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Abstract— We present a progressive 3D registration frame-
work that is a highly-efficient variant of fully-automatic, classi-
cal non-rigid ICP. Since it uses the Laplace-Beltrami operator
for deformation regularisation, we view the overall process
as Laplacian ICP (L-ICP). This exploits a ‘small deforma-
tion per iteration’ assumption and is progressively coarse-to-
fine, employing an increasingly flexible deformation model,
an increasing number of correspondence sets, and increas-
ingly sophisticated correspondence estimation. Correspondence
matching is only permitted within predefined vertex subsets
derived from domain-specific feature extractors. Additionally,
we present a new benchmark and a pair of evaluation metrics
for 3D non-rigid registration, based on annotation transfer. We
use this to evaluate our framework on a publicly-available
dataset of 3D human head scans (Headspace). The method
is highly robust and only requires a small fraction of the
computation time compared to the most popular classical
approach, yet has comparable registration performance.

I. INTRODUCTION

Determining surface correspondences across a set of 3D

shapes is key to modelling them. One approach employs non-

rigid transformation of a template (source) shape, so that its

vertices align with those of a target shape - see Figure 1.

When a template is non-rigidly registered to a set of shapes

of some class, this enables construction of statistical shape

models, such as 3D Morphable Models (3DMMs, [1], [23]).

Non-rigid registration has been extensively explored both

in terms of classical optimisation algorithms and deep learn-

ing. Often, the latter requires a large corpus of training data,

data augmentation techniques or transfer learning. Here, we

revisit the classical approaches, which do not have such

requirements and are of high utility in low data volume cases.

In this respect, we provide a new formulation of dense, non-

rigid Iterative Closest Points.

In essence, our algorithm incorporates a form of

progressively-relaxed Laplacian deformation regularisation

into an progressively coarse-to-fine ICP-style framework [3],

[1] - and hence our approach is termed Laplacian ICP (L-

ICP). Laplacian mesh editing [25] is known to be computa-

tionally efficient, due to its sparse linear structure and hence

a key benefit of L-ICP is that it is very efficient computation-

ally, when compared with competing classical approaches for

non-rigid registration, such as Optimal-step N-ICP [1] and

Coherent Point Drift (CPD [21]). The approach is designed to

incorporate shape morphing constraints supplied by domain-

specific feature extraction algorithms, as shown in Figure 1,

which has facial landmarks, ear landmarks and an intrinsic

symmetry contour on a human head. Furthermore, it handles

variable mesh resolution via the cotangent weighting scheme

of the Laplace-Beltrami operator.

Target Data Template Morph

Fig. 1: Target scan (left) and template (right) morphed with

Laplacian ICP. Correspondence sets are: (i) landmarks (red);

(ii) right ear landmarks (cyan); (iii) left ear landmarks (cyan);

(iv) symmetry contour (blue); and (v) all remaining vertices

on mesh (grey surface).

L-ICP is packaged in a very flexible, staged non-rigid reg-

istration framework, where stages are defined by high-level

scripting. Therefore, it is easily adapted to different shape

classes, guided by domain-specific sets of automatically-

extracted correspondences. It is a progressively coarse-to-

fine process that, as it transitions into each new stage,

may employ: i) an increasing number of correspondence

sets (landmarks, contours, regions); ii) an increasingly re-

fined correspondence estimation; iii) an increasingly flexible

shape deformation model and iv) an iterative shape refine-

ment, used after correspondences stabilise, that generates a

Laplace-Beltrami operator consistent with the template itself.

Since our algorithm estimates the deformed shape directly

in a linear system, it is easy to incorporate constraints from

other linear relations on the deformation, such as those from

3DMMs or extrinsic symmetry constraints. We evaluate our

work on the Headspace dataset of 3D human head scans [9]

and compare to the per-vertex affine regularisation approach

from the most commonly-used N-ICP variant [1].

In summary, our contributions are: i) fully-dense morphing

via progressively relaxed Laplace-Beltrami regularisation; ii)

a flexible and progressive coarse-to-fine registration frame-

work; iii) a new publicly-available non-rigid registration

benchmark for the Headspace [9] human head dataset, com-

prised of a set of manual annotations (859 subjects) and

a pair of annotation transfer metrics. We will make our

annotation data and registration code available in the interests

of reproducibility.
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II. RELATED WORK

Non-rigid 3D registration, correspondence matching and

3DMM fitting are highly-active research areas. Methods

focus on correspondences across organic shape sets such as

faces [5], [17], [9], [23], human bodies [4], [20], [13], [24]

and various human organs [15]. Alternatively, they focus on

man made objects, such as chairs, cups and aircraft [28],

[19]. A current popular approach, due to its compactness

and flexibility, is to employ implicit surface representations;

for example, where the 3D surface is the zero level set of

a learnt Signed Distance (to surface) Function (SDF) [22],

[11], or where the function returns an occupancy indicator.

Zheng et al. [30] propose the use of Deep Implicit Templates

for 3D shape representation. Their method employs a Deep

Implicit Function (DIF) that is decomposed into a warping

function and an implicit template. The warping function

transforms point samples of the raw scan to their canonical

positions, which are then mapped to SDF values by the

implicit template. In contrast to [12], their approach is able

to learn an implicit template for some shape class. The

method also establishes dense correspondences across the

shape dataset in an unsupervised fashion.

Rather than the standard pipeline of multi-view 3D shape

reconstruction, followed by a 3D-to-3D template to data

registration scheme, the ToFu system of Li et al. [18] outputs

a 3D facial mesh in a consistent topology directly from a set

of calibrated 2D input images. The idea here is to consider a

feature volume, where a grid of points in that volume selects

2D features by projection into the multi-view images. A

coarse-to-fine architecture is then able to predict a consistent

facial mesh topology.

In this work, we revisit classical ICP [3] in its non-

rigid form [1]. Widely-used methods of classical non-rigid

registration include Non-rigid Iterative Closest Point (NICP)

[1], Coherent Point Drift (CPD) [21], Thin Plate Spline

(TPS) approaches [6], [29] and the method of Li et al.

method [16], which employs a Levenberg-Marquardt based

optimisation. The As-Rigid-As-Possible (ARAP) form of

deformation regularisation was introduced by Sorkine et

al. [25] in their work on surface editing. Here the mesh

Laplacian was employed to ensure that shape details are

preserved. This proved extremely effective, as the relative

location of vertices and hence local shape is encoded by the

Laplacian. Furthermore, it was noted that by using the cotan-

gent scheme in the computation of the Laplacian operator,

non-uniformity in 3D mesh resolution and connectivity could

be accommodated. Dai et al. [8] use the Laplace-Beltrami

shape regularisation as a way of initialising the Coherent

Point Drift [21] algorithm. Although we employ a similar

early-stage template adaptation, [8] use fixed landmarks with

a single fixed stiffness weight, whereas ours uses both fixed

and variable correspondence sets and a stiffness weighting

schedule. More importantly, we demonstrate, for the first

time, that it is possible to use LB regularisation to do fast,

fully dense, and complete shape morphing.

III. LAPLACIAN ICP

Any form of non-rigid 3D ICP seeks to iteratively refine

a source shape, such that it becomes registered with a target

shape. A key question is how to regularise the deformation

of the source mesh. Inspired by Laplacian surface editing

[25], we employ the Laplace-Beltrami (LB) operator in our

regularisation term. When the LB operator is applied to a

mesh, it extracts vectors in the direction of the local surface

normal, with magnitude proportional to the local mean

surface curvature. This computation is of a discrete form

and here we employ the cotangent approximation scheme.

Thus, within our iterative optimisation scheme, we consider

a regularising energy term, Ereg , of the form

Ereg(Xi+1) = ||Li+1Xi+1 − LiXi||
2
F (1)

where X ∈ R
N×3 is a matrix of N source mesh vertex

positions, Li = L(Xi) is the LB operator (L ∈ R
N×N ,

sparse) computed from the source shape (e.g. template) at

the ith iteration and ||.||F is the Frobenius norm. This reg-

ularisation simultaneously applies an orientation constraint

on the template update, because of the extracted surface

normal directions - and a shape constraint, due to the

surface normal magnitudes being proportional to local mean

surface curvature. Note that rank(L) = N − 1. A physical

interpretation of this is that a pure translation applied to

all vertices of X would provide no change in the energy

described by Eqn. 1. The positional error associated with at

least one pair of corresponding vertices from template to data

can provide the necessary additional constraint as a shape

error, Eshp, that we aim to minimise. We form a weighted

combination of our energy terms as:

E = Eshp + λEreg, (2)

where the parameter λ balances the influence of the two

component energies. Specifically, the energy for a new

deformation is given as:

E(Xi+1) = ||PiXi+1 −QiYi||
2
F + λiEreg(Xi+1) (3)

where Yi are the target data vertices, Pi and Qi are highly-

structured binary selection matrices (discussed later) that

define source-target bijective correspondences and λi is a

weighting that defines the amount of mesh deformation

regularisation.

Clearly, Eqn. 3 is not closed form, as the regularisation

term, Ereg(.), at the update step (i + 1), is dependent on

Li+1, which is a function of Xi+1, i.e. the updated template

itself. This suggests an iterative procedure, where we invoke

a small deformation per-iteration assumption, so that Xi+1 ≈
Xi, which implies Li+1 ≈ Li and that we can compute

an accurate regularising term, Ereg . We ensure this small

deformation assumption holds by initialising L-ICP with a

high value of λi giving a large template mesh ‘stiffness’.

This parameter gradually becomes smaller as the template

gets closer to the target data, thus balancing it with a smaller

Eshp term. In other words, we employ a regularising mesh

stiffness schedule, of gradually decreasing stiffness. This is

2
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analagous to the mesh stiffness schedule defined in N-ICP

[1] that regulates mesh deformation by limiting differences

in locally-affine transformations. Thus λ changes in each

iteration of L-ICP, as do the data vertices Y, as any rigid

component of template-data alignment is applied to the data

rather than the template, for reasons described later.

We use a set of domain-specific feature extractors to

generate C subsets of source vertices (selected by P1...C) and

target vertices (selected by Q1...C) that are in correspondence

with each other. Using these correspondence sets and the

small deformation approximation for regularisation, we have

our overall energy term as:

Ei+1 =

C∑

j=1

αj ||P
j
iP

j
Xi+1−Q

j
iQ

j
Yi||

2
F+λi||Li(Xi+1−Xi)||

2
F ,

(4)

where (Pj
i ,Q

j
i ) select correspondences from within corre-

spondence sets (Pj ,Qj). Note that Ei+1 = E(Xi+1) and

αj is a weighting that expresses the relative confidence in the

jth correspondence set. Eqn. 4 requires a linear solve for 3N
variables per iteration, whereas N-ICP [1] requires a linear

solve for 12N variables as per-vertex affine transformations

are computed. Furthermore, the L-ICP constraint is vertex-

based, whereas the N-ICP constraint is edge-based, giving

around three times as many shape regulation equations in

the linear solve for a triangular mesh. As a result, L-ICP is

much more compact and efficient than N-ICP.

A. Fixed correspondence shape refinement

Suppose that, within some iteration, i, of L-ICP, we fix

both the correspondences (all C Pi,Qi matrices) and the

parameter λi and iteratively minimise the energy defined

in Eqn. 4 by updating the template mesh X (i.e. employ

an inner optimisation loop). This drives the regularisation

term, Ereg , to zero, allowing the template to move closer

to the data in steps of decreasing size until the recomputed

template, Xi+1, and the LB operator employed in the update,

Li, become consistent with each other. In practice, we find

that this second-order template deformation only takes a few

iterations until the change in X over an iteration becomes

small. For some fixed set of correspondences, this process

provides a small template shape refinement. Therefore, it is

only used in the final morphing stage of our framework,

when the set of correspondences has become stable.

IV. COARSE-TO-FINE L-ICP FRAMEWORK

Our L-ICP registration framework is shown in Fig. 2.

This defines a set of s = 1 . . . S user-defined, application-

dependent, coarse-to-fine registration stages, each of which

terminates when the stage’s template deformation falls below

some threshold, ||∆X||2F < ts, or a maximum number of it-

erations, imax
s is reached. Within each stage, the user defines:

i) a set of correspondence sets; ii) a correspondence strategy;

iii) a template deformation model, and iv) stage termination

conditions, (ts, i
max
s ). The end user can rapidly define a

morphing process as a set of such stages, as each stage

inherits properties from the previous stage, unless they are

re-specified. Typically, early registration stages have a few

landmark-based correspondence sets, coarse correspondence

matching and low-dimensional deformation models (e.g.

global affine or low-dimensional 3DMMs). Later stages have

many correspondence sets, fine correspondence matching and

high-dimensional deformation models (e.g. high-dimensional

3DMMs or free movement with 3N degrees of freedom).

A key feature is that we switch to a higher-dimensional

deformation model before switching to dense correspondence

search over the full surface. With otherwise free movement

of the template vertices, this relies on the aforementioned

Laplacian shape regularisation to effectively interpolate be-

tween the sparse correspondences, thus adapting the source

template to the target shape. In essence, such template

adaptation is akin to a fully-automatic, iterative mesh editing

process and is the reason that our method is successful on

widely different target shapes using a single template (e.g.

small babies heads and large adult heads). Our framework is

very flexible and is designed to exploit situations where there

are landmarks and/or contours and/or surface regions (e.g.

from semantic parts segmentation) that correspond across

the source and target shapes. In the case of landmarks, a

bijective (one-to-one) correspondence is predefined, and for

contours and regions, we employ mutual nearest neighbour

search. We now detail the stage-selectable choices in our

L-ICP framework that relate to Fig 2.

A. Correspondence sets for the human head

Our example application is to register the FaceWarehouse

head template [7] with the Headspace dataset of 3D human

heads [9]. In order to generate the correspondence selection

matrices, P
j
i ,Q

j
i in Eq. 4, which define sets of corresponding

mesh vertices, we employ a 3D face landmarker system, a 3D

ear landmarker system, our own symmetry contour extractor,

and a large correspondence set region that is all vertices that

are otherwise unused in these landmark and contour sets. The

face and ear landmarkers employ the 2D channel as well as

the 3D, whereas the symmetry contour extraction is based

on 3D data only.

The face landmarker system uses the standard dlib face

landmarker, which is based on the work of Kazemi and

Sullivan [14]. This extracts 68 2D facial landmarks of which

we retain 52, discarding the 16 that follow the apparent

contour of the face. We project these 2D facial landmarks to

their nearest vertices on the target 3D data scan.

We employ the Human Ear Reconstruction Autoencoder

(HERA) system of Sun et al. [27] to generate 55 landmarks

per ear. This regresses the pose and shape parameters of a

3D Morphable Model (3DMM) of the human ear [10], such

that a synthesised 2D image of the ear matches a rendered

image of the colour-textured 3D target data. Two side views

of the target 3D head can be determined using the facial

landmarks, and the left ear is reflected enabling us to use a

single right ear model. Again, 2D landmarks are projected to

their nearest 3D vertices, and the residual Euclidean distance

is stored, allowing the weighting of individual landmarks

(larger distances have lower weights).

3
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Morph stage 1

Morph stage 2

Morph stage SC
co
rr
es
p
on

d
en

ce
se
ts

Low-dim model

Input - target scan Template

Output - morphed template

FE1...F

Target feature
extractors

Template deformation
models

High-dim model,
LB-regularised

Fig. 2: L-ICP registration framework. Central orange panel: coarse-to-fine registration stages. Left pink panel: feature

extractors for target data. Right purple panel: template deformation models.

We incorporate the method of Benz et al. [2] for symmetry

plane extraction into a more general procedure for symmetry

contour generation. The piecewise nature of our algorithm

allows the extracted symmetry contour to be intrinsic; for

example, if the nose is bent to one side, it successfully tracks

the nose ridge.

Finally the sets of template/data vertices, Bt,d, not desig-

nated as face/ear landmarks and not on the symmetry contour

are defined for region-based correspondences e.g. for the

template: Bt = {X \ {Ft ∪ E
l
t ∪ E

r
t ∪ St}}, where X is

the set of all vertices on the templates and Ft,E
l
t,E

r
t , St

are the sets of template face landmarks, left ear landmarks,

right ear landmarks and symmetry contour on the template

respectively.

B. Correspondence matching

We perform a correspondence match for all active corre-

spondence sets that do not consist of fixed landmarks. These

relate to either corresponding surface contours or correspond-

ing surface regions. Our framework enables one of three

approaches to be selected. All three approaches are reliant on

mutual nearest neighbours (MNN), where we take the subset

of the bidirectional 1-nearest neighbour search results, such

that the correspondence relation is bijective. Additiionally,

this mutual nearest neighbour search can specified to be over

the 3-DOF vertex positions or 6-DOF vertex positions and

their associated normal vectors, with an weighting factor

between positions and their normals. Firstly, MNN search

in itself is a suitably conservative approach for early-stage

morphing and has the benefits of handling mesh holes

automatically and obviating the need for a manually-tuned

threshold to filter out bad correspondences. Secondly, in the

normal shooting method, the MNN approach is augmented

by projecting a vector from the template to its corresponding

data vertex along the source normal, which in general, results

in an off-surface target point. However, when the source and

target are close to each other, this is often a better morph

direction, due to the generally different spatial sampling of

the two surfaces.

C. Deformation models

Early stages of deformation use a global affine model,

described next, whereas later stages use LB-regularised tem-

plate deformation.

1) Affine deformation: Suppose that the template shape is

given as a matrix of vertex positions, Xi ∈ R
N×3, after the

(i − 1)th shape update with initial shape X1, and that the

data, whose 6 DoF pose may vary, is given as the matrix of

vertex positions Yi ∈ R
NY ×3, then we solve the following

linear least squares equation for the affine transform Ai ∈
R

4×3:







α1P
1
iP

1Xi α11
1
i

...
...

αCP
C
i P

CXi αC1
C
i






Ai =







α1Q
1
iQ

1Yi

...

αCQ
C
i Q

CYi






, (5)

where (α1 . . . αC) are the relative influence weights for

various sets of correspondences. P
j
i ∈ {0, 1}N

j
×Nj

a is a

binary selection matrix that selects N j vertices associated

with the j’th correspondence set (j = 1 . . . C) from the

set of all N j
a vertices in that correspondence set and Pj ∈

{0, 1}N
j
a×N is the binary matrix that selects all members

of the correspondence set from the template vertices. Note

that if the correspondence set contains fixed landmarks, then

P
j
i = I

N
j
a
, otherwise it is determined by mutual nearest

neighbour correspondence search, whereas Pj are constant

matrices. Also note that 1
j
i is a vector of 1s with length

equal to the number of correspondences on iteration i for

4
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correspondence set j. The matrices Q
j
i ,Q

j are binary selec-

tion matrices that select data vertices in an analagous way

to the template selection matrices. We choose to decompose

the affine transform into a rigid part and a non-rigid part,

such that

Ai =

[

RiBi

ti

]

(6)

where Ri ∈ R
3×3 is a rotation matrix, Bi ∈ R

3×3 is a non-

rigid deformation matrix composed of anisotropic scaling

and shears and ti ∈ R
1×3 is a translation vector. We then

apply the rigid part of the affine transform to the data:

Yi+1 = (Yi − 1NY
ti)R

T
i (7)

where 1NY
is a column vector of NY 1s. The non-rigid part

of the affine transform is applied to the template:

Xi+1 = XiBi (8)

We could apply the full affine transform to the template, so

this may seem like an unnecessary complication. However, it

is very useful to employ this decomposition, which maintains

a canonical pose of the template, particularly in variants of

L-ICP that constrain template deformation to be symmetrical,

or employ a 3DMM to reduce the dimensionality of the

template deformation model.

2) LB regularised template deformation: In later stages of

the morphing process, we wish to deform the template in a

more detailed way that cannot be modelled by a simple low-

dimensional transform. To achieve this, we solve directly for

source mesh vertex positions, under the regularisation of the

Laplace-Beltrami constraint. Specifically, we minimize the

energy in Equation 4 by iteratively solving for Xi+1 in the

following weighted linear least-squares problem:










α1P
1
iP

1

...

αCP
C
i P

C

λiLi











Xi+1 =











α1Q
1
iQ

1Yi

...

αCQ
C
i Q

CYi

λiLiXi











, (9)

where αj are relative influence weights for various sets

of correspondences and λi is the mesh stiffness weight at

iteration i of the deformation stage.

V. 3D REGISTRATION OF THE HUMAN HEAD

Correspondence sets are weighted using empirical grid

search as follows: face landmarks 1.5, symmetry contour 1.4,

left/right ear landmarks 1.0, all other vertices 1.0. We define

five stages within our framework for human head registration

and an example of the morphing stage outputs is shown in

Fig. 3.

Stage 1 - Affine template initialisation. Goal: align the

data to the template, transform the template to the same

scale and aspect ratio of the data. Settings: i) correspondence

sets, C = 3: face landmarks, left ear landmarks, right

ear landmarks; ii) correspondence matching: mutual nearest

neighbours (MNN); iii) deformation model: global affine

(one shot). We solve the linear least squares problem in Eq

5 for the required global affine deformation, which is then

decomposed and distributed between the target data (rigid

part) and the template (non-rigid part), as described in Eq 6

to 8.

Stage 2 - Affine template adaptation. Goal: improve depth

and height scaling using symmetry contour. Settings: i)

correspondence sets, C = 4 : three landmark sets from

previous stage plus the symmetry contour; ii) correspondence

matching: MNN; iii) deformation model: global affine (iter-

ative). We iteratively compute the affine template update, Ai

using Eq 5 and perform the template/target updates according

to Eq 6 to 8. A small number of iterations stabilises the

symmetry contour correspondences, maximum number of

iterations is set at 15.

Stage 3 - Laplacian template adaptation. Goal: adapt the

template shape to the landmarks and symmetry contour. Set-

tings: i) correspondence sets, C = 4, same as previous stage;

ii) correspondence matching: MNN; iii) deformation model:

LB-regulated free vertex deformation (iterative). This stage

significantly deforms the source template, as it recomputes

better correspondences along the symmetry contour, while

simultaneously decreasing the regularising mesh stiffness (λi

in Eq 9), according to some predefined schedule, at each

iteration. The stiffness parameter ranges from 100 to 0.1 with

a maximum number of iterations set at 58.

Stage 4 - Morphing with dense correspondences. Goal:

compute dense correspondences for dense morphing. Set-

tings: i) correspondence sets, C = 5: all landmark sets

plus symmetry contour plus the ‘set difference’ region; ii)

correspondence matching: MNN; iii) deformation model:

LB-regulated free vertex deformation (iterative). Here we

extend correspondences to the set difference region - i.e.

the template region vertices that are not already used as

either a landmark or on the symmetry contour. The stiffness

parameter ranges from 100 to 1 with maximum iterations set

to 31.

Stage 5 - Morphing with normal shooting. Goal: employ

more refined dense correspondences for dense morphing.

This stage re-specifies the correspondence search to the nor-

mal shooting correspondence method, but otherwise inherits

all other framework selections from stage 4. The stiffness

parameter ranges from 0.9 to 0.1 with maximum iterations

set to 27. This means the maximum number of shape change

iterations is 132 over all stages.

VI. EVALUATION

Quantitative evaluation of 3D shape registration and cor-

respondence quality using real-world data is notoriously

difficult due to a lack of high-quality ground truth data.

One approach is to use a proxy evaluation where better

correspondences are deemed to be those that build better

statistical models according to some metrics. For example,

Styner et al. [26] proposed the use of three 3DMM metrics -

compactness, generalisation and specificity. However, these

are only meaningful when the template is on or very close

to the data surface (results in supplementary). Furthermore,

for soft organic shapes, strong perceptual consensus on what

is a good correspondence often only exists at a very sparse
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Fig. 3: Far left shows the employed Facewarehouse [7] full head template, far right shows the raw 3D Headspace data [9].

Intermediate images show morph stages 2-5 of our L-ICP framework. In most applications, only the final registration quality

matters (column 5) and we see that the poor shape around the eyes after stage 3 (column 3) has been corrected. Zoom

required, more morphs in supplementary.

set of surface locations. In our human head example, these

are the physical junctions of tissues, such as eye and mouth

corners. To mitigate these problems, we propose a different

form of evaluation procedure and benchmark, which is based

on the manual annotation of facial contours. Quantitative

metrics are proposed that capture both the repeatability and

homogeneity of how such annotations are transferred from

the data onto the non-rigidly registered template. These are

detailed further in Section VI-B, but we first describe the

dataset used.

A. Dataset

To evaluate the L-ICP framework, we use the publicly-

available Headspace dataset [9] of high resolution (150K-

200K vertices) 3D images of the human head. The primary

format for this dataset is OBJ, which provides vertex coordi-

nates, mesh connectivity and texture coordinate information.

It is also equipped with five 2D images per subject, used to

texture map the 3D mesh surface using the supplied texture

coordinates, and five corresponding camera calibration files

with both intrinsic and extrinsic camera parameters. We

employ two of the five views (left-frontal and right-frontal)

to manually annotate a range of facial feature contours

on the 2D images, including those around the eyes and

eyelid, mouth, nose, nasolabial folds and ears. In the case of

facial contours that are not well-defined in the image pair,

annotators are instructed to omit them. Due to the labour-

intensive nature of this, we have around 57% coverage of

the Headspace dataset.

B. Annotation transfer

We transfer the 2D target data annotations to the 3D

target mesh, which is achieved via left/right camera ray-

to-mesh intersection, where rays are generated using the

left/right camera calibration matrices. These 3D target scan

mesh surface coordinates are then transferred on to their

nearest neighbor template mesh vertices, after registration.

If multiple annotations (e.g. left and right view of the same

facial contour) transfer to the same 3D template coordinate,

that is recorded as a single hit. Examples of this annotation

transfer over a wide subject age range are given in Figure 4.

In the case of a consistent non-rigid registration perfor-

mance, the annotations on different subject’s target data scans

should transfer to the same vertices on the template, or at

Fig. 4: Left two columns: images with manual annotations.

Third column: two-view annotations amalgamated and pro-

jected to 3D target scans. Fourth column - morphed templates

with annotations transferred. Fifth column - annotations

swapped across the two subjects - diverse annotation swaps

in supplementary.

least to closely neighboring vertices. Thus, by measuring

the template surface density of such an annotation transfer

process, we can generate a quantitative evaluation of reg-

istration repeatability. Additionally, this can be qualitatively

evaluated by color-mapping the template with the density of

those annotation transfers. These should be sharply defined

on the template. Figure 5-left shows a front and side view of

the employed Facewarehouse [7] template, with its surface

color mapped with the frequency of the annotation transfers

over Nsubj = 675 Headspace subjects, with dark blue being

zero transfers and yellow being the maximum frequency of

transfer. The transfer is highly-repeatable around facial fea-

tures, especially the mouth and nose. This is expected, as the

registration process is well-guided by automatic landmarking

in these regions. In contrast, there is lower repeatability

around the nasolabial folds.

1) Annotation transfer metrics: A quantitative repeatabil-

ity metric should indicate high performance when template

vertices are selected in the transfer numerous times (in the

best case, Nsubj times) and low performance when they are

selected few times (in the worst case, once). Let v ∈ V

be the set of template vertex indices that have at least

one annotation transfer (tv ≥ 1) and denote the vertex set

cardinality (for vertices with non-zero tv) be |V|. We define

6



804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

FG2023

#68

FG2023

#68
FG2023 Submission. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Fig. 5: Annotation transfer density color map for Nsubj =
675 Headspace subjects [9] after L-ICP registration. (We

omit 184 annotated subjects where there is not a full set

of ear landmarks due to hair/cap occlusions.) The transfer is

highly-repeatable around the mouth and nose region but is

lower around the nasolabial folds.

the mean annotation transfer density as:

d̄ =
1

Nsubj |V|

∑

v∈V

tv (10)

where Nsubj is the number of subject target scans employed

in the evaluation.

The density metric is straightforward to apply and is

a quantitative measure that relates directly to qualitative

annotation density colormaps. However, it is annotation-

label agnostic and does not handle the case when annotation

contours are in close proximity to each other (e.g. bottom of

upper lip and top of lower lip). Here, contours with different

semantic labels may transfer to the same morphed template

vertices. Ideally, template vertices are selected by annotations

of a single semantic label. Therefore, we additionally define

a mean annotation transfer homogeneity metric. To do this,

we define tv,i ≥ 1 as the non-zero number of annotation

transfers for vertex v ∈ Vi where i indexes a semantic

annotation label in the full set of annotations A. The mean

homogeneity is then

h̄ =
∑

i∈A

ωih̄i =
ωi

∑

v∈Vi
tv,i

∑

v∈Vi

∑

j∈A
tv,j

, wi =

∑

v∈Vi
tv,i

∑

v∈V

∑

j∈A
tv,j

(11)

where h̄i is mean homogeneity per annotation label i and

ωi is a weighting based on the relative prevalence of that

annotation label, with
∑

i∈A
ωi = 1.

A limitation of these metrics is that they are template mesh

specific. Templates of higher resolutions will give lower

values for these metrics, since a given template vertex can

only be selected for the annotation transfer (i.e. as the 1-

nearest neighbour) over a smaller surface area. It may be

possible to use an additional normalising factor, αres, that

adjusts for template resolution, but this may be confounded

by non-uniform template resolutions.

In Figure 6 we compare L-ICP with a version of our

framework that has the per-vertex affine constraint (PVAC)

[1] substituted for Laplacian regularisation, with all param-

eters the same. We compare the two approaches in terms
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Fig. 6: Top left: annotation transfer density, 118 subjects over

five registration stages. PVAC employs the Per Vertex Affine

Constraint [1] within our framework. Top right: annotation

transfer homogeneity. Bottom row: colormaps of annotation

transfer density: L-ICP stages two (left) to five (right) -

please zoom.

of annotation density and homogeneity over five stages of

morphing. (This is done over 118 subjects due to high

PVAC computation time.) Although the PVAC constraint ap-

proaches its maximum in fewer stages, the final performance

is very similar at a fraction of the computational cost.

C. Processing time

The following table gives the average processing times in

seconds for L-ICP to reach the end of each stage (averaged

over 118 scans). Scans are typically 150K-200K vertices

with a template of size 11.51K vertices. This was evaluated

on a Macbook Pro with 2.3 GHz Quad-Core Intel Core i7,

32GB of memory, macOS Big Sur, running Matlab version

R2021a. L-ICP is over 26 times faster at stage 5, than when

a per-vertex affine constraint (PVAC) is employed within

the same coarse-to-fine framework, with the same features

and using the same stiffness schedule. Thus, L-ICP gives

a dense, consumer laptop-based registration in around 47

seconds compared to around 20 minutes for PVAC.

Stage 1 2 3 4 5

L-ICP (s) 0.03 0.28 15.68 32.38 47.13

PVAC (s) 0.03 0.24 252.86 1183.67 1230.51

VII. CONCLUSIONS

We have demonstrated that fully-automatic, densely-

corresponded non-rigid registration only requires a Laplacian

regularisation term and hence is relatively rapid to compute.

It achieves this via a small deformation per iteration as-

sumption within a progressive coarse-to-fine framework that

is guided by within-set correspondences from application-

specific feature extractors. We have shown that the results

are comparable with using per-vertex affine constraints, but at

considerably lower computational cost. Finally, we presented

a new benchmark for registration based on contour sketch

annotations and a pair of annotation transfer metrics.
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