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Quantum many-body scarring (QMBS) is a recently discovered form of weak ergodicity breaking in
strongly interacting quantum systems, which presents opportunities for mitigating thermalisation-
induced decoherence in quantum information processing applications. However, the existing ex-
perimental realisations of QMBS are based on systems with specific kinetic constrains. Here, we
experimentally realise a distinct kind of QMBS by approximately decoupling a part of the many-
body Hilbert space in the computational basis. Utilising a programmable superconducting processor
with 30 qubits and tunable couplings, we realise Hilbert space scarring in a non-constrained model
in different geometries, including a linear chain and a quasi-one-dimensional comb geometry. By
reconstructing the full quantum state through quantum state tomography on 4-qubit subsystems,
we provide strong evidence for QMBS states by measuring qubit population dynamics, quantum
fidelity and entanglement entropy after a quench from initial unentangled states. Our experimental
findings broaden the realm of scarring mechanisms and identify correlations in QMBS states for

quantum technology applications.

MAIN TEXT

Strongly-coupled quantum systems provide a wealth of
opportunities for fundamental physics as well as practi-
cal applications that utilise quantum entanglement [1-
4]. However, the majority of such systems, even if they
are perfectly isolated from the external world, undergo
chaotic dynamics and information scrambling [3, 5-8] —
the process described by the so-called Eigenstate Ther-
malisation Hypothesis (ETH) [9-12]. Developing meth-
ods to defy the ETH so as to preserve quantum informa-
tion in long-lived dynamic states has become an impor-
tant goal of quantum sciences [13].

Recent discovery of quantum many-body scarring
(QMBS) [14, 15] — a many-body analog of scarring phe-
nomena in quantum billiards [16] — has shown that cer-
tain many-body systems can host non-thermalising eigen-
states at high energy densities above their ground state.
In such systems, some special initial states have long-
lived coherent dynamics, in stark contrast to rapid ther-
malisation from other initial conditions. This offers a
new route for designing non-ergodic dynamics compared
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to, for example, fine tuning the couplings of the systems
to make it integrable, and it avoids the need to strongly
disorder the system to drive it into a many-body local-
ized phase [17-20]. Because of their ability to suppress
thermalisation for only those selected states, QMBSs
are expected to be useful for storing quantum informa-
tion [14], generating Greenberger—Horne—Zeilinger entan-
gled state [21] and in quantum-enhanced sensing [22].
However, while there has been a proliferation of theo-
retical studies of QMBS [23-34], the experimental real-
isations of QMBS remain in short supply. The existing
QMBS experiments remain focussed on the kinetically-
constrained PXP model [35, 36], which has been effec-
tively realised using Rydberg atoms [13, 37] and ultracold
bosons in optical lattices [38]. More recently, ultracold
lithium-7 atoms in an optical lattice, which realise the
Heisenberg spin model, have been explored as a host of
non-thermalising helix states, reminiscent of QMBS [39].

In this article, we report the observation of a new
class of QMBS states on a superconducting (SC) pro-
cessor. In contrast to previous realisations in kinetically
constrained Rydberg atom arrays, we design QMBS by
weakly decoupling one part of the Hilbert space in the
computational basis. Our approach is inspired by the
topological structure of the Su-Schrieffer-Heeger (SSH)
model of polyacetylene [40], which we utilise to create
a nearly decoupled subspace with the structure of the
hypercube graph. This subspace gives rise to emergent



QMBS phenomena, including many-body revivals from
special initial states residing in the hypercube, as well
as the band of scarred eigenstates. Meanwhile, the en-
tire system thermalises due to weak cross couplings be-
tween non-nearest-neighbouring qubits. One of the ad-
vantages of our SC platform is the tunable XY coupling
between qubits (see Methods section for more details) on
a 6 by 6 square lattice configuration, which enables us to
emulate many-body systems with both one-dimensional
(1ID) and quasi-1D systems with comb shape. We inves-
tigate circuits of up to 30 qubits and 29 couplers, with
the Hilbert space dimension 155,117,520 — far beyond
the limits of classical simulation. Measurements of pop-
ulation dynamics and quantum state tomography for en-
tanglement entropy and quantum fidelity provide strong
evidence of the emergence of robust QMBS states, as we
demonstrate by directly comparing their slow dynamics
against conventional thermalising states. Our realisation
of a new QMBS paradigm in a solid state SC platform en-
ables a systematic exploration of the fundamental physics
of many-body scarring in systems with highly-tunable in-
teractions and configurable lattice topology beyond one
spatial dimension.

Mechanism of Hilbert space scarring

Our experiment utilises a two-dimensional SC qubit
array [4, 41], shown in Fig. la, which features high den-
sity integration and high degree of controllability over lo-
cal couplings [42, 43], allowing to emulate different mod-
els in a single device. We first consider the “snake”-like
qubit layout in Fig. 1la. This layout exploits the struc-
ture of the SSH chain [40], where the intra-dimer cou-
pling J; ;11 = Jo with ¢ € odd is slightly stronger than
the inter-dimer coupling J; ;41 = J. with i € even. This
model is motivated as follows. In the limit J, > J,, each
dimer with one photon behaves as a nearly free two-level
system. Hence the SC qubit system is isomorphic to a
free spin-1/2 paramagnet. Such a system supports quan-
tum revivals but they are essentially of single-particle
origin. When J, and J, are comparable in magnitude,
they are in the regime of the SSH model where quench
dynamics from fully polarized and Néel initial states has
recently been investigated in Refs. [44, 45]. While the
Néel state does not display persistent revivals, we will
show below that it is possible to identify, based on the
graph structure of the Hamiltonian, other initial states
that do exhibit quantum revivals, even after the interac-
tions break integrability and cause the system to ther-
malise for most of the other initial states.

We identify candidate QMBS states based on their
special location in the Hamiltonian adjacency graph.
Each dimer has four states: |dg) = ]00), |d;) = |11),
|dy)y = ]10), and |d_) = |01). At half filling, i.e.,
with the number of photons N equal to half the total
number of qubits L, a special class of dimerized states
can be identified. These states all have one photon in
each dimer (i.e they only contain dy or d_) and they
form the vertices of a IN-dimensional hypercube, with all
the edges (i.e., Hamiltonian matrix elements) of equal

weight, see Fig. 1b. Among these, the collective states
) = |dyd_dyd_---)and [II') = |d_dyd_dy -+ ), have
the unique property of only having intra-dimer couplings
and they are located at opposite corners of the hypercube
in Fig. 1b. This suppresses the leakage of information in
the states |IT) and |II'), with the other states in the hy-
percube playing the role of a “buffer” area. In order to
show that [II), |II') are bona fide QMBSs, it is crucial
to demonstrate (i) revivals from |II), |TI') states persist
when we break integrability and allow all states to ther-
malise; (ii) the revivals are a “many-body” effect, i.e.,
they are not due to the hypercube being trivially decou-
pled from the rest of the Hilbert space.

Thermalisation in our setup is naturally induced by
irregular cross couplings, Jx/2m, experimentally in the
range of [0.3,1.2] MHz — the couplings between two next-
nearest neighbour qubits with a physical separation dis-
tance a;; = V2a9, where ay ~ 0.8 mm is the separation
distance of two nearest-neighbour qubits. These random
couplings break the reflection symmetries of the circuit
and thermalise the system, as confirmed by the energy
level spacings following the Wigner-Dyson distribution
with the parameter (r) =~ 0.53 — see Supplementary In-
formation (SI). We note, however, that it is also possible
to break integrability via translation-invariant perturba-
tions that even enhance the revivals from |II), |II') states,
further demonstrating the importance of many-body ef-
fects (see SI).

To quantify the impact of the hypercube on the dy-
namics, note that the sum of the hypercubic-thermal cou-
plings (inter dimer and cross couplings) gives the decay
rate I' of the hypercube to the thermalised parts. The
summation of intra hypercubic couplings A is given by
the number of hypercubic edges, A = N2V=1J,. Their
ratio A/T" converges to a finite value for different values
of J,/Je (see Fig. 1 b), which shows that the hypercube
is mot trivially disconnected from the rest of the Hilbert
space. At the same time, while other parts of the Hilbert
space are frustrated by the irregular J couplings, no two
states within the hypercube are linked by them, thus the
hypercubic structure is robust since the cross couplings
do not affect the dynamics within it.

Tomographic Measurements

The experimental observations of QMBS states in our
SC processor are presented in Fig. 1c-d. With the high-
precision control and readouts, we were able to perform
tomography measurements to directly obtain elements of
the reduced density matrix p4 of the subsystem A. From
these, we evaluate the dynamics of the subsystem fidelity,
Fa(t) =Tr[pa(0)pa(t)], and bipartite entanglement en-
tropy, Sa(t) = —Tr[pa(t)logpa(t)]. The complexity of
such measurements grows rapidly with the size of the
subsystem A and below we consider A to be four qubits,
as schematically illustrated above the panel Fig. 1c. We
emphasise that although we consider a relatively small
subsystem here, the four-qubit fidelity F4 mirrors the
behaviour of the full fidelity, as shown numerically in SI.
The data points in Fig. 1c give, for a 30-qubit chain, the



time evolution of the four-qubit fidelity for the collec-
tive state |II') and two typical thermalising states. The
fidelity of the QMBS state exhibits revivals with the pe-
riod of about 50 ns and the peak value of the first revival
can be as high as 0.5, while no such revivals occur for the
thermalising states.

In the bottom panel of Fig. 1c we measure the time
evolution of S4(¢) for QMBS and two conventional ther-
malising states. Compared to the thermalising states, the
scarred dynamics leads to a slightly slower growth of en-
tanglement entropy, superposed with oscillations whose
frequency is twice that of fidelity revivals in Fig. 1c. This
double frequency is due to the fact that the system oscil-
lates between |II) or |II') states. Thus, entropy is locally
minimised or maximised (depending on the choice of sub-
system) when the system is near either of these states,
while the fidelity only measures the return to the initial
state |II'). In our experiment, both scarred and thermal-
ising states ultimately approach the Page entropy, 41n(2),
of the 4-qubit subsystem.

We note that scarring, and in particular the rate of
entanglement entropy growth, can be improved by in-
creasing the coupling ratio J,/J, to 2.5, see Fig. 1d. This
ratio controls the coupling of the hypercube to the rest of
the Hilbert space, as we emphasised above. Furthermore,
as shown in SI, some regular perturbations, e.g., a next-
next-nearest-neighbour coupling, can efficiently suppress
the entropy growth of the scarred state. Similarly, pe-
riodic driving of a local potential can significantly en-
hance the scarred fidelity revivals and inhibit the entropy
growth, as also observed in Rydberg atoms [13].

Qubit dynamics beyond the limit of classical
simulations

Measurement of the qubit population dynamics is more
time-saving than tomography, thus it allows us to further
probe thermalisation by randomly choosing many initial
product states. The generalised population imbalance is
defined as I(t) = (1/L) Y27 (S7(0))(S7(t)). The imbal-
ance is determined by the overlaps |(E,|a)|? of energy
eigenstates |E,,) with the initial state |a) and the phase
factors exp(—i(E,, — En,)t/h), where m,n are eigenstate
indices. For a thermalising initial state, the phases are
essentially random and the initial state has roughly equal
support on all energy eigenstates. Thus, any imbalance
rapidly diffuses to a value exponentially small in the sys-
tem size and it cannot be detected via local operators at
late times. By contrast, a QMBS initial state has appre-
ciable overlap only on a few eigenstates with phases set
to integer multiples of a single frequency. This allows a
QMBS state to display a persistent quantum revival even
at relatively late times.

The evolution of population imbalance in a 30-qubit
chain is shown in Figs. 2a and 2b, which contrast a
QMBS state against a typical thermalising state. The
QMBS state exhibits remarkable oscillations which are
absent in the thermalising state. The imbalance I(t) is
plotted in Figs. 2¢c and 2d, which reveal more clearly
the differences between two initial states. In general, for

the thermalising state, after about 30ns the imbalance
has nearly fully decayed to about half a photon in each
qubit.

The distinct features of QMBS states can be further
highlighted through the overlap between the product
states and the eigenstates |(«|E,)|?, which can be rep-
resented by the Fourier spectrum of the imbalance, as
shown in Figs. 2e and 2f for the QMBS and thermalis-
ing states, respectively. The peak value of the Fourier
spectrum ¢, (w) with the first-order domain eigenstates
is wy /27 &~ 21 MHz. We test 120 random initial prod-
uct states and find that g% (w = w1) of QMBS states are
unambiguously distinct from those of conventional ther-
malising states, as shown in Fig. 2h. Note that, for the
cases in Figs. 2a-f, carrying out the exact simulations
is computationally impractical. Instead, the experimen-
tal data has been validated by numerical simulation on
a smaller system with L = 20 (see insets of Figs. 2c-f),
demonstrating excellent agreement.

The advantage of our experimental system — the tun-
able effective couplings between two nearest-neighbour
qubits — allows us to systematically probe the stability of
QMBS states as the ratio of intra- and inter-dimer cou-
plings J,/Je is varied. As shown in Fig. 2g, the numerical
and experimental results both indicate that QMBS states
consistently emerge in the regime of J,/J. 2 1. More-
over, even for a chain with uniform nearest-neighbouring
couplings (J,/J.=1), the value of grr(wy) = 0.008 is sig-
nificant compared to the average value of thermal states
around 0.0035 in Fig. 2h. This implies that scarring is
not trivially induced by the imbalance between intra-
dimer and inter-dimer couplings since this value differ-
ence ~ 0.0045 is significantly above the measurement
standard deviations given in SI. In the regime of large
coupling (J, /27 > 12 MHz), the effective Hamiltonian
describing our system [see Eq. (3) in the Methods sec-
tion] is no longer accurate due to the population leakage
to couplers. Due to the fast growth of Hilbert space di-
mension, we did not explore this coupling regime.

To verify the persistence of the QMBS states for dif-
ferent system sizes, we perform measurements on chains
of sizes L = 12 to 30. The time evolution of the im-
balance, the entanglement entropy, and the four-qubit
fidelity were found to behave consistently for different
system sizes, confirming the robustness of scarring in
collective states |II) and |II). The relatively small vari-
ations between the imbalance and the entanglement en-
tropy for different system sizes are due to the difference
in the cross couplings and the couplers. The Fourier am-
plitude gr1(w1) and the fidelity F4(¢1) at the first revival
exhbiti a plateau for L > 16, as shown in Fig. 3, whereas
for a random initial state these quantities are expected
to decrease exponentially with system size. The plateau
in the scaling suggests that QMBS states persist in the
regime of large system sizes approaching the thermody-
namic limit.

Many-body scars on a comb

Our programmable SC circuit allows us to emulate



more complex topology beyond one dimension. We have
experimentally studied QMBS states in a comb geometry
illustrated in Fig. 4a, which consists of a 1D “backbone”
decorated with linear “offshoots”. Previous studies of
quantum comb systems with offshoots of random lengths
were shown to exhibit localisation, including “compact”
localised states for which the localisation length can van-
ish along the backbone [29, 46]. In our realisation, we
take the offshoots to be of the same length, and we fix
L = N = 20. We consider each offshoot to be a dimer
and, as in the 1D chain, we set the inter-dimer cou-
plings to J./2m ~ —6 MHz and the intra-dimer ones to
Ja/2m =~ —9 MHz. In contrast to the chain geometry, the
QMBS states in the comb geometry are |©) = |dydy )
and |©") = |[d_d_ - --). These states are also characteris-
tically distinct from the conventional thermalising states,
as revealed by the squared Fourier amplitude in Fig. 4b.
The striking contrast between a QMBS state and a ther-
malising state can be seen at a more detailed level from
Figs. 4c-e, which show the time evolution of the imbal-
ance I(t), four-qubit fidelity, and entanglement entropy
for |@') state and a typical thermalising state.

Our experimental results show that the scarring sig-
natures are most striking at intermediate times, while
at very late times the system relaxes to a thermal en-
semble with nearly maximal entropy. To some extent,
one could play with lattice geometry to induce the non-
thermal behavior. For example, in the case of the comb
lattice structure the model is non-integrable without any
perturbation and the entropy growth of the scarred state
is much slower than thermalising states for the coupling
ratio of J,/J. = 1.5, as shown in the inset of Fig. 4e.
In a 2D lattice SC device, the cross couplings are still
present and they lead to the scar state fully thermalising
by about 300 — 400ns. Nevertheless, the thermalisation
timescale can be significantly extended by periodic driv-
ing in the range of experimental capability (see SI).

Discussion and Outlook

In summary, we have presented the first experimen-
tal realisation of QMBS states in a solid-state SC plat-
form. Our circuit emulates the effective hard-core Bose-
Hubbard model — a model of particles freely hopping on
both 1D and quasi-1D lattices, with local interactions.
This is in contrast with previous realisations of QMBS in
ultracold atomic systems [37, 38|, in which the particles’
motion is kinetically constrained. Moreover, the under-
lying mechanism of scarring — approximate decoupling of
a hypercube subgraph of the Hilbert space in the com-
putational basis — is distinct from other platforms where
QMBS are related to an underlying semiclassical periodic
orbit [47]. Our study provides the first in-depth charac-
terisation of QMBS using quantum state tomography on
large subsystems. By observing the population dynam-
ics and entanglement entropy, we distinguished the weak
ergodicity breaking associated with QMBS initial states
from the conventional thermalising states.

The realisation of long-lived quantum states in strongly
interacting solid-state systems has notable practical ad-

vantages when compared to other mechanisms of ergodic-
ity breaking, such as integrability and many-body locali-
sation (MBL). For example, while integrability is known
to be fragile and limited to 1D systems, we demonstrated
that QMBSs are robust to various imperfections such as
random cross couplings between qubits, and persist be-
yond 1D systems. On the other hand, while strong er-
godicity breaking in MBL systems may offer a more ro-
bust way of storing the initial state information for longer
times, for applications such as quantum-enhanced sens-
ing and metrology [22], QMBS have the appealing prop-
erty of extensive multipartite entanglement [48]. In this
sense, it is important to note the coupling strength of two
qubits (associated with the oscillation frequency of a co-
herent many-body state ~107 Hz) in our SC platform is
significantly larger than other platforms such as 1D Bose
gas [49] (only around 10® Hz) and Rydberg atom [13]
(~10°), which means that the SC platform can process
the same quantum information in a shorter time. These
advantages of QMBSs in a SC platform could be utilised
for more practical quantum sensing and metrology appli-
cations. On the fundamental side, our SC devices with
the rich palette of tomography-based probes present a
convenient setting to probe the interplay of scarred dy-
namics with localisation on geometries with fractional
dimensions and the emergence of diffusive transport in
the conventional ETH limit.
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METHODS

Device—We use a superconducting quantum processor
in a flip-chip package, which hosts a square of 6 x 6 trans-
mon qubits (Q;) with 60 couplers (Q.), each inserted in-
between two neighbouring qubits, as shown in Fig. la.
Each qubit (coupler) is a quantum two-level system with
ground state |0) and excited state |1), whose energy sep-
aration can be dynamically tuned in the frequency range
4.3—4.8 GHz (4.9—6.0 GHz). Each qubit has individual
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FIG. 2. Experimentally observed qubit dynamics. (Device I) a,b, Contour diagrams of the experimental qubit population
as a function of the interaction time for a QMBS and a rapid thermalising state, respectively. ¢,d, Generalised imbalance I(t)
extracted from plots a,b as a function of the interaction time. Insets: imbalance dynamics from experiments (dots or circles)
and numerical simulations (solid curves) in a 20-qubit chain. e,f, The Fourier transformation amplitude of the imbalance in
(c,d), which characterizes the squared overlap between the initial states and the energy eigenstates. The time window for the
fast Fourier transform is extended to 4 us with zero padding. g, Fourier peak as a function of the coupling ratio J./J. in a chain
of L = 20 from experimental measurements (green hexagrams) and numerical simulations (solid curve). h, The squared Fourier
amplitude g2 (w = wi1) of |a) for 120 randomly chosen initial product states, including two QMBS states (green hexagrams)
that clearly stand out from the rest of thermalising product states (yellow squares). The simulation parameter values in panels
c-fare J./2m = —9.3 MHz, J./2m = —6.1 MHz and Jx /27 € [0.3,1.2] MHz.

microwave (XY) and flux (Z) controls and it is capaci-
tively coupled to a readout resonator for state discrimina-
tion. Each coupler has an individual flux (Z) control and
remains in the ground state during the experiment. We
use high-precision synchronized analog signals to control
the qubits and couplers, with microwave pulses for qubit
XY rotations and state readout, and square flux pulses
for tuning the qubit and coupler frequencies. A com-
plete experimental sequence consists of three stages: (1)
state preparation where single-qubit 7 pulses are applied
to half of the qubits, (2) multiqubit interaction stage
where the nearest neighbouring qubit couplings are pro-
grammed by adjusting the couplers’ frequencies, and (3)
the measurement stage where all qubits are jointly read
out. The values of the relevant qubit parameters such as
the qubit operation frequencies, energy relaxation times
(with mean about 50 us) and single-qubit randomized
benchmarking fidelities (with mean about 0.993) can be
found in Table S1 of SI.

Effective model-We derive the effective spin-1/2 XY
model for our experimental superconducting processor.
The full Hamiltonian of the superconducting circuit-QED

system with both qubits and couplers is given by [42, 50]

Hon/h=Y (8787 + 587 878,87)

+g— 4 e gtgts—g—
+¥(wc5c3c + QSCSCSCSC)
(8T8 +878F @)
+ng(i ;T i)
(i)
+ D 9:e(STST + 878,
<1LVC>

where w; (w.) is the frequency of the ith qubit (¢’s cou-
pler), S; (S;) is the creation (annihilation) operator of
Qi, gij (gic) is the coupling strength between Q; and Q;
(Q.), and the rotating wave approximation is imposed on
the qubit-coupler and qubit-qubit couplings. The sub-
scripts “7,7” and “c” represent the indices of qubits and
couplers, respectively. (i, j) or (i,c) stands for a nearest-
neighbour qubit-qubit or qubit-coupler pair. In experi-
ments, the anharmonicity 7; is much larger than the cou-
plings between the nearest neighbouring qubits (typically
1ni/gi; > 50), so the full Hamiltonian (1) can be reduced
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using the exact diagonalization method are feasible.

to the spin-1/2 XY Hamiltonian:

H/h=> wiSFS, + Y weSFS:

+ 395878+ 878 )+ D 6ie(SFST +S7ST).

(i.4) {ivc)
(2)

We apply the Schrieffer-Wolff transformation ¢ = "V to
the Hamiltonian with

W= ZZKCC (S8 —S78H),

since all qubits are far detuned from the couplers with

|Aie| = |wi — we| > |gic|. The effective Hamiltonian can
then be approximated as
Hep/hm Y Jij(S7 ST + 8587 +ZQS (3)

(i,9)

where the effective coupling strength and transition fre-
quencies are given by

1 1
Jij = gij + zc:gicgjc [ATC +3

2

respectively. The strength of the indirect coupling can be
tuned by adjusting the coupler frequency, so the effective
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FIG. 4. QMBS states in a comb tensor system. a, The
comb tensor topology on the superconducting processor (De-
vice I) with L = 20 qubits. b, Squared Fourier amplitude
g2(w = wy) for randomly chosen initial product states. The
QMBS states (green hexagrams) are characteristically distinct
from the conventional thermalising product states. c-e, Dy-
namics of the imbalance, four-qubit fidelity, and four-qubit
entanglement entropy for the state |©’) (green circles) and a
randomly chosen product state |[00111000111010011001) (yel-
low squares,labelled as “i”) for a 20-qubit comb. Dashed
curves denote the numerical results. Inset to panel e shows
the numerical result in the case without cross couplings Jx,
where the scarred state shows a much slower entropy growth
from the thermalising state. The couplings are tuned to
Ja/2m ~ —9 MHz and J. /27 ~ —6 MHz.

coupling strength J;;/2m can be dynamically tuned over
a wide range, typically in [—15,1] MHz.

In our experiment, the chain and comb structures are
formed by a snake-like qubit layout on a square-lattice
device, hence the dominant cross coupling cannot be ne-
glected. The cross perturbation Hamiltonian is given by

Ho/h= > Jui.4)[SFS;+8]S7]. (6)
Rq‘,j:\/iao

where R;; = |r; — r;| is the separation distance of a qubit
pair {i,j}. The couplings are in the range Jx(i,)/2m €
[0.3,1.2] MHz and their measured values are given in SI.
The magnitude of this perturbation is sufficiently large
to break integrability of the model, as demonstrated nu-
merically in SI.

Experimental sequence—Experimentally, we pre-
pare a set of product states as initial states and measure
the final states of all qubits as a function of the inter-
action time (see pulse sequence illustrated in Extended
Data Fig. 1. A typical experimental session starts by
preparing the initial product state of all qubits: each
qubit @Q; is biased from its sweet spot to the correspond-
ing idle frequency, where we apply single-qubit XY ro-



tations. To prepare a high-fidelity state, during this pe-
riod the couplers are tuned such that the net couplings
between neighbouring qubits are turned off. To switch
on the interactions among the qubits, we bias all qubits
to the interaction frequency and tune the coupler fre-
quencies to turn on the couplings between neighbouring
qubits. After the interaction process, we bias all qubits to
their readout frequencies for measurements. All directly
measured qubit occupation probabilities are corrected to
eliminate the measurement errors.

Numerics— We use the exact diagonalization method
to numerically solve the eigenvalue problem and simulate
the dynamics of the system. The basis of the Hamiltonian
matrix is spanned by product states |a) = |21) ® |22) ®
|z3) ® -+ ® |z1), also written as |z12923 -+ 2L), where
z; = 0 or 1 represents jth qubit at state |0) or |1). The
elements of Hamiltonian matrix are written as

Hap = (a|H]B), (7)

where «, denote the index of basis product states.
Then, the eigenstate |n) and its eigenvalue E,, can be nu-
merically solved from this Hamiltonian matrix. They are
used to compute the spectrum-related quantities, such
as entanglement entropy and overlap, as well as the dy-
namics of qubit populations, imbalance and wavefunction
fidelity.

The Hamiltonian matrix is exponentially large in the
number of qubits and to facilitate its diagonalization, we
decompose it into smaller sectors based on the symme-
tries of the model. For our spin-1/2 XY model with open
boundary condition, these include particle conservation,
reflection, and symmetries. The original basis can be
naturally divided into L + 1 uncoupled sectors, which
conserve particle number. The numerics throughout the
paper is for the particle number equal to half of the sys-
tem size. Furthermore, to construct subspaces invariant
under the reflection and symmetries, we define a new set
of basis states

1
a(r,z))=—(1+r 1+ 22)|a).
|a(r, 2)) m(+R)(+ )lev) (8)

Here, r = 41 and z = 41 are the eigenvalues of
reflection- and inversion-symmetry generators R and Z,
respectively. N, is the normalization factor. The cross
couplings Jy break the reflection symmetry and the basis
in this case is given by |&(2)) = ((1+22) /v/Na) |o).

We note that exact diagonalization is not the only nu-
merical method available for this problem. However, al-
ternative options are not well-suited for studying quan-
tum many-body scarring in large systems. Krylov- and
Matrix-Product States (MPS) based methods could po-
tentially access the dynamics from II or II’ states for a
few more qubits than 24. However, to show scarring re-
quires studying the dynamics from a large number of ini-
tial states. In contrast to exact diagonalization, these two
methods require an independent computation for each
initial state. Furthermore, for MPS methods it would
also be costly to simulate the dynamics of thermalising
states as their entanglement entropy very quickly reaches
the Page value. This would limit the simulation to a rel-
atively short time, as the bond dimension of the MPS
(and so the computational resources needed) required to
capture the dynamics faithfully would rapidly become
large.
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