
This is a repository copy of Thermal fracturing in orthotropic rocks with superposition-
based coupling of PD and FEM.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193459/

Version: Accepted Version

Article:

Sun, W., Susmel, L. orcid.org/0000-0001-7753-9176 and Peng, X. (2023) Thermal 
fracturing in orthotropic rocks with superposition-based coupling of PD and FEM. Rock 
Mechanics and Rock Engineering, 56 (3). pp. 2395-2416. ISSN 0723-2632 

https://doi.org/10.1007/s00603-022-03164-4

This version of the article has been accepted for publication, after peer review (when 
applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of 
Record and does not reflect post-acceptance improvements, or any corrections. The 
Version of Record is available online at: http://dx.doi.org/10.1007/s00603-022-03164-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Highlights 

 
 A superposition-based coupling of non-ordinary state-based peridynamics and finite element method 

approach for thermal fracturing in orthotropic rocks is proposed. 

 The mechanical anisotropy, thermal anisotropy as well as the hindering effect of the insulated crack 

on the thermal diffusion are all considered in the coupled model. 

 The inclination angle of the cracks and the major axes of the elliptical shape of the isotherms are 

generally consistent with the principal material first axis. 

 Both the mechanical and thermal anisotropy highly affect the thermal fracturing in orthotropic rocks. 
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Abstract 8 

Thermally induced deformation and fracturing in rocks are ubiquitously encountered in 9 

underground geotechnical engineering and they are highly influenced by the material anisotropy. 10 

In the present manuscript, a superposition-based PD and FEM coupling approach is proposed for 11 

simulating thermal fracturing in orthotropic rocks. In this approach, the critical regions with 12 

possibility of cracks are encompassed by the non-ordinary state-based peridynamics (NOSBPD) 13 

model, while the entire problem domain is discretized by a fixed underlying finite element (FE) 14 

mesh. The thermal balance equation is fully approximated by the underlying finite elements 15 

without any contribution from the NOSBPD model. The NOSBPD model and FE model are 16 

coupled based on the superposition theory. The mechanical anisotropy, thermal anisotropy as well 17 
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as the hindering effect of the insulated crack on the thermal diffusion are considered in this coupled 18 

model. A staggered solution scheme is employed to solve the coupled system. The performance of 19 

the coupled method for thermomechanical problems with and without damage is evaluated by two 20 

numerical examples. After validation, thermal fracturing in an orthotropic rock specimen under 21 

high surrounding temperature is systematically studied. The parametric study shows that the 22 

inclination angle of the cracks and the major axes of the elliptical shape of the isotherms are 23 

generally consistent with the principal material first axis. Both the mechanical and thermal 24 

anisotropy highly affect the thermal fracturing in orthotropic rocks. 25 

 26 

Key Words: Orthotropic rocks; thermal fracturing; Peridynamics; Coupling  27 
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1 Introduction 28 

Composed of different mineral grains and crystals with different mechanical and thermal 29 

expansion features, the mechanical performances of rock or rock-like materials are closely related 30 

to the environmental temperatures (Wei et al., 2015). Thermal stress produced by the thermal load 31 

alters the mechanical deformation and consequently induces fracturing if it exceeds the strength 32 

of the rock materials. For example, for the disposal of high-level radioactive waste (Birkholzer et 33 

al., 2012; Zuo et al., 2017), a large amount of heat is released by the nuclear waste during the decay 34 

process and the temperature of the surrounding rock of repository is raised. Consequently, thermal 35 

cracking in the surrounding rocks may be generated. It should be carefully handled to prevent 36 

nuclide migration in fractured rocks. On the other hand, in the enhanced or engineered geothermal 37 

systems (EGS), thermally induced secondary cracks in the hot dry rock system are employed to 38 

generate effective fracture networks for water circulation (Breede et al., 2013). Recently, as 39 

specific development needs, some tunnels have to be constructed in complex geological regions 40 

with high ground temperature. For instance, the maximum temperature of rock even reaches 89.9℃ 41 

in Sangzhuling Railway Tunnel in China (Wang et al., 2019). The great temperature difference 42 

induced by the high ground temperature in surrounding rocks and air temperature in the tunnel 43 

could generate large temperature stress and subsequently cause cracks in the surrounding rocks or 44 

tunnel linings, which deteriorates the stability of the underground structures significantly (Hu, 45 

2021).  46 

As natural materials, rock masses contain numerous discontinuities as joints, cracks, bedding 47 

planes, and/or even faults, thus isotropic rocks are rare, instead, and anisotropy is a common 48 

phenomenon in rocks. Unlike in isotropic rocks, the preferential distribution of properties renders 49 
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deformation and fracturing in anisotropic rocks more complex (Zhu and Arson, 2014; Mohtarami 50 

et al., 2017). For instance, due to material anisotropy, experiments have shown that cracks in 51 

anisotropic rocks tend to propagates along the relatively weak bedding plane, rather than along the 52 

initial notch orientation as in isotropic rocks (Nejati et al., 2020). Sedimentary rocks can often be 53 

regarded as orthotropic media with different elastic properties in the bedding plane and 54 

perpendicular to this plane. Thus, in this study, we focus on the thermally induced deformation 55 

and fracturing in orthotropic rocks. 56 

Thermally induced deformation and fracturing as well as mechanical properties variations 57 

influenced by the environmental temperature are extensively investigated by experimental tests 58 

(Heuze, 1983; Jansen et al., 1993; Mahmutoglu, 1998; Ke et al., 2009). In addition, analytical 59 

solutions are also available for some special thermomechanical problems (Nobile, 2005). However, 60 

the anisotropy effect is rarely taken into account in theses experimental or analytical studies. 61 

Furthermore, for engineering applications containing complicated geometries and boundary 62 

conditions, numerical methods are a more competitive option. So far, many advanced numerical 63 

approaches have been employed to study thermal fracturing in orthotropic materials. In simplified 64 

terms, these methods can be categorized into three groups: (i) continuum-based numerical methods, 65 

(ii) discontinuum-based methods and (ii) hybrid continuum-discontinuum methods. For the 66 

continuum-based numerical method, the extended finite element method (XFEM) is widely used 67 

for this purpose (Mohtarami, 2019). Bayesteh and Mohammadi (2013) compared different elastic 68 

tip enrichment functions for orthotropic functionally graded materials and the stress intensity 69 

factors (SIFs) were extracted to evaluate the performances of the specific orthotropic fracture 70 

propagation criterion. Bouhala et al. (2015) applied the XFEM to study the thermo-anisotropic 71 

crack propagation, where some temperature tip enrichment functions at the crack surface for 72 
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temperature or heat flux discontinuities were used. Nguyen et al. (2019) employed the extended 73 

consecutive-interpolation 4-node quadrilateral element method (XCQ4) with a novel enrichment 74 

approximation of discontinuous temperature field to study the thermomechanical crack 75 

propagation in orthotropic composite materials. Recently, a new set of tip enrichment functions 76 

for temperature field in anisotropic materials was proposed by Bayat and Nazari (2021), where 77 

their dependency on the thermal properties of the materials was considered. The typical 78 

discontinuous approaches for thermal fracturing in rocks are mainly based on the discrete element 79 

method (DEM). The particle discrete element method was used by Xu et al. (2022) to investigate 80 

the fracture evolution in transversely isotropic rocks considering the pre-existing flaws and weak 81 

bedding planes, but the temperature effect was ignored. A three dimensional DEM model for semi-82 

circular bend (SCB) test under combined actions of thermal loading and material anisotropy in 83 

Midgley Grit sandstone was established by Shang et al. (2019) and a total of four fracture patterns 84 

were found. Hybrid approaches taking advantages of different methodologies, such as the 85 

combined finite-discrete element method (FDEM), have also been applied to deal with the thermal 86 

cracking in rocks considering anisotropy. A weakly coupled thermomechanical model taking into 87 

account the mechanical and thermal anisotropy in layered shale formation was proposed by Sun et 88 

al. (2020) using FDEM. Through these studies, there is a consensus that anisotropy plays an 89 

important role in the thermally induced deformation and fracturing of rocks and this effect should 90 

not be ignored. 91 

Peridynamic (PD) theory, firstly proposed by Silling (2000), is a reformulation theory of 92 

classical continuum mechanics. Up to now, three types of Peridynamics, namely bond-based 93 

Peridynamics (BBPD), ordinary state-based Peridynamics (OSBPD) and non-ordinary state-based 94 

Peridynamics (NOSBPD) (Silling et al., 2007) have been proposed. Characterized by the integro-95 
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differential governing equation, the nonlocal PD model remains valid regardless of whether having 96 

the cracks or not and provides an effective tool for dealing with discontinuity problems in many 97 

areas. As far as thermomechanical analysis is concerned, numerous valuable attempts have been 98 

made in PD community. Nonlocal formulations for the thermomechanical coupled system were 99 

derived by Boraru and Duangpanya (2012) and Oterkus et al. (2014). Thermal fracturing in many 100 

brittle or quasi-brittle materials has been investigated by using peridynamics (D’Antuono and 101 

Marco, 2017; Yang et al., 2020; Bazazzadeh et al., 2020; Chen et al., 2021). Concerning thermal 102 

fracturing in rocks, several weakly coupled thermomechanical models based on BBPD (Wang et 103 

al., 2018), OSBPD (Wang and Zhou, 2019) and NOSBPD (Shou and Zhou, 2020) were established 104 

and rock fractures due to heating from boreholes or heterogeneity of rocks with different thermal 105 

expansion coefficients in different parts were successfully captured by these models. However, 106 

thermal fracturing in orthotropic rocks has rarely been studied by peridynamics. This raises the 107 

necessity to propose a thermomechanical coupled peridynamics model applicable for anisotropic 108 

rocks. 109 

In this study, the PD-FEM coupling approach for thermomechanical problems proposed by 110 

the authors (Sun et al., 2021a) is generalized to consider mechanical and thermal anisotropy. To 111 

overcome the limit of high computational cost associated with peridynamics-based models, the 112 

orthotropic NOSBPD model is only applied in the critical regions around the cracks and it is 113 

coupled with the underlying FE model covering the entire problem domain based on the 114 

superposition theory. The work presented in this study is the first time for the superposition theory 115 

proposed by Fish (1992) and Sun et al. (2018, 2021b) to be applied in thermomechanical problems. 116 

The mechanical anisotropy, thermal anisotropy as well as the hindering effect of the insulated 117 

crack on the thermal diffusion are considered in this coupled model. After validation of this 118 
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framework against relevant analytical or existent numerical solutions, the effects of mechanical 119 

and thermal anisotropy on the thermal fracturing in rocks are thoroughly studied. 120 

The present article is organized as follows. In Section 2, the fundamental mechanism and 121 

numerical discretization for the superposition-based coupling of PD and FEM approach are 122 

presented in detail. The performance of the coupled method for thermomechanical problems with 123 

and without damage is evaluated in Section 3. In section 4, thermal fracturing in an orthotropic 124 

rock specimen is parametrically studied. Summary and main conclusions are presented in Section 125 

5. 126 

2 The superposition-based coupling of PD-FEM approach for 127 

thermal fracturing in orthotropic rocks 128 

2.1 Governing equations 129 

Herein, an orthotropic rock specimen occupying an open-bounded regular domain  , with 130 

the assumption of infinitesimal displacements and quasi-static state, under thermomechanical 131 

loadings is considered as shown in Fig. 1. The critical region(s) with possibility of cracks bounded 132 

by the boundary ̂ , where NOSBPD model is employed, is denoted by ̂ . For notational 133 

consistency, quantities in the domain   and ̂  will be denoted by (*)  and ˆ(*) , respectively, 134 

hereafter. Let u
 , t

 ,   and J
  denote the prescribed displacement, traction, temperature, 135 

and heat flux boundaries, respectively. The boundary of the domain   is denoted by  , which 136 

is partitioned into u t
     and J     for mechanical deformation and heat transfer, 137 

respectively, which should satisfy u t J      . To describe material anisotropy, a 138 
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local material coordinate system using two orthogonal axes 1 and 2 is established. The angle 139 

between the first axis-1 and the horizontal axis-x in the global coordinate system is defined as the 140 

material angle   (see Fig. 1). 141 

 142 

 143 

Fig 1 Schematics of the superposition-based coupling of PD and FEM approach for thermal fracturing analysis in orthotropic 144 

rocks 145 

 146 

In this work, only the thermal-elastic material under two-dimensional condition, including 147 

plane stress and plane strain scenarios, is considered. Two sets of equilibrium equations for this 148 

thermomechanical coupled problem are given as 149 
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(1) Momentum balance equation 150 

 +  0b   (1) 151 

where b is the body force vector. 152 

In the classical elasticity theory, the constitutive law for the orthotropic material can be 153 

expressed by using Hooke’s law as 154 

 : e D  (2) 155 

where D  is elastic stiffness tensor, e  is the elastic strain, which is calculated as 156 

 =e     (3) 157 

The total strain tensor   in Eq. (3) with small deformation assumption is given by 158 

 
1

= ( )
2

T  u u   (4) 159 

For the orthotropic material, the thermal strain tensor   in Eq.(3) is calculated as 160 

 =    (5) 161 

where the thermal expansion coefficient tensor   in the global coordinate system is defined as  162 

 

2 2

1 2 1 2

2 2

1 2 1 2

cos sin ( )sin cos

( )sin cos sin cos

       
       

  
    

  (6) 163 

with 1  and 2  being the thermal expansion coefficients along the two principal material axes.  164 

Using the Voigt notation, the stress-strain relation in the local coordinate system is given by  165 

For the plane stress condition,  166 
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with 168 

 
2 2 2 2
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For the plane strain condition, 170 
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with 172 

 
2 2 2 2

2 23 1 2 12 13 23 1 2 13 1 3 122E v E E v v v E E v E E v       (10) 173 

where iE , ij
v , ij

G  in the local elasticity stiffness matrix s'  are Young’s modulus, Poisson’s 174 

ratio and shear modulus, respectively, in the principal material axes. 175 

By a coordinate frame transformation, the constitutive matrix s in the global coordinate 176 

system is given by  177 

 ' Ts Ts T   (11) 178 

where T  is the transformation matrix,  179 

 

2 2

2 2

2 2

cos cos 2cos sin

cos cos 2cos sin

cos sin cos sin cos sin

   
   

     

 
 
 
   

T =  (12) 180 

It is noted that throughout this paper, the classical sign convention of the continuum 181 

mechanics as the tensile stress being positive is adopted. 182 



12 

 

(2) Thermal balance equation  183 

 *c r  J  (13) 184 

where constants   and c  denote the mass density and the specific heat capacity of the material, 185 

respectively; *r  represents the internal heat source. 186 

The heat flux J  is assumed to be controlled by the Fourier law (Zienkiewicz and Taylor, 187 

2000),  188 

   J k  (14) 189 

where the thermal conductivity tensor k  is given by 190 

 

2 2

1 2 1 2

2 2

1 2 1 2

cos sin ( )sin cos

( )sin cos sin cos

k k k k

k k k k

   
   

  
    

k  (15) 191 

with k1 and k2 being the thermal conduction coefficients in the axis-1 and axis-2 directions, 192 

respectively. It is noted that the anisotropy angle of the thermal conduction is assumed to be 193 

identical to the material angle  , for simplicity, as shown in Fig.1.  194 

The aforementioned balance equations, i.e., Eqs. (1) and (13), are coupled with the 195 

following initial and boundary conditions. The boundary conditions for the point x  are given by 196 

 

0

0

( ,0) ( ) at 0

( ,0) ( ) at 0

( , ) ( , ) on

( , ) ( ) ( , ) on

( , ) ( , ) on

( , ) ( ) ( , ) ( ) on

u

t

s s a J

t

t

t t

t t

t t

t t h



 
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  
   
   


     

u x u x

x x

u x u x

x n x t x

x x

J x n x J x


  (16) 197 
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where n  is the unit normal vector; sh  is the convection heat transfer coefficient; s  is the 198 

body surface temperature, and a  is the air temperature. It should be noted that for notation 199 

simplicity, the prescribed boundary conditions, such as prescribed displacement u , prescribed 200 

traction force t , prescribed heat flux J  and prescribed temperature  , are assumed to be only 201 

applied on the boundary  .  202 

2.2 The orthotropic NOSBPD model considering thermal effect 203 

In the thermomechanical model considered herein, the fracturing in the orthotropic solid is 204 

described using the NOSBPD theory. Herein, an orthotropic NOSBPD model proposed by the first 205 

author (Sun et al., 2022) is extended to consider the thermal effect.  206 

In the original NOSBPD theory, the conservation equation of linear momentum ignoring the 207 

inertial effect reads 208 

 

 
  

1

1

( )det( ) ( )

( )det( ) ' ( ) ( )

H

H

dV

dV t









    

     



 0

x

x

x'

x'

ξ F F B x ξ

ξ' F' F' B x' ξ' b x,




 (17) 209 

where the material point x  interacts with its surrounding points x'  in the spherical 210 

neighborhood xH  with a cutoff radius  . ( ) ξ  is the weighting function incorporating 211 

the failure criterion of the bond ' ξ x x  as defined below. The nonlocal deformation F  212 

and nonlocal shape tensor B  at material point x  are defined as 213 

 '( ) ( )( ) ( )
H

dV      
x

xF x ξ Y ξ ξ B x  (18) 214 

 
1

( ) ( )( )
H

dV


    
x

ξB x ξ ξ ξ  (19) 215 
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Following Eq. (3), the governing equation of the NOSBPD theory considering thermal effect 216 

can be rewritten as 217 

 

 
  

1

1

( )det( ) ( )

( )det( ) ' ( ) ( )

H

H

dV

dV t





 

 

     

      



 0

x

x

x'

x'

ξ F F B x ξ

ξ' F' F' B x' ξ' b x,

  

  

 

 
 (20) 218 

For the orthotropic materials, the stress tensor   in Eq. (20) can be calculated using Eqs. 219 

(2)~(12). In other words, material and thermal anisotropy can be incorporated into the NOSBPD 220 

framework directly. However, two another issues, i.e., the numerical instability induced by zero-221 

energy modes and the failure criterion, need to be discussed further.  222 

For the numerical instability issue, an effective control method for anisotropic NOSBPD with 223 

a bond micromodulus continuously varying with the bond orientation proposed by the first author 224 

(Sun et al., 2022) is employed herein.  225 

For the thermal fracturing in orthotropic rocks considered herein, the failure criterion of 226 

‘critical bond stretch’ is employed. The bond stretch considering temperature effect is given by 227 

 
2 2 0 0

1 2

ˆ ˆˆ ( ) ( ' )
( cos sin ) ,ˆ 2

avg avg
s    

     
     

  


  (21) 228 

where ̂  is the relative displacement vector;   and '  are the temperature at the two ends of 229 

the bond ̂ ; 0  is the initial temperature; and   represents the orientation of the bond   230 

with respect to the principal material axis-1. 231 

Consequently, the influence function ( )   is defined as 232 

 
00

( )
1 otherwise

s s
 


 



 (22) 233 
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where the critical stretch 0s  varies with the bond direction, of which definition can be found in  234 

Ghajari et al. (2014) and Sun et al. (2022).  235 

2.3 Coupling model 236 

In the coupled model, the entire domain is discretized by a fixed underlying FE mesh 237 

representing the mechanical deformation and thermal diffusion, whereas the regions with a 238 

possibility of fracturing are encompassed by the NOSBPD model. It is noted that the thermal 239 

balance equation is fully approximated by the underlying finite elements without any contribution 240 

from the PD model. In other words, in the coupled model, the thermal balance equation (13) is 241 

only approximated by the FEM model, but the momentum balance equation (1) is approximated 242 

by the combination of NOSBPD (mainly focus on the fracturing) and FEM models. 243 

The underlying FEM model on the entire domain and the PD patch are coupled by the 244 

superposition theory, where the displacement field u  is additively decomposed as 245 

 
ˆin \

ˆˆ in

   
 

u
u

u u
 (23) 246 

In addition, the homogenous boundary condition ˆ 0u  should be applied to the boundary ̂  247 

for solution continuity. 248 

In the limit of infinitesimal deformation, the total strain in the PD patch can also be linearly 249 

decomposed as 250 

 ˆˆ in      (24) 251 
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To derive the variational statements for the momentum and thermal balance equations, the 252 

test functions   and   corresponding to the trial functions u  and  , respectively, are 253 

introduced. In the coupling zone ̂ , the test function   can be decomposed as 254 

 ˆ= +     (25) 255 

Taking into account of the equivalence between the internal work term expressed by using 256 

the Peridynamics states and the classical continuum mechanics theory in the coupling zone (Sun 257 

et al., 2019), the resulting weak form of the momentum balance equation (1) is given by 258 

 

   
 

   

ˆ ˆ\
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'1ˆ

ˆ
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s s
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d d
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d d d

 
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 (26) 259 

For the weak form of the thermal balance equation (13), it can be defined as 260 

Find U , such that for all  W , 261 

  *
J J J

s s s ac d d Jd h d r d h d      
     

                  k  (27) 262 

where   is the test function of the temperature  ; the anisotropic heat conduction tensor k  263 

is defined in Eq. (15).  264 

It should be noted that a weak coupling between the thermal diffusion and mechanical 265 

deformation is assumed, that is, a variation of temperature field could cause a thermal strain 266 

affecting the mechanical behaviors (see Eq. (5)), and while on the contrary, the change of 267 

mechanical deformation cannot affect the heat transfer. However, when the stress   (see Eq. (2)) 268 

exceeds the material strength and a crack is formed, the hindering effect of the crack on the thermal 269 
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diffusion should be taken into account. Herein, a degradation function   for thermal 270 

conductivity tensor k  is introduced to ensure that no heat conduction occurs at the crack surface,  271 

 
2

0=(1 )k k  (28) 272 

where 0k  denotes the inherent thermal conductivity tensor as expressed in Eq. (15) and   is 273 

defined as 274 
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 (29) 275 

with two threshold values 1c  and 2c  being 0.01 and 0.35, respectively (Sun et al., 2021a). 276 

2.4 Discretization  277 

The backward Euler method is employed for the temporal discretization of the PD-FEM 278 

coupled system. For the spatial discretization, the classical C0 continuous shape functions are used 279 

for the FEM model. A mesh-free method with a certain number of particles associated with specific 280 

volumes is employed to discretize the NOSBPD model, where the spatial integration over a 281 

horizon can be realized by summation over centroids of cells (Silling and Askari, 2005).  282 

Consequently, the PD force vector state in the coupling zone after discretization can be 283 

written as 284 

  ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ , ] ' ( ' ) ( ) ( )
ix

t c        T x x x x x Q σ ε + ε E U  (30) 285 

where for definitions of matrixes Q̂ , ˆ
ix

U  and  ˆ ( )c E , we refer to Sun and Fish (2022).  286 
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The resulting internal force vectors for the mechanical deformation in different domains are 287 

given by 288 

    
1 1

int,
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ˆ

n n
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d d
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 (32) 290 

where m is the total number of material points ˆ
j

x  in the horizon of the material point ˆ
ix ; ˆ

j
V  is 291 

the volume of the cell occupied by the particle ˆ
j

x . The internal force vectors for the heat 292 

conduction characterizing by the underlying FEM model and external force vectors for the 293 

thermomechanical problem can be found in our previous study (Sun et al., 2021a). 294 

The tangent stiffness matrix can be obtained by consistent linearization, 295 
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where submatrices in Eq. (33) are given by  297 
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 (40) 304 

with the definitions of matrices Ĉ , Ĝ  given in Sun et al. (2021a).  11 22 12= , ,
T  m , ij

  305 

being the components of the matrix  .  306 

Herein, a staggered scheme is employed for updating the weakly coupled thermomechanical 307 

system. The thermal and mechanical problems are solved alternately and implicitly. Specifically, 308 

the thermal problem is solved firstly, and then the other two primary unknowns, u , û , are 309 

updated by using the obtained temperature field  .  310 

3 Validation of the proposed method 311 

In this section, two numerical examples are presented to assess the performance of the 312 

proposed method. To this end, the thermal induced deformation problem in an orthotropic rock in 313 

the absence of damage with analytical solutions is analyzed in the first example. Then the proposed 314 

method is applied to simulate the fracture propagation in an orthotropic plate induced by a certain 315 

thermal shock. Comparisons between the simulation results and previous numerical solutions for 316 

three cases with different material angles are presented. Plane stress conditions are assumed for 317 

the problems studied in this section. The ratio between the horizon and the grid spacing is always 318 

taken as 3m   in this study, because it is sufficient to accurately predict the deformation and 319 

fracture in orthotropic media using the developed orthotropic NOSBPD model (Sun et al., 2022). 320 
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3.1 Transient heat conduction in an orthotropic rock 321 

The domain of interest is a 1 1  m2 shale rock with a horizontal bedding plane, that is, the 322 

material angle is θ = 0º, as shown in Fig. 2 (a). Two cases with different boundary conditions are 323 

considered. In case 1, thermal loadings of 1 100 CT   and 2 0 CT   are applied instantaneously 324 

on the left and right edges, while other two edges are adiabatic. The thermal and mechanical 325 

constrains are illustrated in Fig. 2 (b). For case 2, the thermal loadings are prescribed on the top 326 

and bottom boundaries as shown in Fig. 2 (c). The initial temperature of the orthotropic rock is 327 

0 0 CT  . The material properties listed in Table 1 are taken from Sun et al. (2020), which has 328 

been used to describe a shale formation in Switzerland. With these settings, the transient heat 329 

conduction in the square plate is idealized as a one-dimensional problem, where the heat conducts 330 

in the direction parallel or perpendicular to the bedding plane in case 1 and 2, respectively. 331 

Consequently, analytical solutions for temperature and stress distributions can be derived for these 332 

two scenarios (Chen et al., 2018; Sun et al., 2020). To simulate this problem, the plate is discretized 333 

into two models: FEM model having 2500 elements with element size of 0.02m × 0.02m and 334 

NOSBPD model consisting of 10000 particles with grid size of 0.01 m. The time step increment 335 

is set as 1 st  . 336 

Comparisons between the temperature distributions along the heat conduction direction, 337 

calculated by the proposed method and analytical solutions are depicted in Fig. 3. The 338 

corresponding stress distributions are illustrated in Fig. 4. It can be observed that heat transfers 339 

more rapidly along the direction parallel to the bedding plane than the perpendicular one, although 340 

temperature distributions at time t = 200000 s reaching the steady state in these two scenarios are 341 

close to each other. However, the stress distribution is affected both by the thermal and mechanical 342 
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anisotropy, thus they differ from each other even at the steady state. As expected, the numerical 343 

results agree with the analytical solutions well.  344 

 345 

 346 

(a) 347 

 348 

(b) 349 

 350 

(c) 351 

Fig. 2 Transient heat conduction in an anisotropic rock (a) geometry of the anisotropic rock; (b) case 1; (c) case 2 352 
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Table 1 Material parameters for the transient heat conduction in an anisotropic rock 354 

Parameter Value Unit 

Density ρ 2330 kg/m3 

Young’s modulus E1 3.8 GPa 

Young’s modulus E2 1.3 GPa 

Shear modulus G12 0.90 GPa 

Poisson’s ratio v12 0.25 - 

Thermal conductivity coefficient k1 2.0 J/(s·m·K) 

Thermal conductivity coefficient k2 1.0 J/(s·m·K) 

Specific heat capacity c 500 J/(kg·K) 

Thermal expansion coefficient α1 1.0e-5 1/K 

Thermal expansion coefficient α2 2.5e-5 1/K 

 355 

 356 



23 

 

 357 

Fig 3 Comparisons of the temperature distributions along the heat conduction direction obtained by the numerical and analytical 358 

models 359 

 360 
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 363 

(b) 364 

Fig. 4 Comparisons of the stress distributions along the heat conduction direction obtained by the numerical and analytical 365 

models: (a) case 1; (b) case 2 366 

3.2 Thermal shock fracturing in an orthotropic plate 367 

In this section, thermal shock fracturing in an orthotropic plate is simulated to validate the 368 

proposed method for crack growth modeling. The geometry and boundary conditions of the plate 369 

are illustrated in Fig. 5. A perforated rectangle plate with dimensions of 3 mm × 1 mm is subjected 370 

to equal yet opposite thermal loadings ( T  and 100 CT  ) on its left and right edges. Thermally 371 

insulated conditions are assigned to the top and bottom boundaries. The upper and lower edges are 372 

constrained mechanically in the normal direction. The corner of the plate is constrained fully to 373 

remove rigid body motion. The initial notch is set to a = 0.15 mm and the radius of the perforation 374 

is R = 0.2 mm. The initial temperature of the plate is 0 0 CT  . Three cases with different material 375 

angles, that is, θ = 0º, 60 º and -60º, are considered. Referring to Bayat et al. (2021), material 376 

parameters are listed in Table 2.  377 
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The configuration of the computational model is presented in Fig. 5 (b). Only the regions near 378 

the initial notch and the perforation, where the crack may nucleate or propagate, are encompassed 379 

by PD particles. Due to the two models being essentially independent, their discretizations are not 380 

necessarily compatible. Thus, a flexible discretization scheme for the perforated plate is employed 381 

herein, that is, uniformly distributed PD particles with grid spacing 0.0167 mmx   being 382 

coupled with unstructured FE elements. The time step is set as 
-41 10 st   . 383 

Simulation results obtained by the proposed method for three cases with different material 384 

angles are shown in Fig. 6. In the case of θ = 0º, the crack propagates straightforward to the right 385 

edge initially, but interestingly, when reaching the region near the hole, it tends to grow upward 386 

slightly. This phenomenon is also found in the previous studies (Nguyen et al., 2019; Bayat and 387 

Nazari, 2021). In the case of θ = 60º, since the domination of material properties in the principal 388 

material axis-1 over those of axis-2, an upward straight crack with an angle approximately equaling 389 

to 46º with respect to the horizontal direction is obtained. While in the case of θ = -60º, the crack 390 

propagates downward and the inclined angle is nearly -40º. Moreover, the hindering effect of the 391 

insulated crack is readily to be found in Fig. 6. It is inferred from the observations that the crack 392 

propagation angle is determined conjunctly by the material angle and geometry conditions, i.e., 393 

the existence of the hole. Crack trajectories predicted by the current approach are sketched together 394 

for these three cases in Fig. 7, which are all in close agreement with previous solutions (Nguyen 395 

et al., 2019; Bayat and Nazari, 2021). Distribution of shear stress obtained by the proposed method 396 

with material angle θ = 0º is compared with that calculated by the extended four-node consecutive-397 

interpolation element method (Nguyen et al., 2019) in Fig. 8. Roughly speaking, they are in good 398 

agreement, and stress concentrations around the cracks and the hole are well captured by the 399 

proposed method. 400 
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 401 

(a) 402 

 403 

(b) 404 

Fig 5 Thermal shock fracturing in an anisotropic plate: (a) geometry and boundary conditions (units: mm); (b) computational 405 

model (units: mm) 406 
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Table 2 Material parameters for the thermal shock fracturing in an anisotropic plate 407 

Parameter Value Unit 

Density ρ 2000 kg/m3 

Young’s modulus E1 55.0 GPa 

Young’s modulus E2 21.0 GPa 

Shear modulus G12 9.70 GPa 

Poisson’s ratio v12 0.25 - 

Energy release rate GIC,1 10.0 N/m 

Energy release rate GIC,2 3.82 N/m 

Thermal conductivity coefficient k1 3.46 J/(s·m·K) 

Thermal conductivity coefficient k2 0.35 J/(s·m·K) 

Specific heat capacity c 1200 J/(kg·K) 

Thermal expansion coefficient α1 6.3e-6 1/K 

Thermal expansion coefficient α2 2.0e-5 1/K 

 408 
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θ = 0º   

θ = 60º   

46
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θ = -60º   

 (a) (b) 

Fig. 6 Simulation results obtained by the proposed method for three cases with different material angles: (a) crack patterns; (b) 409 

temperature distributions (units: ℃) 410 

 411 

Fig. 7 Crack trajectories obtained by different models: XFEM (Bayat and Nazari, 2021; red lines), extended four-node 412 

consecutive-interpolation element method (Nguyen et al., 2019; blue lines) and the proposed method (green lines) 413 
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 414 
Fig.8 Distribution of shear stress obtained by different models with material angle θ = 0º: (a) extended four-node consecutive-415 

interpolation element method (Nguyen et al., 2019); (b) the proposed method (units: MPa) 416 

 417 

4 Thermal fracturing in an orthotropic rock specimen under high 418 

surrounding temperature 419 

In this section, thermal fracturing in a perforated rock specimen induced by the temperature 420 

difference between the outer and inner surfaces is investigated. A parametric study with emphasize 421 

on discussing the effects of different factors’ anisotropy on the crack paths and thermal diffusion 422 

(a)

(b)
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is conducted. In this section, the plane strain condition is considered. The 1-3 plane is taken as the 423 

plane of isotropy and Axis-2 is assumed to be perpendicular to the bedding plane. 424 

The geometry and associated boundary conditions of the rock specimen are shown in Fig. 9. 425 

The specimen has a size of 1.5 m × 1.5 m with a hole of radius of 0.075 m at the center. The initial 426 

temperature of the specimen is 0 100 CT  . The outer surface of the specimen is kept at 427 

0 100 CT  , while its inner surface is cooled gradually to a temperature of 20℃, that is, the inner 428 

temperature is set as 100( C) 0.36( C/h) (h)
t

T t    and 20( C)
t

T  . The outer surfaces of the 429 

specimen are fully mechanically constrained. The material parameters are tabulated in Table 3, 430 

which are taken from the Mont Terri underground project (Sun et al., 2020). For the numerical 431 

simulation, the discretized model consists of 22500 PD particles and 2961 FE elements as 432 

illustrated in Fig. 8. It is noted that PD particles are uniformly distributed, whereas the unstructured 433 

FE element is employed for adapting to the complex geometry in the presence of a hole. The time 434 

step is 1 st  . The horizon is set as =3 x  .  435 

To reduce computational cost, an adaptive scheme proposed originally by the authors (Sun et 436 

al., 2019) is employed herein. Initially, large portions of PD particles are dormant except for the 437 

particles near the hole. As the advancement of crack nucleation and propagation, PD particles are 438 

gradually activated on the condition that the distances of the particle to the ends of the broken 439 

bonds are no more than three times of the horizon  . The activation status of PD particles, damage 440 

and associated temperature distributions at typical moments in the case of material angle θ = 0º 441 

are shown in Fig. 10. For the steady state at time t = 1.2 × 106 s, only 4448 PD particles are 442 

activated. The crack initiates around the inner surface of the specimen, and then propagates 443 

preferentially along the bedding plane. The isotherms have an approximately elliptical shape with 444 
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a horizontal major axis since thermal conductivity coefficient k1 dominates over k2. In addition, the 445 

temperature distribution is also influenced by the hindering effect of the crack, which is well 446 

captured by the proposed method as shown in Fig. 10 (more obviously at time t = 1.2 × 106 s).  447 

In the following analysis, the effects of various factors, including the mechanical and thermal 448 

anisotropy of the rock, on the thermal fracturing in the aforementioned specimen under high 449 

surrounding temperature are thoroughly studied.  450 

 451 
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 454 

(b)  455 

Fig 9 Thermal fracturing in an orthotropic rock specimen under high surrounding temperature: (a) geometry and boundary 456 

conditions (units: m); (b) computational model  457 
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Table 3 Material parameters for thermal fracturing in an orthotropic rock specimen under high surrounding temperature 470 

Parameter Value Unit 

Density ρ 2300 kg/m3 

Young’s modulus E1 3.8 GPa 

Young’s modulus E2 1.3 GPa 

Shear modulus G12 0.90 GPa 

Poisson’s ratio v12 0.25 - 

Poisson’s ratio v13 0.35 - 

Energy release rate GIC,1 40.0 N/m 

Energy release rate GIC,2 20.0 N/m 

Thermal conductivity coefficient k1 2.0 J/(s·m·K) 

Thermal conductivity coefficient k2 1.0 J/(s·m·K) 

Specific heat capacity c 860 J/(kg·K) 

Thermal expansion coefficient α1 1.0e-5 1/K 

Thermal expansion coefficient α2 1.5e-5 1/K 

 471 

 472 

 473 

 474 

 475 
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t = 3.1 × 105 s 

   

t = 4.2 × 105 s 

   

t = 7.1 × 105 s 

   

t = 1.2 × 106 s 

(a) (b) (c) 

Fig 10 Thermal fracturing in an orthotropic rock specimen under high surrounding temperature using an adaptive scheme: (a) 476 

active PD particles drawing in red; (b) crack paths; (c) temperature distribution (units: ℃) 477 
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4.1 Effect of material direction  478 

In this subsection, to investigate the effect of material direction on the fracture and thermal 479 

diffusion in this orthotropic medium, various cases with θ = 0º, θ = 30º, θ = 45º, θ = 60º and θ = 480 

90º are simulated. Other material parameters are unchanged. The fracture patterns and temperature 481 

contours corresponding to each case at the steady state are shown in Fig. 11. For all cases, the 482 

crack nucleates around the hole and then multiple discrete cracks are formed as temperature 483 

difference increases. These cracks propagate approximately parallel to the bedding plane from the 484 

colder (inner) regions towards to the hotter (outer) regions. The inclination angle of the cracks 485 

increases as the increase of the material angle θ. The lengths of the crack slightly differ from each 486 

other. For the thermal diffusion, the major axes of the elliptical shape of the isotherms are also 487 

consistent with the principal material axis-1. Moreover, there is an obvious discontinuity for the 488 

temperature distribution around the cracks. The stress distributions for the case with material angle 489 

θ =45° are shown in Fig. 12. An obvious stress concentration around the cracks can be found 490 

through this figure. 491 

 492 

θ = 0°   
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θ =30°   

θ =45°   

θ =60°   
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θ =90°   

 (a) (b) 

Fig.11 Thermal fracturing in an orthotropic rock specimen under high surrounding temperature with different material angles: (a) 493 

crack paths; (b) temperature distribution (units: ℃) 494 

  

(a) (b) 

 

(c) 

Fig.12 Contours of stress in an orthotropic rock specimen under high surrounding temperature with material angle θ =45°: (a) 495 

horizontal stress; (b) vertical stress; (c) shear stress. (Units: Pa) 496 
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4.2 Effect of the modulus anisotropy  497 

To study the effect of the modulus anisotropy, three cases with different values of the ratio of 498 

E1/E2 are considered. The modulus E2 and other material parameters remain unchanged. The 499 

modulus E1 is set to 1.3 GPa, 2.6 GPa and 5.2 GPa, which renders that E1/E2 = 1.0, 2.0 and 4.0, 500 

respectively. It is noted that either in this investigation or the following parametric studies, the 501 

material angle is fixed to θ = 45º. The fracture pattern and the temperature distribution at the steady 502 

state in these three cases with E1/E2 = 1.0, 2.0 and 4.0, are illustrated in Fig. 13. It is observed that 503 

the fracture propagation paths are not obviously influenced by the modulus anisotropy. Instead, 504 

the crack length is very sensitive to the ratio of E1/E2. When E1/E2 = 1.0, only a small crack with a 505 

length of nearly 0.5 m is formed. However, when E1/E2 = 4.0, the crack length increases a lot and 506 

a larger damage zone is achieved. For the heat conduction, the temperature distributions for the 507 

former two cases are similar to each other, but it exhibits a very different pattern for the last case 508 

due to the hindering effect of the discontinuities around the crack surfaces. The results indicate 509 

that increasing the differences of the modulus of the two principal material axes could decrease 510 

the deformation resistance of the orthotropic rock.  511 

 512 

1.0   
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2.0   

4.0   

 (a) (b) 

Fig .13 Thermal fracturing in an orthotropic rock specimen under high surrounding temperature with different ratios of E1/E2: (a) 513 

crack paths; (b) temperature distribution (units: ℃) 514 

4.3 Effect of the energy release rate ratio 515 

The energy release rate is another important factor determining the fracturing. Thus, the effect 516 

of the ratio of the energy release rate, that is, GIC,1/ GIC,2, is investigated in this subsection. The 517 

energy release rate GIC,2 is fixed to 20 N/m, while GIC,1 is set to 20 N/m, 60 N/m and 100 N/m, 518 

respectively. Consequently, three cases with GIC,1/ GIC,2 = 1.0, 3.0 and 5.0 are considered. Fig. 14 519 

shows the numerical results in this parametric study. Both the crack pattern and crack length are 520 

significantly influenced by the energy release rate ratio. For the case of GIC,1/ GIC,2 = 1.0, the crack 521 

propagates in the direction almost perpendicular to the bedding plane and it bifurcates in the upper 522 
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and lower parts of the specimen. While for other two cases, the crack follows opposite trends, that 523 

is, propagates along the bedding plane. In addition, with the increases of GIC,1/ GIC,2, that is, 524 

increasing the resistance to fracture in the axis-1 direction, the crack length along the axis-2 525 

direction increases a lot. For instance, for the case of GIC,1/ GIC,2 = 5.0, when the temperature 526 

difference between the outer and inner surface reaches 50 ℃, the crack even tends to penetrate 527 

through the diagonal line of the specimen. However, for the case of GIC,1/GIC,2 = 3.0, a considerably 528 

smaller fracture length is achieved. The temperature distributions and discontinuities are consistent 529 

with the fracture patterns. It is inferred from the results that decreasing the resistance to fracture in 530 

the direction parallel to the bedding plane could suppress the facture propagation along axis-1 531 

direction, even induces the occurrence of the crack along the axis-2 direction.  532 

 533 

1.0   



42 

 

3.0   

5.0   

 (a) (b) 

Fig. 14 Thermal fracturing in an orthotropic rock specimen under high surrounding temperature with different ratios of G1/G2: (a) 534 

crack paths; (b) temperature distribution (units: ℃) 535 

4.4 Effect of thermal conduction anisotropy 536 

We now proceed to investigate effects of the thermal anisotropy. In this subsection, the 537 

thermal conduction anisotropy is quantitatively studied by setting the ratio of the thermal 538 

conduction coefficient, k1/k2, to 0.1, 2.0 and 10.0, respectively. It is noted that only k1 are changed 539 

accordingly, while other parameters are identical to those listed in Table 3. Fracture patterns and 540 

temperature field at the steady state for these three cases with different k1/k2 are presented in Fig. 541 

15. The corresponding heat flux field over two instances, that is prior to the crack initiation and 542 

the steady state, are plotted in Fig. 16. It is observed that the thermal conduction coefficient has a 543 
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considerable influence on the thermal diffusion and consequently on the mechanical response. In 544 

the case of k1/k2 = 0.1, the major axis of the elliptical trajectory for the isotherm is in the local 545 

principal material axis-2 and the heat flux flows predominately in this direction. While for the case 546 

of k1/k2 = 10.0, it prohibits the heat flux flow in the axis-2 direction, instead, the heat preferentially 547 

transfers along the axis-1 direction. As a result, the crack initially propagates along such a path 548 

close to the axis-2 direction, although it turns to the path approximately parallel to the axis-1 549 

direction finally. In addition, a zero heat flux around the crack is observed.  550 

0.1   

2.0   
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 (a) (b) 

Fig. 15 Thermal fracturing in an orthotropic rock specimen under high surrounding temperature with different ratios of k1/k2: (a) 551 

crack paths; (b) temperature distribution (units: ℃) 552 
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10.0   

 (a) (b) 

Fig. 16 Thermal fracturing in an orthotropic rock specimen under high surrounding temperature with different ratios of k1/k2: (a) 554 

heat flux directions at time t = 2.0× 105 s (prior to the crack initiation); (b) heat flux directions at the steady state 555 

4.5 Effect of the ratio of the thermal expansion coefficient  556 

In the weakly coupled thermomechanical model employed in this study, the thermal 557 

expansion coefficient is a key factor determining the effect of thermal field on the mechanical 558 

behaviors. Thus, in the last subsection, the effect of the ratio of the thermal expansion coefficient 559 

α1/α2 is discussed. Three ratios, that is, α1/α2 = 0.33, 0.67 and 1.0, are tested. It is realized by 560 

changing α1 accordingly and remaining other parameters unchanged. As shown in Fig. 17, a larger 561 

α1/α2 gives rise to a longer crack due to the fact that increasing α1 could increase the thermal stress. 562 

In addition, the damage is more serious with a larger α1/α2. As seen that in the case of α1/α2 = 1.0, 563 

there are four main cracks occurring, but for the other two cases, only two main cracks appear. It 564 

can be observed that the ratio of α1/α2 also has some influence on the crack angle. For the case of 565 

α1/α2 = 1.0, a nearly horizontal crack occurs at the right part of the specimen. It is inferred from 566 

the findings that increasing α1 leads to the increases of thermal stress in the axis-1 direction, the 567 

crack length is significantly increased and the fracture path is also moderately changed.  568 

 569 
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 (a) (b) 

Fig. 17 Thermal fracturing in an orthotropic rock specimen under high surrounding temperature with different ratios of α1/α2: (a) 570 

crack paths; (b) temperature distribution (units: ℃) 571 

 572 
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5 Summary and conclusions 573 

A superposition-based coupling of PD and FEM approach is proposed to investigate 574 

quantitatively thermal fracturing in orthotropic rocks. In this approach, the NOSBPD model 575 

capable of effectively treating discontinuities is only used in the critical regions with the possibly 576 

of cracks and it is superimposed on the fixed underlying FE mesh spanning over the entire domain. 577 

The mechanical deformation, even fracturing, is simulated by the combination of NOSBPD and 578 

FEM models, while the thermal diffusion is solely approximated using FEM without resorting to 579 

PD. Mechanical anisotropy, thermal anisotropy as well as the hindering effect of an insulated crack 580 

on the thermal diffusion are considered in this weakly coupled thermomechanical model. The 581 

coupled model was seen to be able to simulate accurately the thermally induced deformation and 582 

fracturing in orthotropic rocks through comparing with either analytical or existing numerical 583 

solutions.  584 

Thermal fracturing in an orthotropic rock specimen under high surrounding temperature is 585 

thoroughly studied considering the mechanical and thermal anisotropy. The main findings of the 586 

parametric study are as follows:  587 

(i) The inclination angle of the cracks and the major axes of the elliptical shape of the 588 

isotherms are generally along the bedding plane direction. 589 

(ii) The modulus anisotropy, that is, the differences of the Young’s modulus of the two 590 

principal material axes, has a little effect on the fracture propagation direction, but it affects the 591 

crack length significantly. The change of the distribution for the resistance to fracture may alter 592 

the crack propagation direction. The crack may propagate along the principal material axis-2 if the 593 

energy release rate in axis-1 direction decreases a lot. 594 
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(iii) For thermal anisotropy, the thermal conduction coefficient has a considerable influence 595 

on the thermal diffusion pattern and consequently on the mechanical response. Increasing thermal 596 

expansion coefficient gives rise to a longer crack, and the fracture path is also moderately changed. 597 
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