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AN EFFICIENT MOVING PSEUDO–BOUNDARY MFS FOR VOID

DETECTION

ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

Abstract. We consider the method of fundamental solutions (MFS) for the determination of the
boundary of a void. In the proposed formulation the location of the pseudo–boundary is not fixed.
The MFS discretization of the corresponding inverse geometric boundary value problem yields a
system of nonlinear equations in which the coefficients in the MFS approximation, the discrete
radii in the polar parametrization, the coordinates of the centre of the void and the expansion
and dilation coefficients of the pseudo–boundaries are unknown. For the minimization of the
resulting functional we employ the nonlinear least squares minimization routine lsqnonlin from
the MATLAB R⃝ optimization toolbox . In contrast to previous studies, we exploit the option which
enables the user to provide the analytical expression for the Jacobian of the system, and show that,
although tedious, this leads to spectacular savings in computational time. The case of multiple
voids is also addressed.

1. Introduction

When a mathematical model is governed by a partial differential equation (PDE) which possesses
a fundamental solution available explicitly, the underlying solution can be represented in terms of
a single–layer or a double–layer potential (or a combination of these). Although this formulation
reduces the dimensionality of the problem by one, the boundary integrals involved become singular
when they are collocated at a boundary point in order to impose the given boundary conditions.
One way to deal with this is to de–singularise them by shifting the integral over the boundary to
that over a fictitious pseudo-boundary embracing the solution domain in its interior [12], provided
that the smoothness of the data and geometry are sufficient to allow an analytic continuation of
the field to the pseudo–boundary, [25]. The resulting method is nowadays known as the method
of fundamental solutions (MFS) which has become a versatile, easy to use and accurate meshless
numerical method for solving a wide range of both direct and inverse problems [8, 18], and, in
particular, inverse geometric problems [19]. These latter problems are difficult to solve because
they are both nonlinear and ill–posed. Nonlinear optimization techniques including regularization
are therefore necessary.
In a previous study [16], we considered similar inverse boundary value problems (BVPs) to the ones
studied in the current work. We used the MATLABR⃝ optimization toolbox routine lsqnonlin

without exploiting the option which enables the user to provide the analytical expression for the
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Jacobian of the system, which is calculated approximately internally. Note that the Jacobian
in the context of the application of the MFS to nonlinear BVPs using lsqnonlin was provided
in [10]. Problems similar to those considered in the current work were studied with the boundary
function method in [23,27].

2. Mathematical formulation

A physical problem to which the MFS is most naturally suited and its application advantageous
consists of the geometrical identification of an unknown void Ω1 compactly contained and concealed
in a surrounding container Ω2 from non-destructive measurements on the boundary ∂Ω2 of the
container. The process of scanning is based on electrostatics or steady-state heat conduction for
which the governing PDE is the Laplace equation

∆u = 0 in Ω := Ω2\Ω1, (2.1a)

for the electrical potential or steady-state temperature u. In the above the annular material
Ω ⊂ R

n, n = 2, 3, is assumed homogeneous, but anisotropic, nonlinear, layered or functionally
graded materials are also feasible in the context of the MFS [3,21].
In the investigation of this paper, the unknown void Ω1 is a rigid inclusion, on whose boundary
the homogeneous Dirichlet boundary condition

u = 0 on ∂Ω1 (2.1b)

applies, or a cavity, on whose boundary the homogeneous Neumann boundary condition

∂nu = 0 on ∂Ω1 (2.1c)

applies, where n is the outward unit normal vector. Composite materials of different finite con-
ductivity such that the void Ω1 is an unknown inclusion can also be considered [15]. We can unify
the boundary conditions (2.1b) and (2.1c) into a single boundary condition written as

αu+ (1− α)∂nu = 0 on ∂Ω1 , where α ∈ {0, 1}. (2.1d)

On the boundary ∂Ω2 of the container Ω2, any type of boundary condition can be prescribed, e.g.
Dirichlet

u = f on ∂Ω2, (2.1e)

or Neumann
∂nu = g on ∂Ω2. (2.1f)

When α = 0, for (2.1a), (2.1d) and (2.1f) to be consistent, we require
∫

∂Ω2

g ds = 0. (2.2)

We assume that the annular solution domain Ω = Ω2\Ω1 is connected and that its boundary
∂Ω = ∂Ω1∪∂Ω2 is sufficiently smooth, e.g. of class C2. Then, if Ω1 is known, the direct linear and
well-posed problem given by equations (2.1a), (2.1d) and (2.1e) (or (2.1f) and (2.2)) has a unique
weak solution u ∈ H1(Ω) if f ∈ H1/2(∂Ω2) (or if g ∈ H−1/2(∂Ω2)), and a unique classical solution
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u ∈ C2(Ω) ∩ C(Ω̄), if f (or g) is sufficiently smooth, see e.g. [26].

In contrast to the direct (forward) problem, where Ω1 is known, the resulting inverse nonlinear and
ill-posed problem consists of determining the pair (u,Ω1) satisfying the Laplace equation (2.1a),
given the Dirichlet data f ̸≡ constant in (2.1e), the homogeneous boundary condition (2.1d) and
the Neumann current flux measurement (2.1f). Although the solution is unique, see [1, 11, 24], it
is unstable with respect to small errors in the input Cauchy data (2.1e) and (2.1f).

3. The method of fundamental solutions (MFS)

Consider, for simplicity, two-dimensions [16] but similar considerations can be applied to three-
dimensions [17] as well. In the application of the MFS to the Laplace equation (2.1a), the solution
is approximated by a linear combination of fundamental solutions [14]

uN(c, ξ;x) =
2N
∑

k=1

ck G(ξk,x), x ∈ Ω, (3.1)

where G is the fundamental solution of the two–dimensional Laplace operator, given by

G(ξ,x) = −
1

2π
ln |ξ − x|. (3.2)

Note that throughout the paper we adopt the notation 1,N = 1, . . . ,N . In this formulation, a
total of 2N sources (ξk)k=1,2N are placed outside the domain Ω, i.e. in Ω1 ∪

(

R
2\Ω̄2

)

. The first N
of these sources, (ξk)k=1,N , are placed in Ω1, on a pseudo–boundary ∂Ω′

1 similar to ∂Ω1. By similar

we mean a dilation or a contraction of a given star–like boundary about its centre. The remaining
N sources (ξk)k=N+1,2N are placed in R

2\Ω2, on a pseudo–boundary ∂Ω′
2 similar to ∂Ω2. A typical

distribution of sources is depicted in Figure 1. It should be stated that in the current approach the
two pseudo–boundaries ∂Ω′

1 and ∂Ω′
2 are not fixed and their final locations will be determined as

part of the solution (moving pseudo–boundaries). The idea of taking similar pseudo–boundaries
to the physical boundaries yields, in general, more accurate MFS results [9, 20].
In the current study, we shall take, for simplicity, the exterior boundary ∂Ω2 to be a circle of
radius R, hence the sources on ∂Ω′

2 will be

ξN+k = ηext R (cosϑk, sinϑk), ϑk =
2π(k − 1)

N
, k = 1, N, (3.3)

and the unknown dilation parameter ηext will lie in the interval (1, S) with S > 1 prescribed. We
shall also assume that the unknown boundary ∂Ω1 is a smooth, star–like curve with respect to
the centre coordinates (X, Y ) which are also unknown. Hence, in polar coordinates the equation
of ∂Ω1 is

x = X + r(ϑ) cosϑ, y = Y + r(ϑ) sinϑ, ϑ ∈ [0, 2π), (3.4)

where r is a smooth 2π−periodic function. By denoting

rk = r(ϑk), k = 1, N, (3.5)
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Figure 1. Geometry of problem with (a) One inclusion. (b) Two inclusions. The
crosses (+) denote the sources.

the source points on ∂Ω′
1 will be

ξk = (X, Y ) + ηint rk (cosϑk, sinϑk) , k = 1, N, (3.6)

where the unknown contraction parameter ηint lies in the interval (0, 1). In addition to the sources

we shall also define M + N boundary collocation points. The first N of these, (xk)k=1,N will be
placed on ∂Ω1, as follows:

xk = (X, Y ) + rk (cosϑk, sinϑk) , k = 1, N. (3.7)

The remaining M points (xN+ℓ)ℓ=1,M will be placed on ∂Ω2, i.e.

xN+ℓ = R (cos ϑ̃ℓ, sin ϑ̃ℓ), ℓ = 1,M, ϑ̃ℓ =
2π(ℓ− 1)

M
, ℓ = 1,M. (3.8)

4. Implementation details

In the MFS formulation for the solution of inverse problem given by equations (2.1a), (2.1e), (2.1d)
and (2.1f), described in Section 3, we have the following unknowns:

• The coefficients c = (ck)k=1,2N in (3.1),

• the radii r = (rk)k=1,N in (3.5),

• the contraction and dilation coefficients η = (ηint, ηext) in (3.6) and (3.3), and
• the centre coordinates C = (X, Y ).
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The unknowns listed above are determined from the imposition of the boundary conditions (2.1e),
(2.1d) and (2.1f) in a least-squares sense which leads to minimizing the functional

S(c, r,η,C) :=
N+M
∑

j=N+1

[uN(c, ξ;xj)− f(xj)]
2 +

N+M
∑

j=N+1

[∂nuN(c, ξ;xj)− gε(xj)]
2

+
N
∑

j=1

[αuN(c, ξ;xj) + (1− α)∂nuN(c, ξ;xj)]
2 + λ1|c|

2 + λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 , (4.1)

where λ1 and λ2 ≥ 0 are regularization parameters that need to be prescribed and

gε(xj) = (1 + ρj p) g(xj) , j = N + 1, N +M, (4.2)

where p represents the percentage of noise added to the Neumann boundary data on ∂Ω2 and
ρj is a pseudo-random noisy variable drawn from a uniform distribution in [−1, 1] using the
MATLABR⃝ command -1+2*rand(1,M). The outward normal vector n to the boundary, needed
in the implementation of the method is defined in the Appendix. The regularization terms λ1|c|

2

and λ2

∑N
ℓ=2 (rℓ − rℓ−1)

2 have been added to the functional (4.1) to stabilize the MFS solution uN

and the C1−smooth boundary ∂Ω1. The summation in the last term of (4.1) has been taken from
ℓ = 2 to N in order to compare with the numerical results of [16], which considered the same
expression. The summation can also be taken from ℓ = 2 to N + 1, with the convention that
rN+1 = r1, as considered in [4]. Finally, note that in (4.1) we have 3N +4 unknowns and N +2M
boundary collocations equations so we need to take M ≥ N + 2.

4.1. Non-linear minimization software. In the current study, the least-squares minimization
of functional (4.1) is achieved via the MATLABR⃝ [22] optimization toolbox routine lsqnonlin.
This, minimizes the general functional (cf. (4.1))

S(x) :=
J
∑

j=1

F 2
j , (4.3)

with respect to the M unknowns x = [x1, x2, . . . , xM]T.
The routine lsqnonlin by default uses the trust–region–reflective algorithm based on the interior-
reflective Newton method [6,7] for minimizing the non-linear least-squares functional (4.3) starting
from an initial guess x0. In the call to lsqnonlin, one is required to provide the functions Fj,
j = 1,J , in the functional (4.3). The user is also offered, via the optimization options, the choice
of providing the Jacobian of the system analytically or not. In the latter case, the Jacobian is
calculated internally. Otherwise, the exact Jacobian J is

Jj,m =
∂Fj

∂xm

, j = 1,J , m = 1,M.

When the Jacobian is not provided, the optimization options are called with
options=optimoptions(@lsqnonlin,’Display’,’iter’,’MaxFunEvals’,mf, ...
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’MaxIter’,mm,’TolFun’,1.E-15,’TolX’,1.E-15,’SpecifyObjectiveGradient’,false)

and the function call is
[x,resnorm,residual,exitflag,output] = lsqnonlin(@f1,x0,options),
where the function f=f1(x) provides the functions Fj, j = 1,J .

When the exact Jacobian is provided, the optimization options are changed to
options=optimoptions(@lsqnonlin,’Display’,’iter’,’MaxFunEvals’,mf, ...

’MaxIter’,mm,’TolFun’,1.E-15,’TolX’,1.E-15,’SpecifyObjectiveGradient’,true),
while the function call becomes function [f,J]=f1(x), which provides both the functions
Fj, j = 1,J , (f), and the exact Jacobian Jj,m, j = 1,J , m = 1,M, (J).

The routine lsqnonlin terminates when

• the change in the solution vector x is less than the optimization options specified tolerance
TolX, or

• the change in the residual is less than the optimization options specified tolerance TolFun,
or

• the number of iterations MaxIter or the number of function evaluations MaxFunEvals

(both specified in the optimization options) is exceeded.

Moreover, in lsqnonlin one has the option of imposing lower and upper bounds on the elements
of the vector of unknowns x = [c, r,η,C]T through the user–specified vectors lb and up. In our
applications, we imposed the constraints 0 < rn < R, n = 1, N , 0 < ηint < 1, 1 < ηext < 4 and
−R < X < R,−R < Y < R .

4.2. Derivation of Jacobian. Some of the formulæ given below require the normal nj =
(nxj

, nyj), j = 1, N, to the cavity boundary, which are provided in the Appendix. Moreover,

the derivatives of the normals nj with respect to the variables rm,m = 1, N are also provided in
the Appendix. In the implementation we need to provide lsqnonlin with the following informa-

tion (note that we use the notation γ = −
1

2π
):

α = 1.

Fj =
2N
∑

k=1

ck G(ξk,xj) = γ
N
∑

k=1

ck log

√

(rj cosϑj − ηintrk cosϑk)
2 + (rj sinϑj − ηintrk sinϑk)

2

+γ
2N
∑

k=N+1

ck log

√

(X + rj cosϑj − ηextR cosϑk−N)
2 + (Y + rj sinϑj − ηextR sinϑk−N)

2, j = 1, N,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jj,m = G(ξm,xj), j = 1, N, m = 1, 2N,
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Jj,2N+m =
∂

∂rm

2N
∑

k=1

ck G(ξk,xj)

= −γηintcm
(xj − ξm) · (cosϑm, sinϑm)

|xj − ξm|
2 , m ̸= j, j = 1, N, m = 1, N,

Jm,2N+m =
∂

∂rm

2N
∑

k=1

ck G(ξk,xj)

= −γηintcm
(xm − ξm) · (cosϑm, sinϑm)

|xm − ξm|
2 + γ

2N
∑

k=1

ck
(xm − ξk) · (cosϑm, sinϑm)

|xm − ξk|
2 , m = 1, N,

Jj,3N+1 =
2N
∑

k=1

ck
∂G(ξk,xj)

∂ηint
= −γ

N
∑

k=1

ckrk
(xj − ξk) · (cosϑk, sinϑk)

|xj − ξk|
2 , j = 1, N,

Jj,3N+2 =
2N
∑

k=1

ck
∂G(ξk,xj)

∂ηext
= −γ

2N
∑

k=N+1

ckR
(xj − ξk) · (cosϑk−N , sinϑk−N)

|xj − ξk|
2 , j = 1, N,

Jj,3N+3 =
2N
∑

k=1

ck
∂G(ξk,xj)

∂X
= γ

2N
∑

k=N+1

ck
(xj − ξk)x
|xj − ξk|

2 , j = 1, N,

Jj,3N+4 =
2N
∑

k=1

ck
∂G(ξk,xj)

∂Y
= γ

2N
∑

k=N+1

ck
(xj − ξk)y

|xj − ξk|
2 , j = 1, N.

α = 0.

Fj =
2N
∑

k=1

ck ∂nG(ξk,xj) = γ

2N
∑

k=1

ck
(xj − ξk) · nj

|xj − ξk|
2

= γ
N
∑

k=1

ck
(rj cosϑj − ηintrk cosϑk)nxj

+ (rj sinϑj − ηintrk sinϑk)nyj

(rj cosϑj − ηintrk cosϑk)
2 + (rj sinϑj − ηintrk sinϑk)

2

+γ

2N
∑

k=N+1

ck
(X + rj cosϑj − ηextR cosϑk−N)nxj

+ (Y + rj sinϑj − ηextR sinϑk−N)nyj

(X + rj cosϑj − ηextR cosϑk−N)
2 + (Y + rj sinϑj − ηextR sinϑk−N)

2 , j = 1, N,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jj,m = ∂nG(ξm,xj) = γ
(xj − ξm) · nj

|xj − ξm|
2 , j = 1, N, m = 1, 2N,

Jj,2N+m =
∂

∂rm

2N
∑

k=1

ck ∂nG(ξk,xj)

= γηintcm

[

−
(cosϑm, sinϑm) · nj

|xj − ξm|
2 + 2

(xj − ξm) · nj

|xj − ξm|
4 ((xj − ξm) · (cosϑm, sinϑm))

]
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+γ
2N
∑

k=1

ck
1

|xj − ξk|
2

(

(xj − ξk) ·
∂nj

∂rm

)

+γδmj

2N
∑

k=1

ck

[

(cosϑj, sinϑj) · nj

|xj − ξk|
2 − 2

(xj − ξk) · nj

|xj − ξk|
4 ((xj − ξk) · (cosϑj, sinϑj))

]

,

j = 1, N, m = 1, N,

Jj,3N+1 =
∂

∂ηint

N
∑

k=1

ck ∂nG(ξk,xj)

= γ
N
∑

k=1

ckrk

[

−
(cosϑk, sinϑk) · nj

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 ((xj − ξk) · (cosϑk, sinϑk))

]

, j = 1, N,

Jj,3N+2 =
∂

∂ηext

2N
∑

k=N+1

ck ∂nG(ξk,xj)

= γR
2N
∑

k=N+1

ck

[

−
(cosϑk−N , sinϑk−N) · nj

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 ((xj − ξk) · (cosϑk−N , sinϑk−N))

]

,

j = 1, N,

Jj,3N+3 =
∂

∂X

2N
∑

k=N+1

ck ∂nG(ξk,xj)

= γ
2N
∑

k=N+1

ck

[

nxj

|xj − ξk|
2 − 2

(xj − ξk) · nj

|xj − ξk|
4 (xj − ξk)x

]

, j = 1, N,

Jj,3N+4 =
∂

∂Y

2N
∑

k=N+1

ck ∂nG(ξk,xj)

= γ
2N
∑

k=N+1

ck

[

nyj

|xj − ξk|
2 − 2

(xj − ξk) · nj

|xj − ξk|
4 (xj − ξk)y

]

, j = 1, N,

Fj =
2N
∑

k=1

ck G(ξk,xj)− f(xj)

= γ
N
∑

k=1

ck log

√

(

R cos ϑ̃j−N −X − ηintrk cosϑk

)2

+
(

R sin ϑ̃j−N − Y − ηintrk sinϑk

)2
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+γ
2N
∑

k=N+1

ck log

√

(

R cos ϑ̃j−N − ηextR cosϑk−N

)2

+
(

R sin ϑ̃j−N − ηextR sinϑk−N

)2

− f(xj),

j = N + 1, N +M,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jj,m = G(ξm,xj), j = N + 1, N +M, m = 1, 2N,

Jj,2N+m =
∂

∂rm

2N
∑

k=1

ck G(ξk,xj) = −γηintcm
(xj − ξm) · (cosϑm, sinϑm)

|xj − ξm|
2 ,

j = N + 1, N +M, m = 1, N,

Jj,3N+1 =
2N
∑

k=1

ck
∂G(ξk,xj)

∂ηint
= −γ

N
∑

k=1

ckrk
(xj − ξk) · (cosϑk, sinϑk)

|xj − ξk|
2 , j = N + 1, N +M,

Jj,3N+2 =
2N
∑

k=1

ck
∂G(ξk,xj)

∂ηext
= −γ

2N
∑

k=N+1

ckR
(xj − ξk) · (cosϑk−N , sinϑk−N)

|xj − ξk|
2 , j = N + 1, N +M,

Jj,3N+3 =
2N
∑

k=1

ck
∂G(ξk,xj)

∂X
= −γ

N
∑

k=1

ck
(xj − ξk)x
|xj − ξk|

2 , j = N + 1, N +M,

Jj,3N+4 =
2N
∑

k=1

ck
∂G(ξk,xj)

∂Y
= −γ

N
∑

k=1

ck
(xj − ξk)y

|xj − ξk|
2 , j = N + 1, N +M,

FM+j =
2N
∑

k=1

ck ∂nG(ξk,xj)− gε(xj) = γ

2N
∑

k=1

ck
(xj − ξk) · nj

|xj − ξk|
2 − gε(xj)

= γ

N
∑

k=1

ck

(

R cos ϑ̃j−N −X − ηintrk cosϑk

)

cos ϑ̃j−N +
(

R sin ϑ̃j−N − Y − ηintrk sinϑk

)

sin ϑ̃j−N

(

R cos ϑ̃j−N −X − ηintrk cosϑk

)2

+
(

R sin ϑ̃j−N − Y − ηintrk sinϑk

)2

+γ
2N
∑

k=N+1

ck

(

R cos ϑ̃j−N − ηextR cosϑk−N

)

cos ϑ̃j−N +
(

R sin ϑ̃j−N − ηextR sinϑk−N

)

sin ϑ̃j−N

(

R cos ϑ̃j−N − ηextR cosϑk−N

)2

+
(

R sin ϑ̃j−N − ηextR sinϑk−N

)2

−gε(xj), j = N + 1, N +M,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

JM+j,m = ∂nG(ξm,xj) = γ
(xj − ξm) · nj

|xj − ξm|
2 , j = N + 1, N +M, m = 1, 2N,

JM+j,2N+m =
∂

∂rm

2N
∑

k=1

ck ∂nG(ξk,xj)
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= γηintcm

[

−
(cosϑm cos ϑ̃j−N + sinϑm sin ϑ̃j−N)

|xj − ξm|
2 + 2

(xj − ξm) · nj

|xj − ξm|
4 ((xj − ξm) · (cosϑm, sinϑm))

]

,

j = N + 1, N +M, m = 1, N,

JM+j,3N+1 =
2N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂ηint

= γ

N
∑

k=1

ckrk

[

−
(cosϑk cos ϑ̃j−N + sinϑk sin ϑ̃j−N)

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 ((xj − ξk) · (cosϑk, sinϑk))

]

,

j = N + 1, N +M,

JM+j,3N+2 =
2N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂ηext

= γ
2N
∑

k=N+1

ckR

[

−
(cosϑk−N cos ϑ̃j−N + sinϑk−N sin ϑ̃j−N)

|xj − ξk|
2

+2
(xj − ξk) · nj

|xj − ξk|
4 ((xj − ξk) · (cosϑk−N , sinϑk−N))

]

, j = N + 1, N +M,

JM+j,3N+3 =
2N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂X

= γ
N
∑

k=1

ck

[

−
cos ϑ̃j−N

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 (xj − ξk)x

]

, j = N + 1, N +M,

JM+j,3N+4 =
2N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂Y

= γ

N
∑

k=1

ck

[

−
sin ϑ̃j−N

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 (xj − ξk)y

]

, j = N + 1, N +M,

F2M+N+1 =

√

√

√

√λ1

2N
∑

ℓ=1

c2ℓ ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J2M+N+1,m =
∂

∂cm

√

√

√

√λ1

2N
∑

ℓ=1

c2ℓ =
√

λ1
cm

√

∑2N
ℓ=1 c

2
ℓ

, m = 1, 2N,
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J2M+N+1,2N+m =
∂

∂rm

√

√

√

√λ1

2N
∑

ℓ=1

c2ℓ = 0, m = 1, N,

J2M+N+1,3N+1 =
∂

∂ηint

√

√

√

√λ1

2N
∑

ℓ=1

c2ℓ = 0, J2M+N+1,3N+2 =
∂

∂ηext

√

√

√

√λ1

2N
∑

ℓ=1

c2ℓ = 0,

J2M+N+1,3N+3 =
∂

∂X

√

√

√

√λ1

2N
∑

ℓ=1

c2ℓ = 0, J2M+N+1,3N+4 =
∂

∂Y

√

√

√

√λ1

2N
∑

ℓ=1

c2ℓ = 0,

F2M+N+2 =

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J2M+N+2,m =
∂

∂cm

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0, m = 1, 2N,

J2M+N+2,2N+1 =
∂

∂r1

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = −

√

λ2
(r2 − r1)

√

∑N
ℓ=2 (rℓ − rℓ−1)

2
,

J2M+N+2,2N+m =
∂

∂rm

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 =

√

λ2
(2rm − rm−1 − rm+1)
√

∑N
ℓ=2 (rℓ − rℓ−1)

2
, m = 2, N − 1,

J2M+N+2,2N+N =
∂

∂rN

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 =

√

λ2
(rN − rN−1)

√

∑N
ℓ=2 (rℓ − rℓ−1)

2
,

J2M+N+2,3N+1 =
∂

∂ηint

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0,

J2M+N+2,3N+2 =
∂

∂ηext

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0,

J2M+N+2,3N+3 =
∂

∂X

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0,
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Table 1. Example 1: CPU times in seconds with number of iterations, with and
without providing the Jacobian, no noise and no regularization.

niter With Jacobian Without Jacobian
10 0.0748 0.8594
20 0.1370 1.3729
50 0.3458 3.3686
100 0.6756 6.4056
200 1.1580 12.478
500 2.3014 32.169
1000 4.9697 82.788

J2M+N+2,3N+4 =
∂

∂Y

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0.

5. Numerical examples

In all examples considered in this study we have taken the outer boundary ∂Ω2 to be a circle of
radius R = 1, whilst the choice of the regularization parameters λ1 and λ2 is based on trial and
error. However, one would expect that more sophisticated methods of selecting the regularization
parameters will lead to even better reconstructions, see e.g. [2,5]. Nonetheless, this is beyond the
scope of this investigation since one of our main aims herein is to emphasize the fact that both reg-
ularizing terms occurring in functional (4.1) are important and each yields a stabilised/regularized
solution to the missing inner boundary that is exempted from high oscillations.

5.1. Example 1. Here we consider reconstructing a circular rigid inclusion with boundary ∂Ω1

of radius 0.5 in the case where X = Y = 0 and α = 1 in (2.1d). The Dirichlet data (2.1e) on ∂Ω2

is taken as [13],

u(1, ϑ) = f(ϑ) = e− cos2 ϑ , ϑ ∈ [0, 2π). (5.1)

The Neumann data (2.1f) is simulated by solving the direct mixed well-posed boundary value
problem (2.1a), (2.1b) and (5.1), using the MFS with M = N = 400 and ηint = 0.8, ηext = 1.2. In
order to avoid committing an inverse crime, the inverse solver is applied using N = 56,M = 64. We

choose the initial vector of unknowns x0 = (c0, r0, η
0
int, η

0
ext, X0, Y0)

T
= (0,0.1, 0.3, 2,−0.3, 0.25)T.

In Table 1 we present the CPU times required for the above parameters for different numbers of
iterations when providing and when not providing the Jacobian. The savings when providing the
Jacobian are spectacular.
In Figure 2 we present the reduction of the residual functional (4.1) after 100 iterations with no
noise and no regularization when providing the Jacobian and when not providing the Jacobian.
As can be observed, when providing the Jacobian the residual decreases much faster.
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Figure 2. Example 1: Residual functional (4.1) with number of iterations, no noise
and no regularization.

In Figure 3 we present the results obtained for different numbers of iterations, with no noise and
no regularization, i.e. λ1 = λ2 = 0. It can be seen that the solution becomes accurate after about
20 iterations.
In Figures 4 and 5 we present the reconstructed curves with noise level of 10% after 1000 iterations
and various regularization parameters λ1 when λ2 = 0, and λ2 when λ1 = 0, respectively. From
these figures it can be seen that the inclusion of regularization, either with λ1 or λ2, yields stable
numerical solutions. In Figure 5 it is clear that as λ2 increases, the reconstruction tends to a
circle (of radius 0.5), due to the fact that the distribution of points (xk)k=1,N that minimize the
distance between them (which is what λ2 penalises) is an equally–spaced distribution of points
over a circumference. In this way, a high λ2 seems to be an advantage in the case of circular voids.
On the contrary, this a drawback for other domains, as will be further illustrated later in Figure 8
for the (non–circular) bean–shaped void (5.2). Moreover, it seems that regularizing the boundary
∂Ω1 is less sensitive to the choice of the regularization parameter λ2 (in between 10−2 and 102)
than is regularizing the solution u (i.e. the vector of coefficients c) through the regularization
parameter λ1 = 10−5.

5.2. Example 2. We consider a bean-shaped rigid inclusion whose boundary ∂Ω1 is described by
X = 0.2, Y = 0.3, and the radial parametrization

r(ϑ) = 0.6

(

0.5 + 0.4 cos(ϑ) + 0.1 sin(2ϑ)

1 + 0.7 cos(ϑ)

)

, ϑ ∈ [0, 2π), (5.2)
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niter=1 niter=2 niter=5 niter=10

niter=20 niter=50 niter=100 niter=200

Figure 3. Example 1: Results for various numbers of iterations, no noise and no regularization.

in the case of α = 1 in (2.1d). This example, which was also considered in [13], is more difficult than
Example 1 because of the presence of a sharp cusp-like portion mimicking a re-entrant corner. The
Neumann data (2.1f) is simulated by solving the direct mixed well-posed boundary value problem
(2.1a), (2.1b) and (5.1), when ∂Ω1 is given by (5.2), using the MFS with M = N = 400 and
ηint = 0.8, ηext = 1.2. In order to avoid committing an inverse crime, the inverse solver is applied

using N = 56,M = 64. We choose the initial vector of unknowns x0 = (c0, r0, η
0
int, η

0
ext, X0, Y0)

T
=

(0,0.1, 0.3, 2, 0.1, 0)T.
In Figure 6 we present the results obtained for different numbers of iterations, with no noise and
no regularization, i.e. λ1 = λ2 = 0. From these figures it can be seen that the solution becomes
quite accurate after about 100 iterations.
In Figures 7 and 8 we present the reconstructed curves with noise level of 5% after 1000 iterations
and various regularization parameters λ1 when λ2 = 0, and λ2 when λ1 = 0, respectively. From
these figures it can be seen that the inclusion of regularization, either with λ1 or λ2, yields stable
numerical solutions.
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Figure 4. Example 1: Results for noise p = 10% and regularization with λ1.

5.3. Example 3. We consider an example for which the exact solution is known. Here we consider
reconstructing a circular cavity (i.e. α = 0 in (2.1d)) centred at the origin (X, Y ) = (0, 0). In
particular, we consider

Ω1 =
{

(x, y) ∈ R
2 : x2 + y2 < R2

0 < 1
}

, Ω2 =
{

(x, y) ∈ R
2 : x2 + y2 < 1

}

(5.3)

and
u(x, y) =

x

R2
0

+
x

x2 + y2
. (5.4)

For any 0 < R0 < 1, the function u satisfies equations (2.1a), (2.1c), (2.1e) and (2.1f), with

f(x, y) = x

(

1

R2
0

+ 1

)

and g(x, y) = x

(

1

R2
0

− 1

)

, (x, y) ∈ ∂Ω2. (5.5)

Note that the compatibility condition (2.2) on the Neumann flux data g is automatically satisfied.

In our numerical experiments we consider R0 = 0.5. We choose the initial vector of unknowns

x0 = (c0, r0, η
0
int, η

0
ext, X0, Y0)

T
= (0,0.1, 0.1, 2,−0.1, 0.5)T.
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2=0 2=10-4
2=10-3

2=10-2

2=10-1
2=100

2=101
2=102

Figure 5. Example 1: Results for noise p = 10% and regularization with λ2.

In Figure 9 we present the results obtained for different numbers of iterations, with no noise and
no regularization, i.e. λ1 = λ2 = 0. From these figures it can be seen that the solution becomes
quite accurate after about 20 iterations.
In Figures 10 and 11 we present the reconstructed curves with noise level of 5% after 1000 iterations
and various regularization parameters λ1 when λ2 = 0, and λ2 when λ1 = 0, respectively. From
these figures it can be seen that the inclusion of regularization, either with λ1 or λ2, yields stable
numerical solutions.

5.4. Example 4. We consider a bean-shaped cavity (i.e. α = 0 in (2.1d)) whose boundary
∂Ω1 is described by X = 0.2, Y = 0.3, and the radial parametrization (5.2). The numer-
ical details are the same as those of Example 2, except for the initial guess which is taken

x0 = (c0, r0, η
0
int, η

0
ext, X0, Y0)

T
= (0,0.25, 0.3, 2,−0.2,−0.2)T.

In Figure 12 we present the results obtained for different numbers of iterations, with no noise and
no regularization, i.e. λ1 = λ2 = 0. From these figures it can be seen that the solution becomes
quite accurate after about 1000 iterations.
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niter=1 niter=2 niter=5 niter=10

niter=50 niter=100 niter=500 niter=1000

Figure 6. Example 2: Results for various numbers of iterations, no noise and no regularization.

In Figures 13 and 14 we present the reconstructed curves with noise level of 5% after 1000 iterations
and various regularization parameters λ1 when λ2 = 0, and λ2 when λ1 = 0, respectively. From
these figures it can be seen that the inclusion of regularization, either with λ1 or λ2, yields stable
numerical solutions.

6. Extension to multiple voids

We now extend the MFS formulation for one void, described in Sections 3 and 4, to the case of
two voids given by

∆u = 0 in Ω, (6.1a)

subject to

u = f on ∂Ω2, (6.1b)

∂nu = g on ∂Ω2, (6.1c)

α1u+ (1− α1)∂nu = 0 on ∂Ωa
1, where α1 ∈ {0, 1}, (6.1d)
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1=0 1=10-7
1=10-6

1=10-5

1=10-4
1=10-3

1=10-2
1=10-1

Figure 7. Example 2: Results for noise p = 5% and regularization with λ1.

and
α2u+ (1− α2)∂nu = 0 on ∂Ωb

1, where α2 ∈ {0, 1}. (6.1e)

Here Ωa
1 and Ωb

1 are two disjoint voids, such that Ωa
1 ∪ Ωb

1 = Ω1 and Ω
a

1 ∩ Ω
b

1 = ∅, see Figure 1.

The MFS approximation of the solution of inverse boundary value problem (6.1) is

uN(c, ξ;x) =
3N
∑

k=1

ck G(ξk,x), x ∈ Ω. (6.2)

In this case 3N sources (ξk)k=1,3N are placed outside Ω, that is in Ω1 ∪
(

R
2\Ω̄2

)

. The first N

sources (ξk)k=1,N are placed in Ωa
1 on a pseudo–boundary ∂Ωa

1
′ similar to ∂Ωa

1. The next N sources

(ξk)k=N+1,2N are placed in Ωb
1 on a pseudo–boundary ∂Ωb

1
′
similar to ∂Ωb

1. Finally, the remaining

N sources (ξk)k=2N+1,3N are placed in R
2\Ω2 on a pseudo–boundary ∂Ω′

2 similar (dilation) to ∂Ω2.
Note that the first two pseudo–boundaries are contractions with unknown contraction coefficients
ηaint ∈ (0, 1) and ηbint ∈ (0, 1), respectively, while the third pseudo–boundary is a dilation with
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Figure 8. Example 2: Results for noise p = 5% and regularization with λ2.

contraction coefficient ηext ∈ (1, S) with S > 1 prescribed.

We assume that the unknown boundaries ∂Ωa
1 and ∂Ωb

1 are a smooth, star–like curves with respect
to their centres which have unknown coordinates (Xa, Y a) and (Xb, Y b), respectively. Their
equations in polar coordinates are thus

(x, y)=(Xa + ra(ϑ) cosϑ, Y a + ra(ϑ) sinϑ) and (x, y)=
(

Xb + rb(ϑ) cosϑ, Y b + rb(ϑ) sinϑ
)

, (6.3)

ϑ ∈ [0, 2π), respectively, where ra and rb are smooth 2π−periodic functions.

Using the notation

rk = rak = ra(ϑk), rk+N = rbk = rb(ϑk), k = 1, N, (6.4)
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niter=1 niter=2 niter=5 niter=10

niter=20 niter=50 niter=100 niter=200

Figure 9. Example 3: Results for various numbers of iterations, no noise and no regularization.

the sources are defined as follows:

ξk = (Xa, Y a) + ηaint r
a
k (cosϑk, sinϑk) ,

ξN+k = (Xb, Y b) + ηbint r
b
N+k (cosϑk, sinϑk) , (6.5)

ξ2N+k = ηextR(cosϑk, sinϑk), k = 1, N,

where ϑk =
2π(k−1)

N
, k = 1, N . In addition to the sources, we define 2N +M boundary collocation

points (xℓ)ℓ=1,2N+M as follows:

xk = (Xa, Y a) + rak (cosϑk, sinϑk) ,

xN+k = (Xb, Y b) + rbN+k (cosϑk, sinϑk) , k = 1, N, (6.6)

x2N+ℓ = R (cos ϑ̃ℓ, sin ϑ̃ℓ), ℓ = 1,M,

where ϑ̃ℓ =
2π(ℓ−1)

M
, ℓ = 1,M .
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Figure 10. Example 3: Results for noise p = 5% and regularization with λ1.

In the MFS formulation for the solution of inverse boundary value problem (6.1) we have the
following unknowns:

• The coefficients (ck)k=1,3N in (6.2),

• the radii (rak)k=1,N ,
(

rbk
)

k=1,N
in (6.4),

• the contraction and dilation coefficients ηaint, η
b
int and ηext, and

• the centre coordinates (Xa, Y a), (Xb, Y b).

The unknowns listed above are determined by imposing the boundary conditions (6.1b)–(6.1e) in
a least-squares sense by minimizing the functional

S(c, ra, rb,η,C) :=
2N+M
∑

j=2N+1

[uN(c, ξ;xj)− f(xj)]
2 +

2N+M
∑

j=2N+1

[∂nuN(c, ξ;xj)− gε(xj)]
2

+
N
∑

j=1

[α1uN(c, ξ;xj) + (1− α1)∂nuN(c, ξ;xj)]
2 +

2N
∑

j=N+1

[α2uN(c, ξ;xj) + (1− α2)∂nuN(c, ξ;xj)]
2
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Figure 11. Example 3: Results for noise p = 5% and regularization with λ2.

+ λ1|c|
2 + λa

2

N
∑

ℓ=2

(

raℓ − raℓ−1

)2
+ λb

2

N
∑

ℓ=2

(

rbℓ − rbℓ−1

)2
, (6.7)

where λ1, λ
a
2, λ

b
2 ≥ 0 are regularization parameters to be prescribed, c = [c1, c2, . . . , c3N ]

T,
ra = [ra1 , r

a
2 , . . . , r

a
N ]

T, rb = [rb1, r
b
2, . . . , r

b
N ]

T, η = [ηaint, η
b
int, ηext]

T and C = [Xa, Y a, Xb, Y b]T.
The number of unknowns is 5N +7 and the number of boundary collocation equations 2N +2M ,
and thus we need to take 2M ≥ 3N + 7.

6.1. Derivation of Jacobian. In the implementation we need to provide lsqnonlin with the
following information (for simplicity we only consider the case α1 = α2 = 1 in (6.1d) and (6.1e),
respectively):

Fj =
3N
∑

k=1

ck G(ξk,xj) = γ
N
∑

k=1

ck log

√

(rj cosϑj − ηaintrk cosϑk)
2 + (rj sinϑj − ηaintrk sinϑk)

2
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niter=1 niter=10 niter=50 niter=100

niter=500 niter=1000 niter=2000 niter=5000

Figure 12. Example 4: Results for various numbers of iterations, no noise and no
regularization.

+γ
2N
∑

k=N+1

ck log

√

(

Xa + rj cosϑj −Xb − ηbintrk cosϑk

)2
+
(

Y a + rj sinϑj − Y b − ηbintrk sinϑk

)2

+γ

3N
∑

k=2N+1

ck log

√

(Xa + rj cosϑj − ηextR cosϑk−2N)
2 + (Y a + rj sinϑj − ηextR sinϑk−2N)

2,

j = 1, N ,
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Figure 13. Example 4: Results for noise p = 5% and regularization with λ1.
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Figure 14. Example 4: Results for noise p = 5% and regularization with λ2.
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∂
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Jj,m = G(ξm,xj), j = 2N + 1, 2N +M, m = 1, 3N,



28 ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

Jj,3N+m =
∂

∂rm

3N
∑

k=1

ck G(ξk,xj)

= −γηaintcm
(xj − ξm) · (cosϑm, sinϑm)

|xj − ξm|
2 , j = 2N + 1, 2N +M, m = 1, N,

Jj,3N+m =
∂

∂rm

2N
∑

k=1

ck G(ξk,xj) = −γηbintcm
(xj − ξm) · (cosϑm−N , sinϑm−N)

|xj − ξm|
2 ,

j = 2N + 1, 2N +M, m = N + 1, 2N,

Jj,5N+1 =
3N
∑

k=1

ck
∂G(ξk,xj)

∂ηaint
= −γ

N
∑

k=1

ckrk
(xj − ξk) · (cosϑk, sinϑk)

|xj − ξk|
2 , j = 2N + 1, 2N +M,

Jj,5N+2 =
3N
∑

k=1

ck
∂G(ξk,xj)

∂ηbint
= −γ

2N
∑

k=N+1

ckrk
(xj − ξk) · (cosϑk−N , sinϑk−N)

|xj − ξk|
2 ,

j = 2N + 1, 2N +M,

Jj,5N+3 =
3N
∑

k=1

ck
∂G(ξk,xj)

∂ηext
= −γ

3N
∑

k=2N+1

ckR
(xj − ξk) · (cosϑk−2N , sinϑk−2N)

|xj − ξk|
2 ,

j = 2N + 1, 2N +M,

Jj,5N+4 =
3N
∑

k=1

ck
∂G(ξk,xj)

∂Xa
= −γ

N
∑

k=1

ck
(xj − ξk)x
|xj − ξk|

2 , j = 2N + 1, 2N +M,

Jj,5N+5 =
3N
∑

k=1

ck
∂G(ξk,xj)

∂Y a
= −γ

N
∑

k=1

ck
(xj − ξk)y

|xj − ξk|
2 , j = 2N + 1, 2N +M,

Jj,5N+6 =
3N
∑

k=1

ck
∂G(ξk,xj)

∂Xb
= −γ

2N
∑

k=N+1

ck
(xj − ξk)x
|xj − ξk|

2 , j = 2N + 1, 2N +M,

Jj,5N+6 =
3N
∑

k=1

ck
∂G(ξk,xj)

∂Y b
= −γ

2N
∑

k=N+1

ck
(xj − ξk)y

|xj − ξk|
2 , j = 2N + 1, 2N +M,

FM+j =
3N
∑

k=1

ck ∂nG(ξk,xj)− gε(xj) = γ
3N
∑

k=1

ck
(xj − ξk) · nj

|xj − ξk|
2 − gε(xj)

= γ
N
∑

k=1

ck

(

R cos ϑ̃j−2N −Xa − ηaintrk cosϑk

)

cos ϑ̃j−2N +
(

R sin ϑ̃j−2N − Y a − ηaintrk sinϑk

)

sin ϑ̃j−2N

(

R cos ϑ̃j−2N −Xa − ηaintrk cosϑk

)2

+
(

R sin ϑ̃j−2N − Y a − ηaintrk sinϑk

)2



MFS FOR VOID DETECTION 29

+γ

2N
∑

k=N+1

ck

(

R cos ϑ̃j−2N −Xb − ηbintrk cosϑk

)

cos ϑ̃j−2N +
(

R sin ϑ̃j−2N − Y b − ηbintrk sinϑk

)

sin ϑ̃j−2N

(

R cos ϑ̃j−2N −Xb − ηbintrk cosϑk

)2

+
(

R sin ϑ̃j−2N − Y b − ηbintrk sinϑk

)2

+γ
3N
∑

k=2N+1

ck

(

R cos ϑ̃j−2N − ηextR cosϑk−2N

)

cos ϑ̃j−2N +
(

R sin ϑ̃j−2N − ηextR sinϑk−2N

)

sin ϑ̃j−2N

(

R cos ϑ̃j−2N − ηextR cosϑk−2N

)2

+
(

R sin ϑ̃j−2N − ηextR sinϑk−2N

)2

−gε(xj), j = 2N + 1, 2N +M,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

JM+j,m = ∂nG(ξm,xj) = γ
(xj − ξm) · nj

|xj − ξm|
2 , j = 2N + 1, 2N +M, m = 1, 3N,

JM+j,3N+m =
∂

∂rm

3N
∑

k=1

ck ∂nG(ξk,xj)

= γηaintcm

[

−
(cosϑm cos ϑ̃j−2N + sinϑm sin ϑ̃j−2N)

|xj − ξm|
2

+2
(xj − ξm) · nj

|xj − ξm|
4 ((xj − ξm) · (cosϑm, sinϑm))

]

,

j = 2N + 1, 2N +M, m = 1, N,

JM+j,3N+m =
∂

∂rm

3N
∑

k=1

ck ∂nG(ξk,xj)

= γηbintcm

[

−
(cosϑm−N cos ϑ̃j−2N + sinϑm−N sin ϑ̃j−2N)

|xj − ξm|
2

+2
(xj − ξm) · nj

|xj − ξm|
4 ((xj − ξm) · (cosϑm−N , sinϑm−N))

]

,

j = 2N + 1, 2N +M, m = N + 1, 2N,

JM+j,5N+1 =
3N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂ηaint

= γ

N
∑

k=1

ckrk

[

−
(cosϑk cos ϑ̃j−2N + sinϑk sin ϑ̃j−2N)

|xj − ξk|
2

+2
(xj − ξk) · nj

|xj − ξk|
4 ((xj − ξk) · (cosϑk, sinϑk))

]

, j = 2N + 1, 2N +M,



30 ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

JM+j,5N+2 =
2N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂ηbint

= γ

2N
∑

k=N+1

ckrk

[

−
(cosϑk−N cos ϑ̃j−2N + sinϑk−N sin ϑ̃j−2N)

|xj − ξk|
2

+2
(xj − ξk) · nj

|xj − ξk|
4 ((xj − ξk) · (cosϑk, sinϑk))

]

, j = 2N + 1, 2N +M,

JM+j,5N+3 =
3N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂ηext
= γ

3N
∑

k=2N+1

ckR

[

−
(cosϑk−2N cos ϑ̃j−2N + sinϑk−2N sin ϑ̃j−2N)

|xj − ξk|
2

+2
(xj − ξk) · nj

|xj − ξk|
4 ((xj − ξk) · (cosϑk−2N , sinϑk−2N))

]

, j = 2N + 1, 2N +M,

JM+j,5N+4 =
3N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂Xa

= γ

N
∑

k=1

ck

[

−
cos ϑ̃j−2N

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 (xj − ξk)x

]

, j = 2N + 1, 2N +M,

JM+j,5N+5 =
3N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂Y a

= γ
N
∑

k=1

ck

[

−
sin ϑ̃j−2N

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 (xj − ξk)y

]

, j = 2N + 1, 2N +M,

JM+j,5N+6 =
3N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂Xb

= γ
2N
∑

k=N+1

ck

[

−
cos ϑ̃j−2N

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 (xj − ξk)x

]

, j = 2N + 1, 2N +M,

JM+j,5N+7 =
3N
∑

k=1

ck
∂ (∂nG(ξk,xj))

∂Y a

= γ

2N
∑

k=N+1

ck

[

−
sin ϑ̃j−2N

|xj − ξk|
2 + 2

(xj − ξk) · nj

|xj − ξk|
4 (xj − ξk)y

]

, j = 2N + 1, 2N +M,

F2M+2N+1 =

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ ,



MFS FOR VOID DETECTION 31

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J2M+2N+1,m =
∂

∂cm

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ =
√

λ1
cm

√

∑3N
ℓ=1 c

2
ℓ

, m = 1, 3N,

J2M+2N+1,3N+m =
∂

∂rm

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ = 0, m = 1, 2N,

J2M+2N+1,5N+1 =
∂

∂ηaint

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ = 0,

J2M+2N+1,5N+2 =
∂

∂ηbint

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ = 0,

J2M+2N+1,5N+3 =
∂

∂ηext

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ = 0,

J2M+2N+1,5N+4 =
∂

∂Xa

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ = 0,

J2M+2N+1,5N+5 =
∂

∂Y a

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ = 0,

J2M+2N+1,5N+6 =
∂

∂Xb

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ = 0,

J2M+2N+1,5N+7 =
∂

∂Y b

√

√

√

√λ1

3N
∑

ℓ=1

c2ℓ = 0,

F2M+2N+2 =

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J2M+2N+2,m =
∂

∂cm

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0, m = 1, 3N,



32 ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

J2M+2N+2,3N+1 =
∂

∂r1

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = −

√

λ2
(r2 − r1)

√

∑N
ℓ=2 (rℓ − rℓ−1)

2
,

J2M+2N+2,3N+m =
∂

∂rm

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 =

√

λ2
(2rm − rm−1 − rm+1)
√

∑N
ℓ=2 (rℓ − rℓ−1)

2
, m = 2, N − 1,

J2M+2N+2,3N+N =
∂

∂rN

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 =

√

λ2
(rN − rN−1)

√

∑N
ℓ=2 (rℓ − rℓ−1)

2
,

J2M+2N+2,3N+m =
∂

∂rm

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0, m = N + 1, 2N,

J2M+2N+2,5N+1 =
∂

∂ηaint

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0,

J2M+2N+2,5N+2 =
∂

∂ηbint

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0,

J2M+2N+2,5N+3 =
∂

∂ηext

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0,

J2M+2N+2,5N+4 =
∂

∂Xa

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0,

J2M+2N+2,5N+5 =
∂

∂Y a

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0.

J2M+2N+2,5N+6 =
∂

∂Xb

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0,

J2M+2N+2,5N+7 =
∂

∂Y b

√

√

√

√λ2

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0.

F2M+2N+3 =

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2,
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J2M+2N+3,m =
∂

∂cm

√

√

√

√λ3

N
∑

ℓ=2

(rℓ − rℓ−1)
2 = 0, m = 1, 3N,

J2M+2N+3,3N+m =
∂

∂rm

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0, m = 1, N,

J2M+2N+3,4N+1 =
∂

∂rN+1

√

√

√

√λ3

N
∑

ℓ=2
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√

λ3
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√

∑N
ℓ=2 (rN+ℓ − rN+ℓ−1)

2
,
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∂

∂rm

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 =

√

λ3
(2rm − rm−1 − rm+1)

√

∑N
ℓ=2 (rN+ℓ − rN+ℓ−1)

2
,

m = N + 2, 2N − 1,

J2M+2N+3,5N =
∂

∂r2N

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 =

√

λ3
(r2N − r2N−1)

√

∑N
ℓ=2 (rN+ℓ − rN+ℓ−1)

2
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∂

∂rm

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0, m = N + 1, 2N,

J2M+2N+3,5N+1 =
∂

∂ηaint

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0,

J2M+2N+3,5N+2 =
∂

∂ηbint

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0,

J2M+2N+3,5N+3 =
∂

∂ηext

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0,

J2M+2N+3,5N+4 =
∂

∂Xa

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0,

J2M+2N+3,5N+5 =
∂

∂Y a

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0.
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Table 2. Example 5: CPU times in seconds with number of iterations, with and
without providing the Jacobian, no noise and no regularization.

niter With Jacobian Without Jacobian
10 0.1357 1.4740
20 0.3502 2.4180
50 0.5445 5.7470
100 1.2196 11.218
500 4.2579 58.854
1000 8.0454 153.13
2000 13.887 416.57
5000 37.127 1828.7

J2M+2N+3,5N+6 =
∂

∂Xb

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0,

J2M+2N+3,5N+7 =
∂

∂Y b

√

√

√

√λ3

N
∑

ℓ=2

(rN+ℓ − rN+ℓ−1)
2 = 0.

6.2. Example 5. We consider the case of a multiple void made up a bean–shaped obstacle Ωa
1 and

a peanut–shaped obstacle Ωb
1 are present. The obstacle Ωa

1 is described by the radial parametriza-
tion

ra(ϑ) = 0.5

(

0.5 + 0.4 cos(ϑ) + 0.1 sin(2ϑ)

1 + 0.7 cos(ϑ)

)

, ϑ ∈ [0, 2π), (6.8)

while Ωb
1 is described by

r(ϑ) = 0.3
√

cos2(ϑ) + 0.25 sin2(ϑ) , ϑ ∈ [0, 2π), (6.9)

and have centres Xa = −0.3, Y a = 0.3 and Xb = 0.3, Y b = −0.3, respectively. In this ex-
ample, we consider the homogeneous Dirichlet boundary conditions with α1 = α2 = 1 on the
boundaries of both rigid inclusions. The Neumann data (6.1c) is simulated by solving the di-
rect boundary value problem (6.1) (without (6.1c) and with f in (6.1b) given by (5.1)) using
the MFS with M = N = 400. In order to avoid committing an inverse crime, the inverse
solver is applied using N = 40,M = 125. Moreover, we took the initial vector of unknowns

x0 =
(

c0, r
a
0, r

b
0, , η

a0

int, η
b0

int, η
0
ext, X

a
0 , Y

a
0 , X

b
0, Y

b
0

)

= (0,0.1,0.1, 0.5, 0.5, 1.5,−0.5, 0.2, 0.5,−0.2).

In Table 2 we present the CPU times required for the above parameters for different numbers of
iterations when providing and when not providing the Jacobian. The savings when providing the
Jacobian are spectacular.
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In Figure 15 we present the reduction of the residual after 500 iterations, no noise and no regular-
ization, when providing the Jacobian and when not providing the Jacobian. As can be observed,
when providing the Jacobian the residual functional (6.7) decreases faster than when the Jacobian
is not provided.

0 50 100 150 200 250 300 350 400 450 500

Iterations

10-8

10-6

10-4

10-2

100

102

R
es

id
ua

l

Without Jacobian
With Jacobian

Figure 15. Example 5: Residual functional (6.7) with the number of iterations.

In Figure 16 we present the results obtained for different numbers of iterations and no regulariza-
tion. In Figures 17 and 18 we present the corresponding reconstructed curves with a noise level
of p = 5%, after 1000 iterations, and various levels of regularization λ1 with λ2 = λa

2 = λb
2 = 0,

and λ1 = 0 with λ2 = λa
2 = λb

2, respectively. Overall, Figures 16–18 illustrate that the MFS can
indeed retrieve successfully voids having two connected components.

7. Conclusions

In this study, we have investigated the performance of the MFS for the solution of inverse geometric
problems governed by the Laplace equation. In particular, we have considered the problem of
determining a rigid inclusion or a cavity. The MFS discretization led to a nonlinear system of
equations for the coefficients in the MFS expansion, the radial radii, the contraction and dilation
coefficients and the coordinates of the centre of the cavity. For the solution of the nonlinear system
we have used the MATLABR⃝ optimization toolbox routine lsqnonlin. In previous studies, such
as [16], we had chosen the option of not providing the Jacobian of the system which was calculated
internally. In the current work we do provide the Jacobian of the system and show that this leads to
considerable savings in computational time, rapid convergence as well as accurate reconstructions
of the unknown void. The method is extended to the case of two voids. In future studies we plan
to investigate the corresponding application to three–dimensional problems.
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niter=1 niter=10 niter=50 niter=100

niter=500 niter=1000 niter=2000 niter=5000

Figure 16. Example 5: Results for various numbers of iterations for no noise and
no regularization.
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Appendix

The outward normal vector n is defined as follows:

n =







cosϑ i+ sinϑ j , if x ∈ ∂Ω2,
1

√

r2(ϑ) + r′2(ϑ)
[− (r′(ϑ) sinϑ+ r(ϑ) cosϑ) i+ (r′(ϑ) cosϑ− r(ϑ) sinϑ) j], if x ∈ ∂Ω1,

where i = (1, 0) and j = (0, 1). As a result, from (3.1) the normal derivative ∂nuN is evaluated as

∂nuN = n · ∇uN = −
1

2π

2N
∑

k=1

ck
(x− ξk) · n

|x− ξk|
2

. (A.1)

In the above expression, we use the finite-difference approximation

r′(ϑj) ≈
ri+1 − ri−1

4π/N
= r′j, j = 1, N, (A.2)

with the convention that rN+1 = r1, r0 = rN , and

nxj
=

− (r′(ϑj) sinϑj + r(ϑj) cosϑj)
√

r2(ϑj) + r′2(ϑj)
≈

−
(

r′jSj + rjCj

)

√

r2j + r′2j

=

−

(

rj+1 − rj−1

σ

)

Sj − rjCj

√

r2j +

(

rj+1 − rj−1

σ

)2
,

nyj =
r′(ϑj) cosϑj − r(ϑj) sinϑj

√

r2(ϑj) + r′2(ϑj)
≈

r′jCj − rjSj
√

r2j + r′2j

=

(

rj+1 − rj−1

σ

)

Cj − rjSj

√

r2j +

(

rj+1 − rj−1

σ

)2

where j = 1, N and σ = 4π/N . Therefore,

nx1
=

−

(

r2 − rN
σ

)

S1 − r1C1

√

r21 +

(

r2 − rN
σ

)2

nxj
=

−

(

rj+1 − rj−1

σ

)

Sj − rjCj

√

r2j +

(

rj+1 − rj−1

σ

)2
, j = 2, N − 1,
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nxN
=

−

(

r1 − rN−1

σ

)

SN − rNCN

√

r2N +

(

r1 − rN−1

σ

)2
,

ny1 =

(

r2 − rN
σ

)

C1 − r1S1

√

r21 +

(

r2 − rN
σ

)2
,

nyj =

(

rj+1 − rj−1

σ

)

Cj − rjSj

√

r2j +

(

rj+1 − rj−1

σ

)2
, j = 2, N − 1,

nyN =

(

r1 − rN−1

σ

)

CN − rNSN

√

r2N +

(

r1 − rN−1

σ

)2
,



42 ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

In the derivation of the Jacobian we shall need the following derivatives:

∂nxj

∂rj
=

−Cj
√

r2j +

(

rj+1 − rj−1

σ

)2
−

(

−

(

rj+1 − rj−1

σ

)

Sj − rjCj

)

rj

(

r2j +

(

rj+1 − rj−1

σ

)2
)3/2

, j = 1, N,

∂nxj

∂rj+1

=
−
Sj

σ
√

r2j +

(

rj+1 − rj−1

σ

)2
−

(

−

(

rj+1 − rj−1

σ

)

Sj − rjCj

)(

rj+1 − rj−1

σ2

)

(

r2j +

(

rj+1 − rj−1

σ

)2
)3/2

, j = 1, N − 1,

∂nxN

∂r1
=

−
SN

σ
√

r2N +

(

r1 − rN−1

σ

)2
−

(

−

(

r1 − rN−1

σ

)

SN − rNCN

)(

r1 − rN−1

σ2

)

(

r2N +

(

r1 − rN−1

σ

)2
)3/2

,

∂nxj

∂rj−1

=

Sj

σ
√

r2j +

(

rj+1 − rj−1

σ

)2
−

((

rj+1 − rj−1

σ

)

Sj + rjCj

)(

rj+1 − rj−1

σ2

)

(

r2j +

(

rj+1 − rj−1

σ

)2
)3/2

, j = 2, N,

∂nx1

∂rN
=

S1

σ
√

r21 +

(

r2 − rN
σ

)2
−

((

r2 − rN
σ

)

S1 + r1C1

)(

r2 − rN
σ2

)

(

r21 +

(

r2 − rN
σ

)2
)3/2

,
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and

∂nyj

∂rj
=

−Sj
√

r2j +

(

rj+1 − rj−1

σ

)2
−

((

rj+1 − rj−1

σ

)

Cj − rjSj

)

rj

(

r2j +

(

rj+1 − rj−1

σ

)2
)3/2

, j = 1, N,

∂nyj

∂rj+1

=

Cj

σ
√

r2j +

(

rj+1 − rj−1

σ

)2
−

((

rj+1 − rj−1

σ

)

Cj − rjSj

)(

rj+1 − rj−1

σ2

)

(

r2j +

(

rj+1 − rj−1

σ

)2
)3/2

, j = 1, N − 1,

∂nyN

∂r1
=

CN

σ
√

r2N +

(

r1 − rN−1

σ

)2
−

((

r1 − rN−1

σ

)

CN − rNSN

)(

r1 − rN−1

σ2

)

(

r2N +

(

r1 − rN−1

σ

)2
)3/2

,

∂nyj

∂rj−1

=
−
Cj

σ
√

r2j +

(

rj+1 − rj−1

σ

)2
+

((

rj+1 − rj−1

σ

)

Cj − rjSj

)(

rj+1 − rj−1

σ2

)

(

r2j +

(

rj+1 − rj−1

σ

)2
)3/2

, j = 2, N,

∂ny1

∂rN
=

−
C1

σ
√

r21 +

(

r2 − rN
σ

)2
+
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r2 − rN
σ

)

C1 − r1S1
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σ2
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r21 +

(
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σ
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)3/2
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