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The interaction of magnetic fields with convection is of great importance in astrophysics.
Two well-known aspects of the interaction are the tendency of convection cells to become
narrow in the perpendicular direction when the imposed field is strong, and the occur-
rence of streaming instabilities involving horizontal shears. Previous studies have found
that the latter instability mechanism operates only when the cells are narrow, and so we
investigate the occurrence of the streaming instability for large imposed fields, when the
cells are naturally narrow near onset. The basic cellular solution can be treated in the
asymptotic limit as a nonlinear eigenvalue problem. In the limit of large imposed field
the instability occurs for asymptotically small Prandtl number. The determination of the
stability boundary turns out to be surprisingly complicated. At leading order, the linear
stability problem is the linearisation of the same nonlinear eigenvalue problem, and as a
result, it is necessary to go to higher order to obtain a stability criterion. We establish
that the flow can only be unstable to a horizontal mean flow if the Prandtl number is
smaller than order B, 4/ 3, where By is the imposed magnetic field, and that the mean
/8 in the middle of the layer. The
result applies to stress-free or no-slip boundary conditions at the top and bottom of the

flow is concentrated in a horizontal jet of width B,

layer.

1. Introduction

The effect of imposed magnetic fields on thermal convection in a conducting fluid has
been a subject of active research for many years. The first linear investigations were
carried out by Thompson (1951) and Chandrasekhar (1952). For a full description of the

linear stability problem, see Chandrasekhar (1961). Since then there have been two main
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strands of research: one motivated by the effects of large scale magnetic fields on the Sun
and other stars, and the other by experiments on liquid metals. The subject has been
reviewed by Proctor & Weiss (1982) and by Proctor (2004).

The present paper considers the effects of very strong imposed fields. It is well known
that the effects of a powerful Lorentz force are to inhibit motions that tend to bend
the field lines, as will be described in the next section. When convection takes place
in a horizontal layer with strong vertical field, the onset of motion is in tall columns,

. ~1/3
whose aspect ratio scales as B, /

, where By is a measure of the imposed field. This
small aspect ratio enables us to obtain reduced equations for cellular convection. These
use the aspect ratio as the small parameter, rather than the usual amplitude expansion,
and can therefore be considered fully nonlinear. There have been many investigations
of the large By problem, which is in some ways analogous to the situation of the onset
of convection in a rapidly rotating layer, for which the aspect ratio is similarly small at
onset. Examples of such asymptotic studies are Soward (1974), Bassom & Zhang (1994),
Julien & Knobloch (1997,1998,1999) (all in a plane layer) and Abdulrahman et al. (2000)
(rapidly rotating annulus). Dawes (2001) has combined strong rotation with low Prandtl
number (ratio of viscosity to thermal conductivity) to achieve further reductions. Related
studies of vortices in ferrofluids have been performed by Russell, Blennerhassett & Stiles
(1999). The strong magnetic field problem was first investigated by Proctor (1986), and
subsequently by Matthews (1999), and Julien et al. (1999, 2000), and Halford & Proctor
(2002). Holyer & Proctor (1986) performed an equivalent (though less rigorous) analysis
of salt fingers.

A disadvantage of almost all these studies is that the planform of the convection is
not determined at leading order. Our problem suffers from a similar drawback. However
guided by the weakly nonlinear results of Clune & Knobloch (1994), and the computations
of Busse & Clever (1996) at moderate By and small Prandtl number, we can be confident
that there is a finite range of AT /AT, (where AT is the temperature difference across
the layer and AT, its critical value for linear instability) for which two-dimensional
solutions are stable. We shall therefore suppose that in our problem for a Boussinesq
fluid the preferred planform for convection before the onset of secondary instability takes

the form of rolls (independent of one horizontal direction).

It has been known for some time that roll-type solutions can be subject to so-called
streaming or shearing instabilities. Willis and Deardorff (1970) reported rolls that os-
cillated between tilting to the left and tilting to the right. The shearing instability was
first discussed in detail by Busse (1972, 1983) and investigated further by Howard &
Krishnamurti (1986) and Prat, Massaguer & Mercader (1995) in the non-magnetic case,
and for imposed vertical magnetic fields by Matthews et al. (1993), Proctor et al. (1994)
and Rucklidge & Matthews (1996). The three-dimensional problem was considered by
Matthews et al. (1996). While interesting dynamics of the instability was found, the re-
sults were somewhat artificial since the instabilities seemed only to exist for narrow rolls
— and not for the wider rolls that would arise naturally at onset (though Rucklidge &
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Matthews (1996) report steady and oscillatory shearing behaviour in two-dimensional
magnetoconvection at the preferred wavelength).

It is therefore natural to combine the ideas of small-aspect ratio convection in strong
fields, and the streaming instability results, to discover under what (if any) circumstances
streaming instabilities can occur for cells with a wavelength that arises naturally as the
preferred length at onset. In what follows we show that for large magnetic fields and
small Prandtl numbers there is a distinguished limit in which the instability occurs and
may be identified. Since low Prandtl numbers are characteristic of liquid metals, we are
able to make further simplifications based on the large values of the parameter (, the
ratio of magnetic diffusivity to thermal diffusivity, for such fluids. Low Prandtl number
fluid convection is known to be particularly susceptible to secondary instabilities, and
has interesting properties even without imposed fields — for example the “fywheel” or
“inertial” convection discussed by Proctor (1977) and Busse & Clever (1981), so it is
a natural limit to study. It turns out that the study of the onset of the instability
within the reduced set of equations is highly non-trivial, and the unstable eigenfunction
has a boundary/critical layer structure, in some ways analogous to critical layers in
stratified shear flows, though the resolution of the singularity is different in this case.
Using boundary layer analysis and accurate numerical simulation we are able to predict
and verify the appropriate scalings for the onset of the instability, at least in the limit of
large diffusivity ratio (. While this is appropriate for laboratory fluids, and the Earth’s
core, it is not generally applicable to e.g. the solar photosphere. Nonetheless we have
done some investigations of the instability in the general case, with ( of order unity, and
find that the high ( limit gives the correct qualitative picture.

The paper is organised as follows: we describe the governing PDEs for convection in a
liquid metal in section 2, and derive asymptotic representations of the convection solution
and estimates for the critical parameter values for a mean flow instability in section 3.
Numerical results are in section 4, and the paper concludes with a discussion in section 5.

2. Convection in liquid metals

The partial differential equations (PDEs) that describe two-dimensional motion of a
fluid heated from below and subjected to a vertical magnetic field are (Proctor & Weiss
1982):

aw _ 5 80 8V2A 2

o9 I ov

OA R ov

S I8 A) = (V2 A+ S, 3)

where ¥ is the stream-function, with velocity u = V x (¥§) and y-component of vorticity
w = —V2¥, g is the deviation from the static temperature profile so the temperature
is1—2z+46, and A is the deviation from the uniform vertical magnetic field, so the total
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magnetic field is B = (—=0A/0z,0,1+ 0A/0x). The horizontal coordinate = and vertical
coordinate z are scaled by the height h of the box. Time t is scaled by the thermal
diffusion time h%/k, where k is the thermal diffusivity. The viscous Prandtl number
o = v/k and the magnetic diffusivity ratio ( = n/k (where v and 71 are the viscous and
magnetic diffusivities). Temperatures and magnetic fields are scaled by the temperature
difference AT and the vertical magnetic field Bg = Byz imposed across the box. The

other parameters are the Rayleigh number R and the Chandrasekhar number Q:

3 2
9N Ny = g2 (4)
KV Hopony

where g is the acceleration due to gravity (acting in the negative z direction), « is the ther-

R

mal expansion coefficient, pg is the reference density and py is the magnetic permeability
of the fluid. The nonlinearities, contained in the Jacobian J(f,g) = (0f/0x)(0g/0z) —
(0f]0z)(0g/0x), represent the transport of vorticity, heat and magnetic flux; in addition,
the fluid is driven by the nonlinear Lorentz force.

In liquid metals, magnetic fields diffuse much more effectively than heat does, so the
diffusivity ratio ¢ > 1 (in mercury, for instance, ( ~ 10°). We take the limit ( — oo,
scaling the flux function A by (! (e.g., Busse & Clever 1996). At leading order in ¢ 1,
there is a balance between advection and diffusion of the imposed vertical magnetic field:

2 ov 1
VA~ -S40, 5)

and only the linear part of the Lorentz force survives in the momentum equation. The
two PDEs of interest are now

B R 9 8>
E—FJ(\II’W)_UVW_UR%—FUQW’ (6)
09 ., OV

5 TI(L.0) =0+ = (7)

Note that this simple reduction, which holds independent of the electromagnetic bound-
ary conditions, can only be performed in the 2D case. We consider two sets of idealised
boundary conditions, with fixed temperature, no normal velocity and either stress-free
or no-slip conditions at the top and bottom of the layer (z = 0, 1). These amount to
§ =T =0at z =0, 1, as well as either 9?T/922 = 0 (stress-free) or 0¥/9z = 0
(no-slip). We take periodic boundary conditions in the horizontal (z) direction, with
wavelength 27t/k.

We emphasize again that taking the limit ( — oo is not an essential step in our
calculations below; it merely serves to simplify the presentation, and avoids the difficulty

of a primary oscillatory instability (which requires a small value of ().

3. Asymptotics with large magnetic field

As it is the nonlinear part of the Lorentz force that has been removed, the linear sta-
bility properties of (1-3) and (6-7) are essentially the same (see Chandrasekhar 1961).
With a fixed magnetic field strength @, the primary instability at R = R, as the temper-
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ature difference across the layer is increased is to steady convection rolls with horizontal
wavenumber k = k., with
(ﬁ+@ﬁ+ﬁ+@
k2 k2

c

(2 + k2)%(2k2 — n?)
T

R, = m2Q, where k. satisfies Q = , (8)

assuming stress-free boundary conditions at the top and bottom of the layer. As the
imposed field strength @ is increased, the primary instability occurs at
m™Q

1/6
Ro~mQ 0@, ko~ (T) 0@, Q

The same asymptotic result holds with stress-free and with no-slip boundary conditions.
Before we begin the stability analysis, we briefly go through the arguments that lead
to the nonlinear eigenvalue problem (following Matthews 1999), but with the addition

that we are taking the Prandtl number to be small.

3.1. Nonlinear eigenvalue problem

In this problem, the small parameter is the horizontal length scale § = 1/k.., determined
by the large imposed value of @) through (8). We seek steady solutions of the PDEs (6-7),
scaling « by §. We also define r = R/R,., where () and R, are given by

2.6, 3¢ 2 2 . —4 252 4
We also scale the Prandtl number ¢ = §"0g, where the exponent n of the scaling will
be chosen below. The temperature field 8 can be separated into its horizontal average T'

and the smaller horizontally varying component:
0(z,2) =T (z) + 60'(z, 2), (11)

where 0’ (the horizontal average of ') is zero. For reflection-symmetric rolls, we also have

¥ = 0. The PDEs for ¥, T and 6’ are then:

2 2
53_n(\1’z\pxmc - ‘Ilmlpmmz) =0s <F\I!zz - F?‘Q;) , (12)
\I’ze'z — \I/ZO’I =T.., (13)
v, T, = 9;96 + v, (14)

where the subscripts z and z denote partial derivatives and we have kept only the leading
order terms. Note that in the momentum equation (12), the exponent of the Prandtl
number scaling has not yet been chosen, so the relative scaling of the nonlinear terms on
the left and the buoyancy and Lorentz force terms on the right is undetermined at this
stage. We remark that in this scaling the solution is not assumed to be small: ¥ is O(1).

The usual next step is to note that if the Prandtl number is large enough that the non-
linear terms in (12) can be dropped (n < 3), then the remaining leading-order equations
are separable. Writing

U(x,2z) = Uy (z)sinz, 0'(z,2) = 01(2) cosz, (15)
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we obtain three ODEs in z for ¥, T" and 6;:

0=0,..+°rf (16)

1
5 (‘Ijlelz + ‘Ijlzal) = sz (17)
U\ T, = —60, + V. (18)

Even if n > 3, the leading-order nonlinear term in the momentum equation cancels
exactly, providing ¥ contains only one horizontal wavenumber, and the same three ODEs
are recovered. The equation for T, can be integrated to give

1
T.= 306 +1-N, (19)

where the integration constant 1 — IV is the heat flux carried by convection between the
lower and upper boundaries, and so N is the Nusselt number, a dimensionless measure
of the total heat flux through the layer (N =1 in the absence of convection). The other
two equations are readily solved to give

N,
g, = — 1 20
1 1 T %\]:,12 ( )
and
1
(1 + 5\1:12> V., + N2r¥, = 0. (21)

As this is a second-order boundary value problem for ¥(z), only the impermeability
boundary conditions (¥; =0 at z =0, 1) can be applied. With this boundary condition,
(21) gives ¥y,, =0 at z = 0, 1, which implies that the temperature boundary condition
61 = 0is also satisfied through equation (16). Finally, integrating equation (19) introduces
a second constant of integration that can be used to satisfy 7" = 0 at z = 0, 1. The

resulting equation can be written as

1
1
1—N/ — - dz=0, (22)
o 1+35¥

so the constant of integration N could be eliminated from (21) if required, resulting in an
integro-differential equation. Note that the no-slip (¥;, = 0) boundary condition cannot
be applied at this order.

The same equation has been found by Matthews (1999) and Julien & Knobloch (1999).
For given values of r > 1, equation (21) can be solved to find N and ¥;. An approximate
truncated solution for r close to 1 can be readily computed:

Uy & /8(r — 1)sinmnz, (23)
with V = 2r — 1. For no-slip boundaries a more involved calculation involving viscous
boundary layers shows that imposing the no-slip boundary condition ¥, = 0 results
in an O(8%) correction that can be ignored at leading order. Matthews (1999) has also
shown that for large (but not too large) values of r, the maximum value of ¥; goes

as r/logr.

In principle, this approach can be carried on to higher order in ¢, including more
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FIGURE 1. Nonlinear solutions of the full PDEs (6-7) with Q = 10°, 10°, 10'?, 10*® and 10*®, with
the solution of the Q = co asymptotic boundary value problem (21) overlaid. These solutions
are for stress-free boundary conditions, r = 2 and have Prandtl numbers given in table 1. The
maximum value of ¥; (for Q = 00) is Umig = 4.329449, and the corresponding Nusselt number
is N = 3.67376.

horizontal wavenumbers. However, if the Prandtl number is small (n > 3), attempting
to go to higher order quickly leads to difficulties. If n = 4, for example, the largest term
in the momentum equation (12) is the nonlinear term ¥, ¥, — ¥, ¥,.. at order o1,
This term is zero when ¥ contains only one horizontal wavenumber (for example, sin ),
but any nonlinear solution will have components at all horizontal wavenumbers (sin 2z,
sin 3z and so on). We are working with an order one solution, so the amplitude of the
sin  component is not small, but if the amplitudes of the higher wavenumber modes are
of order §, at order §=1 in (12) there is still perfect cancellation. However, the order one
part of (12) will now have contributions at all wavenumbers from the nonlinear part,
forcing order one components in ¥ at all wavenumbers: a contradiction. One way of
resolving this is if the higher-order wavenumbers have amplitudes smaller than order 4.
A much more careful (numerical and analytic) investigation with n = 4 reveals that the
next-order corrections to ¥ are of the form §2W,(z)sin(2z), and so on, but, in spite of
this, it is not possible to construct a rational asymptotic approximation to the solution
without introducing an arbitrary truncation in wavenumber.

Before proceeding to the stability calculations, we present in figure 1 numerical solu-
tions of the full PDEs (6-7) with @ = 10°¢, 10%, 102, 10*® and 10'%, and k = k., with
the solution of the @) = co asymptotic boundary value problem (21) overlaid. The solu-
tions and the asymptotic results are indistinguishable for @) > 10'2. These results are for
Rayleigh numbers twice critical and for small Prandtl number, as given in table 1. (The
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form of the solution scarcely changes as r decreases from 2 to unity, and the value 2 is
adopted for illustration. The results of Busse & Clever (1996) suggest that smaller values
than this should be chosen to ensure stability to knot-type modes in three dimensions.)

3.2. Stability of convection in narrow rolls: leading order

We next address the leading-order stability problem, considering only two-dimensional
perturbations that preserve the horizontal periodicity, and that include a horizontal mean
flow. It will turn out that the simplification we adopted above (truncation to one hor-
izontal wavenumber) does not give a full description of the stability problem. However,
to make analytic progress, we must adopt this simplification.

Supposing that we have already solved the nonlinear equation (21) to find steady fully

nonlinear convection rolls, we now add a perturbation to the basic solution:
U(z,2) = ¥, (2)sinz + (§Py(2) + Py (z) cosx) e’ (24)
0(x,2z) = T(2) + 661(2) cosx + Y3 (z) sin e, (25)
where s is the growth rate of the instability, and Py(z), Pi(z) and Y;(2) are all infinites-
imal: products of these functions will be dropped. This is similar to the truncation used
by Howard & Krishnamurti (1986). We set s = 0 for a steady-state instability, and sub-

stitute the above into the governing PDEs, retaining only the horizontal average and the

first wavenumber component. This yields the ODEs

1d
Uo¥y cosz + 555 (P1Vy,. — Pr..01) + O(8°)

m m
PT. =Y, + P, + 0(5?), (27)

= g0t (—%Yl cosz + EPMZ CoST — 63ng + 0(62)> , (26)

where Uy is the (scaled) mean horizontal velocity: Uy = —Fp..

The right-hand side of (26), which has contributions only from the buoyancy and
Lorentz forces at this order, is balanced with the advection terms on the left-hand side
when n = 4, that is, when the Prandtl number o scales as k=* (or as Q~2/3). For this

value of n, the above equations are solved for the mean flow

e
U[) == 4_ (Plzzlljl - Plllllzz) ) (28)
Os

where the constant of integration is zero so that there is no net horizontal momentum

averaged over the layer. The heat equation is rearranged to give

NP,

-, 29
1—|—%‘~I»'12 (29)

Vi =P(T.—1) =P, (%mlel —N) =

These two expressions are then substituted into the fluctuating part of the momentum

equation:

7'(4 20'5 N7'[2T'P1
— (P1,.Y, — P9 )0 =— | ———— + Pi..
403( 1 1 1W122) Uy ) (14_%\1’12*— 1 (30)
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yielding, after using (21) to substitute for ¥y,,, an ODE for P;:

8 1
(%%2 - 1) X ((1 + 5\1/12> Py, + N7t2rP1> =0. (31)

The boundary conditions are P, =0 at z =0, 1.

In principle, we would expect to fix the Rayleigh number r, solve (21) for ¥; and N,
and then find that (31) has non-zero solutions only for certain values of the parameter o.
However, the first factor in (31) is non-zero for all values of z if o, > 7* max |¥,]/2v/2,
and even if o, is smaller than this value, the first factor is non-zero for almost all values
of z, and so can be cancelled. The remaining equation for P, has the unique solution
P, = Uy (and Uy = 0) for all values of o5. This corresponds to the neutrally stable
translation mode of the original rolls, and is not an instability.

Thus there is no instability if we cancel the prefactor in (31), and the only possible
instability must be associated with zeroes of this prefactor. Therefore, the only conclu-
sion we can make at this order is that the Prandtl number must be small — less than
544273/ max || = 7278 Q~2/3 max |¥;| — for a mean flow instability to take place,
and that we would expect the instability to be concentrated close to where the prefactor
changes sign. The situation resembles that which holds for critical layers in stratified
shear flows — but the way in which the singularity at the critical layer is resolved (by
means of thermal diffusion) is quite different in this case and so no direct comparison is
possible.

3.3. Higher order corrections

Apart from the conclusion about the necessary order of magnitude of the Prandtl number,
there is not enough information in the leading order equation for the perturbation (31) to
determine the stability of the roll solution. One might think that the way to resolve this
difficulty is to compute the next-order corrections to (31), which will prevent the prefactor
(m®/802)¥ ;% — 1 from cancelling. Unfortunately, before this can be done, the next-order
correction to the basic state is also required, and consistency would demand including
more horizontal wavenumbers. This is an unpleasant and unrevealing calculation (we
have done it), and computing the correction to the perturbation is even worse — but
there is an alternative.

The instability can only take place if the prefactor in (31) changes sign. The z-
dependent part of this has a quadratic maximum at the midpoint of the layer (see fig-
ure 1), and we expect the eigenfunction to be concentrated near the midpoint, with a
characteristic length scale related to the distance between the zero crossings. Since these
will be close together for Prandtl numbers just below the value that allows the prefactor
to change sign, we expect z derivatives in the eigenfunction to be enhanced, and the most
important term in the correction to (31) to be the one with the most z derivatives. Un-
fortunately, we do not know what this term is, but the term with the most z derivatives
in the correction to (21) is proportional to §2¥, ...

We therefore suppose that when the next-order corrections are calculated, the resulting
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equation is of the form:

< i v,2 - 1) X ((1 + 1\1;12> P..+ N7t2rP1> = —02CP.... (32)
802 2
plus 62 times lower derivatives in P;, for some constant C'. The minus sign on the right
hand side is for later convenience. This is enough to allow some analytic progress to
be made, with the proviso that the correction must be more complicated than the sup-
posed —02CP;...., since we know that P, = ¥; must be a solution of (32) for all o.
Leaving this issue aside, the goal is to seek the value of o as a function of § (and therefore
of @) at which an instability takes place, so we treat (32) as an eigenvalue problem.
The next step is to expand about the point where the prefactor vanishes: z = % and
o, = m max ¥ |/2v/2, with an appropriate scaling. Let ¥,nq = max|¥;| = ¥;(1) and
U.oimia = Pi122(3), so that 1 & Tpig + 2(2 — 3)?U..imia. Also let £ = 57™/2(z — 1)
and o5 = W4/ 2v/2 — 6™ Ag, where Ao is the scaled difference between the critical
Prandtl number at finite () and the limiting critical value, and m > 0 is a number to
be chosen below. With the common scaling of z and Ag, the first nonzero terms of the
Taylor expansion of the prefactor are balanced:
s T2 1=¢m ( 42 U, :mid

2 2m
= g Ao+ e ) +0(82™). (33)

Next, we write the z derivatives in the eigenfunction in terms of the new coordinate &:
Pi.. =0 ™Pige and Piossy = 672™ Piggee, and rewrite (32), dropping the Py term as it

is small compared with Py¢¢, yielding at leading order:

o+

gm 4\/§ A \I’zz:mid 62
W nid Uinid

1
> X <1 + §\I]mid2> (5_mP1§£ = —62_2mCP15555. (34)

We have replaced 1 + %\I!12 by its value at the midlayer. Choosing m = 1 balances both
sides of this equation, which implies z derivatives scaling as 6=2 ~ Q!/12. We write W =
Pige and define A = 4\/5(1 + %‘Ifmidz)/ﬂél\lfmid and B = _‘I’zz:mid(l + %‘Ifmid2)/\lfmid.
Using (21), we can also write B = N7t?r. With these definitions, we have the equation:

CWee + (AAo — BE) W = 0. (35)

The boundary conditions are that W — 0 as £ — £o0o. Solutions of this equation can be
written in terms of Hermite polynomials times a Gaussian, which yields a discrete set of

eigenvalues Ao. The first solution and the lowest eigenvalue are:

W = exp (—%\/?@) and Ao = %C, (36)

since the first Hermite polynomial is just a constant. We have assumed here that C is
positive; the definitions of A and B above ensure that these are positive. The resulting
predictions for the leading order mean flow and the value of the critical Prandtl number
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Uo(z) = 6_147:75 exp <—%\/§@> ¥y (2) (37)

4 . /3 . 5/6
s (7[ Ui _6\/BC> T Wia g 2 \/BC’> .

—(—2/3 < _
e =9 ( e @ mE A

where we have used the leading order relation between ¢ and Q: @ = 26~¢/7*. We recall
from (24) the scaling of Py implies that the true velocity is a factor of ¢ smaller than

are

and

the Uy given in (37), and so is in fact of the same order as P; .

The conclusion of this calculation, which is based on the assumption that the leading
order correction is of the form used in (32), is as follows. For a given value of the Rayleigh
number 7, the nonlinear eigenvalue problem (21) can be solved for N and ¥ (z). The
constants A and B can then be calculated, and a prediction can be made using (38) for
the Prandtl number below which the basic state is unstable to mean flows. The mean
flow is concentrated near the centre of the layer in a narrow region whose width scales as
Q=112 and so we expect the results to be independent of the top and bottom boundary
conditions. By choosing higher order Hermite polynomials, subsequent instabilities can
also be found; in particular, the first eigenfunction above is even about the midlayer, and
the second is odd. The relative difference between these two eigenvalues should also scale
as Q~1/6.

The only remaining fly in the ointment is the assumption we had to make: that the
leading order correction to the perturbation equation is of the form —62CP;...., with C
an unknown coefficient. Nonetheless, we have a prediction for the scaling of the critical
Prandtl number (which turns out below to be surprisingly good) and for the form of the
mean flow (which is not so good).

Careful asymptotic investigation of the PDEs using the one-wavenumber truncation
as in (24) reveals that the assumed form of the stability problem is indeed correct —
for the truncated PDEs — and leads to an estimate for the unknown coefficient: C' =
14 2¥iq° = 1+ 402/7®. This term comes from the next-order part of the nonlinear
term in the momentum equation. A full treatment of the stability problem for the full
PDEs would require including more wavenumbers, and would in any case have to be
truncated (since all wavenumbers appear at the next order). There is little advantage in
doing this over solving the PDEs numerically.

4. Numerical results

We have computed steady roll solutions of the PDEs (6-7) at a Rayleigh number twice
critical (r = 2), with imposed magnetic field Q varying from 10° up to 10'8. For stress-free
boundary conditions, we used the code of Rucklidge (1994), with up to 68 x 68 Fourier
modes, which is only just enough to resolve the case Q = 10'®. For no-slip boundary
conditions (up to @ = 10%), we used the code of Prat, Mercader & Knobloch (1998),
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0 ‘ k‘ UQz/S‘max|\Ill|‘ N‘QI/G (11.17998—0622/3)
108 18.98 | 6.9232 |3.914878 |3.08493 42.6
10° 60.39 | 10.0282 | 4.245571 | 3.55534 36.4
10*2| 191.09|10.8744 |4.319651 | 3.65990 30.6
10%%| 604.31[11.09173 | 4.328449 | 3.67235 27.9
10'81911.00 | 11.15271 | 4.329347 | 3.67362 27.3
0o | 0o|11.17998 | 4.329449 | 3.67376 | —

TABLE 1. Solutions of the PDEs on the margin of the mean flow instability (with r = 2 and
stress-free boundaries). The final line is the asymptotic result with @ = oo, which is used to
calculate A = 0.139126 and B = 72.5171, used in (35). The results for no-slip boundaries are
almost identical, for example, with Q = 10°, we find k = 60.39 and ¢Q?/® = 10.0068. The last
column provides numerical verification that the deviation of Q%' from its limiting value of
11.17998 scales as Q~/°.

with up to 24 Fourier modes in the horizontal and 112 Tchebychev functions in the
vertical. We decreased the Prandtl number ¢ until we found an instability, computing
the eigenvalues of the Jacobian matrix linearised about the steady roll solution. We also
solved the nonlinear eigenvalue problem (21) using AUTO (Doedel et al. 1997) with 200
collocation points. The PDE roll solutions at finite () are compared with the Q = o~
asymptotic solution in figure 1.

In figure 2 we show the eigenfunctions Up(z) of the mean flow instability from the PDE
calculations compared with the predictions made above. Details of the PDE results are in
table 1, with the value of ¢ just below the critical value. The figure also shows eigenfunc-
tions computed with no-slip boundary conditions, which are almost indistinguishable
from the stress-free results for Q > 10'2. Clearly this is because the eigenfunction is
concentrated towards the centre of the layer.

With r = 2, the solution of the nonlinear eigenvalue problem (21) for Q = oo has
Wia = 4.329449 and N = 3.67376, which results in values for the other parameters:
A = 0.139126, B = 72.5171 and o, = 149.1033, and a limiting value of 0Q?/® =
11.17998. From table 1, we estimate the asymptotic value of Q/¢ (11.17998 — 0Q%/?)
to be about 25 — the value of 27.3 for @ = 10'® is slightly suspect because of being on
the limit of the resolution of the code, and we have extrapolated the remaining numbers
to Q — oo assuming a further correction that scales as Q /%. Figure 3 presents the data
in the last column of table 1: the difference between 7#/32-5/6® ;4 = 11.17998, which is

2/3

the predicted value of 0Q~2/3, and the actual value of 0Q~2/3. The figure confirms that

~1/6

the difference scales as @@ , and the factor 25 required to position the solid scaling law

line correctly leads to an estimate of the parameter C' = 108, and hence to the width of
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FIGURE 2. PDE solutions: eigenfunction of the mean flow instability, with stress-free bound-
ary conditions. The mean flow, Uy = — Py, is plotted as a function of &, the scaled depth.
(a,b) @ = 10'%, 0 = 10.874 x 107%; (c,d) @ = 10**, ¢ = 11.0916 x 107'%; (ef) Q = 10'5,
o =11.1517 x 10~ '2. Left column: the whole eigenfunction; right column: detail near the mid-
layer. The eigenfunction is scaled so that Pi.. at z = 3 is —1. The horizontal dotted lines
indicate the positions where the prefactor in (31) changes sign. The dashed lines are Gaussians
of the form — exp (—\/B/C(z - %)2/2(5), the prediction from (37). In (b) and (d), we have su-
perposed (dash-dotted line) results with no-slip boundary conditions and (b) o = 10.87 x 1078;
(d) o = 11.067 x 107'°. In (f), we have superposed (dotted line) a Gaussian computed with
C=1+ %\Ilmif instead of the value estimated from figure 3.

the predicted (from (36)) eigenfunctions in figure 2 (dashed Gaussian curves). The figure
also confirms that no-slip boundaries do not affect the results.

As discussed in the previous section, assuming that the PDE is well represented by its
truncation to a single wavenumber results in a different estimate for C' =1 + %\I!mif =
10.372. This is an order of magnitude smaller than the result obtained from the numerical
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FiGUurE 3. Discrepancy Ao as a function of ) between the Prandtl number and the value
predicted for @Q = co. Results with stress-free boundary conditions are shown as +; Results with
no-slip boundary conditions are shown as Xx. The solid line is the scaling law 25Q /% — the
coefficient in this scaling leads to an estimate for C' = 108. Using C = 1 + %\IlmidQ = 10.372
instead yields the dashed line.

solutions of the PDEs above. The truncation also predicts that the eigenfunctions should
be Hermite polyniomials times a Gaussian. Figure 2(f) shows a Gaussian (dotted) with
this smaller value of C, and similarly, we plot the dashed line in figure 3. It is clear
from figure 2 that neither value of C' is correct — and that the eigenfunctions are not
Gaussian — but in spite of this, the asymptotic value of the critical Prandtl number, and

the correction to this value, scale as predicted.

5. Discussion

Clearly, the eigenfunctions in figure 2 are not simple Gaussians, but the overall width
of the eigenfunctions scales correctly, when using the value of C obtained from figure 3.
The appreciable size of the overshoot of the eigenfunction (horizontal velocity of opposite
sign) is a consequence of overall conservation of momentum: the average value of Uy is
zero, since Uy = —PFy, and Py is zero at the top and bottom boundaries. The Gaus-
sian predictions appear at first glance to have a net horizontal velocity, but it should
be remembered that these are defined for —oo < & < 00, so an infinitesimal shift of the
Gaussian will result in no net horizontal momentum. Nor does the eigenfunction cor-
respond to a higher-order Hermite polynomial: the next even eigenfunction of (35) has
positive and negative extrema that are equal in magnitude.

The reason, we believe, that the predicted results do not correspond in detail to the
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actual results is that going to next order requires the inclusion of all horizontal wavenum-
bers, and the prediction relies on a truncation to a single horizontal wavenumber. In con-
trast, the leading order behaviour is genuinely described by a single horizontal wavenum-

ber, owing to the exact cancellation of the nonlinear term in the momentum equation.

Taking the limit of narrow rolls has been a fruitful way of calculating fully nonlinear
solutions of various convection situations: strong magnetic fields (or rapid rotation in
other problems) leads to asymptotically narrow rolls where analytic progress can be made.
In this paper, we have shown how the next step can be taken: calculating the stability
of these fully nonlinear solutions. We have concentrated on mean flow instabilities that
preserve the periodicity of the rolls, in the case of convection in a liquid metal with a
strong imposed magnetic fields. Instability only occurs if the Prandtl number is smaller
than 7*/3275/6% 4@ ~2/3, in the limit of large magnetic fields. This result comes out
at leading order: the Prandtl number must be this small in order to allow the prefactor
in (31) to change sign, and without this, there can be no instability. This leading order

prediction does not require a solution of the eigenvalue problem.

In order to compute the form of the eigenfunction, it is necessary to carry the calcu-
lations to higher order, but bringing in correction terms means the solution no longer
has a single horizontal wavenumber, and the advection term in the momentum equation
brings in all horizontal wavenumbers. In order to make progress, we assumed a simple
but plausible form for the correction to the linearised problem, which leads to a predic-
tion for the scaling of the Prandtl number at which the instability occurs, and for the
forms of the eigenfunction: the mean flow is concentrated in a jet of width Q~'/'2 in
the middle of the layer. Because the eigenfunction has appreciable amplitude only close
to the middle of the layer, the result applies to the cases of stress-free and no-slip top
and bottom boundaries. Numerical solutions of the PDEs (for @ up to 10'®) indicate the
correctness of the Prandtl number scaling, but the predicted Gaussian eigenfunctions are
only in rough agreement with the actual eigenfunctions. Nonetheless, the mean flow is
concentrated near the midpoint as predicted, and the width of the eigenfunction is at

least in qualitative agreement.

The difficulty of the calculations mean that we have restricted ourselves to seeking only
instabilities to steady flows, in a parameter regime relevant to liquid metals (¢ > 1).
Shear flow instabilities are known to occur in in a variety of situations, particularly
when the Prandtl number is small (Howard & Krishnamurti 1986, Proctor et al. 1994,
Rucklidge & Matthews 1996). Our asymptotic results are probably beyond the limit of
what is achievable currently in the laboratory, though numerical results suggest that the
instabilities will still occur for lower values for ) and correspondingly higher values of the

Prandtl number o. Moreover, we note that the critical Prandtl number increases with r.

This paper only addresses the linear instability to shear flows, but a sample timestep-
ping calculation (figure 4) with @ = 10%, r = 2 and o = 6.5 x 10~ (just below critical)
leads to a steadily travelling wave with mean flow similar to that depicted in figure 2,
showing that the bifurcation is supercritical. For smaller Prandtl number, we would ex-
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FIGURE 4. Fully nonlinear numerical solution of the PDE, with Q = 10%,r = 2and o = 6.5x10™*
(just below critical), showing a steadily travelling wave. (a) Stream-function; (b) mean flow Up
as a function of depth z — compare with figure 2.

pect to see tertiary instabilities and noise sensitive chaotic dynamics, as described by
Hughes & Proctor (1990) and Rucklidge & Matthews (1996), and possibly instabilities
to three-dimensional flows (Matthews et al. 1996).
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