

Table 11 Fault attributes for the TEP dataset

Number Fault Attribute

Att1 Input A is changed

Att2 Input C is changed

Att3 A/C ratio is changed

Att4 Input B is changed

Att5 Related with pipe4

Att6 Temperature of input D is changed

Att7 Related with pipe2

Att8 Disturbance is step-changing

Att9 Input is changed

Att10 Temperature of input is changed

Att11 Occurred at reator

Att12 Temperature of cooling water is changed

Att13 Occurred at condenser

Att14 Related with pipe1

Att15 Disturbance is ramdom varying

Att16 Model parameters are changed

Att17 Disturbance is slow drift

Att18 Related with cooling water

Att19 Related with valve

Att20 Disturbance is sticking

Fig. 8 Fault attribute matrix A [3]

Table 12 Five groups of sub-datasets for the TEP dataset [3]

Group. Training Faults Validation Faulrs Test Faults

A 3, 5, 7, 9–13 2, 4, 8, 15 1, 6, 14

B 1, 3, 5, 6, 8, 12, 13, 15 2, 9, 11, 14 4, 7, 10

C 1, 2, 4, 5, 7, 8, 10–12, 14, 15 3, 6, 9, 13 8, 11, 12

D 1, 6, 7, 9–11, 13, 14 4, 8, 12, 15 2, 3, 5

E 1, 2, 4–6, 8–11 3, 7, 12, 14 9, 13, 15
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choice chance level (33.33%). The accuracies of our mehtods

for the three types of faults, however, reach 98%, 93% and

99%, respectively.

4.2.4 Comparison with traditional feature extraction methods

In the previous section, we have compared different deep

learning based feature extraction methods for the CWRU

dataset. We now focus on three commonly used traditional

feature extraction methods, namely, PCA, ICA and KPCA,

to further evaluate and compare the performance of the

propsoed method.

For the three feature extraction methods, PCA, ICA and

KPCA, we implemented the experiments by using the scikit-

learn package [47]. As for the parameter settings, eachmethod

adopts 20 features extracted from a total 52 raw variables. The

accuracies of different feature extraction methods are present-

ed in Table 14. For all groups (but Group D), we achieve

impressive results. For Group D, the proposed SSB-ZSL-

1DCNN model achieved a slightly lower accuracy than

ICA. However, we obtained significant improvements

for Groups A-C: 15.84%, 20.06% and 16.25% higher

compared with the best results of the other three methods,

respectively. In Table 15, we also compare the computa-

tional time used by PCA, ICA, KPCA and SSB-ZSL-

1DCNN. The time used by KPCA is more than twice of

that used by 1D CNN. Althogh the running time of PCA

and ICA is shorter than SSB-ZSL-1DCNN, their overall

accuracy perfromances are obvously much lower than our

method.

From the above comparisons, it can be concluded that

the proposed method performs better than the traditional

feature extraction methods. The SSB-ZSL-1DCNN model

works well for 1D time-series fault signals and can

Table 13 Fault detection results for the TEP dataset with the proposed

ZSL method (%)

Group. Step Size SSB-ZSL-

1DCNN

Reference [3]

A 0.7 84.31 75.78

B 0.5 76.94 57.54

C 0.8 62.08 53.46

D 0.7 59.72 62.50

E 0.7 96.67 51.03

Fig. 9 Confusion matrices of the results of unseen faults
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achieve higher accuracy perfromances for bearing fault

detection.

4.2.5 Comparison with traditional multi-classification

methods

In this section, we further compare our method with three

different multi-classification methods, namely, naïve Bayes

(NB), random forest (RF) and support vector machine

(SVM). In doing so, we conducted experiments using the five

groups (A-E) of data described in Table 12. Taking group A as

an example for explanation,the experimental settings are as

follows.

1) Fault 2–5, 4–13, 15 are treated as known (seen) types, and

faults 1, 6 and 14 are treated to be unknown (unseen). We

denote the former by G1, and the latter by G2.

2) For the three traditional methods, samples from both G1

and G2 were were used to train the fault classification

models. Specifically, a total of 480 × 12 = 5760 samples

from G1 (480 samples for each fault type) were

used for model training. In additional to the 5750

samples, two sets of samples from G2, one set

conssiting of 10 × 3 = 30 (10 samples for each

fault type) and another consisting of 50 × 3 = 150

(50 samples for each fault type), were also added to

the training data for classification model training.

3) For the proposed method, only the 5760 samples from

G1were used for SSB-ZSL-1DCNN model training; no

sample from G2 was used.

4) A total of 480 × 3 = 1440 samples from G2 (480 sam-

ples for each fault type), which are the same as that used

in the previous experiments, were used for model

prfromance test.

5) The experiments for the three methods, NB, RF, and

SVM, were implemneted by utilizing the scikit-learn

package [47].

The results of the traditional multi-classification methods

under few-shot learning setting are shown in Table 16.

From the results, all the three traditional multi-

classification methods showed poor performance, even

though a number of unseen fault samples were included in

the training dataset. Further calculations show that the overall

accuracies are distributed between 20% and 40%, the sample

size of unseen faults being increased from 10 to 50. None of

the three traditional methods produced a comarable result to

that by our method. The highest accuracy of the three methods

is 46.64%, which is achived by RF for Group E with 10

unseen fault samples being included in the training dataset.

Our method achieves 96.67% Group E without using any

samples in unseen faultsin five groups.

It shoulld be stressed that a diect comparison of our

methods with these three traditional multi-classification

methods is unfair and puts our method in a disadvantegous

position, this is because zero-shot learning setting is totally

different from few-shot learning setting and far more different

Table 14 Performance comparison of different feature extraction

methods for the TEP dataset (%)

Group PCA ICA KPCA SSB-ZSL-1DCNN

A 61.39 68.47 63.54 84.31

B 43.06 45.07 56.88 76.94

C 45.83 42.85 40.42 62.08

D 58.06 63.19 57.71 59.72

E 91.39 95.35 89.93 96.67

Table 15 Computational time of different feature extraction methods

for the TEP dataset

Feature Extraction Method Computational time (s)

PCA 1.359375

ICA 1.578125

KPCA 163.609375

1D CNN 60.437500

Table 16 Performance

comparison of different multi-

class classification methods for

the TEP dataset (%)

Group. Number of samples for each test fault type included in the training dataset

10 50 0

NB RF SVM NB RF SVM SSB-ZSL-1DCNN

A 21.29 20.82 24.61 21.63 22.36 25.92 84.31

B 30.81 42.36 35.86 30.56 45.15 35.92 76.94

C 29.46 41.68 3354 29.68 44.63 34.14 62.08

D 26.58 29.64 30.26 30.17 33.96 33.43 59.72

E 26.79 46.64 33.43 27.79 46.24 33.39 96.67
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than the settings for traditional multi-class classfication

methods. It should be noted that the fault descriptions pro-

posed in this study may not be applicable in the multi-

classification methods. In conclusion, it is important to intro-

duce fault attributes as the side information for fault detection

under zero-shot learning setting.

4.2.6 Comparison with other ZSL methods

The experimental implementation process in this section is

similar to that in Section 4.1.4, which considers four classic

semantic based ZSL methods (i.e., SJE, DEVISE, ESZSL,

SAE). We replace the visual attributes used in these four

methods with the fault attributes proposed in this study. The

experimental results are shown in Table 17, from which it can

be seen that for most groups, our method outperforms the

other four ZSL methods, except for group D. SAE is a deep

learning-based method which uses auto-encoders with several

hidden layers. It has a better non-linear representation ability

than the other three shallow network models. For group D, the

accuracy of SSB-ZSL-1DCNN is slightly lower than that of

SAE (by 5.84%), but for other groups, our method performs

much better than SAE: 38.61% higher for group A, 2.64%

higher for group B, 28.54% higher for group C and 10.16%

higher for group E. Overall, SSB-ZSL-1DCNN is more suit-

able for 1D time-series data thanks to the introduction of the

fault attribute matrix. This, in turn, shows the importance and

usability of feature extraction and fault descriptions for solv-

ing zero-shot fault detection problem.

5 Conclusion

In the field of fault detection, we often encounter the following

situation: samples of certain types of faults are not available or

extemely difficult to obtain for various reasons. Bearing this in

mind, a new semantic space based zero-shot learning model

with 1D CNN (SSB-ZSL-1DCNN) is proposed in this work

for fault detection. The proposed method has the following

feature: a SSB-ZSL-1DCNN model can detect new (unseen)

faults even though the dataset used for training the model does

not include any samples of the unseen faults. This is important

and useful for solving fualt detection tasks where new fault

types that have neve been seen before.

The applicablity and effectiveness of the prososed SSB-

ZSL-1DCNN has been demonstrated using two well-known

benchmarks: the bearing dataset CWRU for rotary machines

and the TEP dataset for an entire chemical process control

system. For the first case, the experiments focus on train-

ing the model using only samples of small size faults and

detecting the large-size faults using the trained model. For

the second case, the focus is on solving many-fault detec-

tion and many-class classfication problems, which are

more comprehensive and challenging tasks. For both case

studies, the proposed method shows excellent and impres-

sive performances, which are far better than the compared

methods.

In the future, we will improve the overall performance of

the proposed SSB-ZSL-1DCNN model from the following

two aspects. Firstly, the utility of the source of side informa-

tion could be extended to unsupervised fault label embeddings

rather than defining fault attributes mannually; this can help

increase the efficiency of the method. Secondly, the applica-

tion of the proposed method can be extended to generalized

zero-shot learning (GZSL), which emphasizes a more practi-

cal scenario where there is a need to effectviely detect both

seen (known) faults and unseen (unknown) faults by training

models using only samples of seen faults.
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