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Abstract

Nowadays, interconnected cyber-physical systems (CPSs) are widely used with increasing

deployments of Industrial Internet of Things (IIoT) applications. Other than operating

properly under system uncertainties, CPSs should be secured under unwanted adversaries.

To mark such challenges, this paper proposes the solution of secure decentralized robust

control for uncertain CPSs under replayed time-delay and false-data injection attacks alto-

gether. Potentially, considered attacks can force the whole system to instability and crash.

Three challenges are addressed, and solutions are presented: (1) model non-linearity and

uncertainties, (2) existing simultaneous time-delay and potential false-data injection attacks

with skew probability density functions, and (3) requirement to use real-time attack detec-

tion. Thus, a novel, robust control method to deal with thwart attacks on a closed-loop

control system is proposed to provide the system’s trustworthiness. Additionally, novel

attack detection methodologies are presented to detect these advanced attacks rapidly

based on statistical methods such as Spearman’s correlation coefficient, Neyman–Pearson

(NP) error classification, and trend analysis. Ultimately, the proposed novel attack detection

and robust control protocol are verified and evaluated in real-time.

1 INTRODUCTION

Interconnected CPSs have been widely used in distributed net-

works. They involve several subsystems that are coupled to each

other over the wireless network. Interconnected CPSs are gen-

erally applied in different fields of industry, such as power grids,

chemical processing, communication systems, and even urban

traffic networks. Since interconnected CPSs are distributed over

an area, the control strategies that are used for these systems

are subject to decentralized control [1]. Moreover, intercon-

nected systems are studied in various areas, for instance, stability

analysis of interconnected systems is developed in [2, 3], or

fault-tolerant control issue of these systems is studied in [4].

Because of implementing decentralized interconnected CPSs

and technological improvements in communication networks,

networked control systems (NCSs) have been developed in

recent years [5]. When the number of interconnected systems

increases, the former point-to-point signal transmission pro-

cedure from local controllers to each distributed subsystem is

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.

© 2022 The Authors. IET Control Theory & Applications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

replaced by the communication network [6]. Most approaches

on NCSs consider that the quality of service (QoS) of the

developed communication network is suitable enough to ensure

that the NCS performs in ideal conditions, such as the devel-

oped case in [6]. In recent years, the security problem of CPSs

has been gained much more attention from researchers in

various applications. To provide the security of CPSs against

attacks, it is necessary to monitor the CPSs under different

pre-defined faulty situations and develop accurately secured

and mathematically proven fault detection, defence and control

strategies.

Applications of CPSs can be observed in autonomous

vehicles, smart grids, chemical processes and intelligent trans-

portation networks [7–9]. As stated formerly, interconnected

CPSs are critically vulnerable to any attacks since the commu-

nication networks among subsystems are considered wireless.

Different attacks can cause various faults and even failures in

each section of CPSs, such as cyber components or the phys-

ical part of the system. Generally, two major categories of

IET Control Theory Appl. 2022;1–15. wileyonlinelibrary.com/iet-cth 1
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2 BAROUMAND ET AL.

cyber-attacks are defined as deception attacks and denial-of-

service (DoS) attacks. In all types of deception attacks, the

goal of the attacker is to compromise the transmitted data

from the sensor to lessen the integrity of the data packets [10].

Specifically, some types of deception attacks occur regularly in

industrial CPSs. These common attacks include false-data injec-

tion attacks in which the generated false data (noise) from the

attacker is injected into the communication network to decrease

the system’s data authenticity, replay attacks in which the previ-

ous time data packets are stored and sent repeatedly to prevent

the subsystems from reaching the steady-state phase [10], and

time-delay attacks in which a delay parameter is injected to

the system to cause instability in system’s operation [11, 12].

Recently, authors in [13] developed a model-free reinforcement

learning algorithm to control CPSs under time-delay attacks

from a robust perspective. As a novel approach in CPSs’ security

issues, in [14], averaging attacks targeting real-world privacy-

preserving algorithms are proposed. The presented averaging

attacks are designed optimally to modify the sensitive dataset’s

attribute by injecting zero-mean bounded uniform noise to alter

the dataset’s histogram. Alternatively, in DoS attacks, the com-

munication network is being blocked to prevent the data packet

from being received in the data fusion and monitoring centre or

to the actuators [15].

Deception attacks can cause severe failures in the system’s

performance, such as collisions. Thus, there is always an urgent

need and an interest for engineers to detect these attacks

as quickly as possible in their first stages of occurrence to

implement defence and control protocols. Some approaches

have been made considering linear systems under malicious

deception attacks. In [16], the problem of state estimation

is developed under deception attacks. In [17], the worst-case

zero-mean Gaussian distributed deception attack strategy is pre-

sented. Following the approach in [17], the worst-case deception

attack policy derivation with arbitrarily chosen mean value is

proposed in [18]. Since false-data injection attacks can be com-

plicated to detect quickly in some networks, some approaches

follow the idea of analysing attacks’ detection and stealthiness

tradeoffs. In a recent study, in [19], the optimal false-data injec-

tion attack framework is obtained to maximize the attacker’s

degree of stealthiness by increasing the quadratic cost of the

system’s LQG controller.

In implementing CPSs in industrial environments, increasing

the number of subsystems leads to more complex intercon-

nected systems. Consequently, environmental, and operational

uncertainties increase, which causes growing concerns and

problems of providing attack detection, defence, and control

methods in industrial control systems. Regarding this matter, in

[20], various security issues of industrial control systems involv-

ing Supervisory Control and Data Acquisition (SCADA) are

introduced and reviewed to provide a complete overview to

lessen cyber threats and secure the control system’s operation.

Interestingly, improved form of the blind false-data injection

attacks, mostly occurring in SCADA systems, were introduced

recently in [21] in which they can remove the impacts of out-

liers in measured data and maximize the attack’s performance

to bypass fault detector’s mechanism. Furthermore, simulation

results were conducted to verify the proposed attack on PJM

5-bus and IEEE 14-bus test system.

Despite remarkable studies in CPSs’ theory under uncertain-

ties, it is still an interest to analyse and propose robust control

methods for complex CPSs by assuming various types of uncer-

tainties in industrial environments under different kinds of

attacks. Further, ref. [22] referred to the mentioned two groups

of uncertainties. Inherent stochastic features of a physical sys-

tem or the environment which cause some uncertainties are

defined as aleatory uncertainties. In contrast, some uncertain-

ties are considered due to the lack of knowledge or information

(such as limited experience and domain uncertainty), which are

determined as epistemic uncertainties [23].

As much as it is important to design control protocols to

maintain the CPSs’ stability under various cyber threats, it is

essential to detect the injected false data online at the attacks’

occurrence. So, in addition to developing a robust fault-tolerant

control strategy, designing a trust-based false-data detector unit

is also a crucial matter. Recent significant approaches have been

made lately to detect cyber threats and control CPSs under DoS

or deception attacks. As an example, in [24], an event-based

nonlinear controller is proposed to overcome control issues in

non-linear CPSs which had been threatened by DoS attacks.

Additionally, authors in [25] presented an event-triggered adap-

tive sliding mode controller to provide uncertain non-linear

system’s stability under false-data injection attacks. Besides,

they introduced event-triggered functionality from sensor to

observer (S-O) and from observer to controller (O-C) for the

reason of decreasing the communication load. For multi-agent

systems (MASs) under DoS attacks, in [26] and [27], distributed

control protocols are designed to provide consensus policies.

Besides, in [28], the leader-following consensus protocols are

presented for discrete-time MASs against DoS attacks.

Several studies considered the problem of false-data detec-

tion under malicious attacks. In [10, 26], the Kullback–Leibler

(K–L) divergence measure is applied to detect the false-data

injection and replay attacks, respectively. The K–L measure

is effective in detecting attacks with Gaussian distributions in

higher-order linear/non-linear CPSs [26]. Additionally, correla-

tion analysis is reviewed as another attack detection framework

in [12] and its performance is compared with the K–L diver-

gence criterion in real-time false-data detection scenarios.

During our research on CPSs, we observed that by consider-

ing non-Gaussian signals injected into the system in the form

of time delays or injected false data, the system’s performance

degraded significantly while the malicious signals remained

stealthy. More specifically, the system became unstable even

though we had applied former robust control and false-data

detection methodologies, such as approaches in [26, 29]. So, we

have come up with some challenges and technical difficulties

that have not yet been dealt with: (1) Even if the injected random

time delay into the process may not cause the plant’s instabil-

ity, it is also complicated to detect unpredicted d delays online.

(2) Developed approaches did not assume non-normal distri-

butions for generating random delays for the attacker, which

must be considered. (3) Considering non-Gaussian false-data

injection attacks is a research subject that should be studied
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BAROUMAND ET AL. 3

more since there is no necessity from the attacker’s perspec-

tive to generate noises with normal distributions. At the same

time, it is evident that normally generated injected faulty sig-

nals can be easily detected. Hence, we faced a new form of

cyber threat, which we need to put more study on. To pro-

pose the solution, we reviewed the extensive literature regarding

non-Gaussian signals’ analysis and presented the current arti-

cle’s approach. As stated before, all the proposed false-data

detection schemes assumed that the attacks involve Gaussian

distributions to apply Kalman filter-based estimation methods.

However, the design solution of robust control and false-data

detection through compromised cyber links has not been stud-

ied in the presence of attacks with non-Gaussian distributions

such as skew distributions. Assuming non-Gaussian attacks lead

to making Kalman-filter-based attack detection methods vul-

nerable in which only Gaussian-distributed form of noise can

be detected as an intruder, while non-Gaussian noise remains

hidden. As a result, formerly developed detection methods can-

not provide feasible performance under these circumstances.

Therefore, it is required to introduce new online false-data

detection frameworks to overcome malicious non-Gaussian

cyber threats. This matter motivates the study of the present

paper. In this article, the main purpose is to present novel

defence strategies and attack detectors by integrating various

types of attacks to the system simultaneously with non-Gaussian

distributed noise. Proposed novel attack detectors in this paper

are based on the application of signal trend analysis meth-

ods which enable us to detect malicious non-Gaussian noise

existence in the system for combined cyber-attacks. Besides,

a Lyapunov function-based delay-independent robust control

method is proposed to maintain the system’s stability against

time-delay and false-data injection attacks happening altogether

while reducing the computational complexity. This paper has

the following main contributions: (1) it develops models for

false-data injection and time-delay attacks in uncertain indus-

trial interconnected CPSs. Compared to previous approaches

devoted to defining cyber threats, we consider cyberattacks with

non-Gaussian and skew-distributed behaviours, which intro-

duces a new type of attacks that can degrade the system’s

performance while being malicious; (2) robust decentralized

controllers are developed that deal with the skew-distributed

cyber-attacks while maintaining the system’s stability using

Lyapunov stability conditions; (3) for the first time, explicit

statistical analysis of online false-data detection under attacks

is presented using correlation analysis, change-point detec-

tion trend analysis, and Neyman–Pearson signal classification

methods to trigger an alarm as fast as possible. The pro-

posed false-data detection frameworks can detect threats with

non-Gaussian distributions online, which is beneficial in pro-

viding defence strategies for CPSs. (4) Finally, the proposed

robust control and false-data detection strategies are evalu-

ated numerically to validate the effectiveness of the developed

methods.

The remainder of the article is organized as follows. In Sec-

tion 2, we formulate the uncertain CPS under various types

of non-Gaussian deception attacks. Thereafter, we propose the

stability conditions of the modelled uncertain CPS under skew-

distributed attacks in Section 3, which yields to presenting

the closed-loop robust control strategy using the Lyapunov–

Krasovskii functional approach. Then, in Section 4, various

statistical methods are introduced to detect non-Gaussian

cyberattacks, such as correlation analysis, change-point detec-

tion trend analysis, and Neyman–Pearson signal classification

methods. Finally, the effectiveness of the proposed robust con-

trol protocol for uncertain CPSs against multiple types of

non-Gaussian cyber-attacks is validated with numerical simula-

tions in Section 5. Besides, the false-data detection performance

is analysed and compared with various provided statistical sig-

nal trend detection methods. It is drawn that by introduced

attack detection frameworks, non-Gaussian cyber-attacks can

be detected online. The conclusions are drawn in Section 6.

Also, the article’s lemmas and mathematical proofs are provided

in the Appendix.

2 PROBLEM FORMULATION AND
PRELIMINARIES

Consider a class of decentralized interconnected non-linear

systems with the i-th subsystem is described as:

{
ẋi (t ) = Aixi (t ) + fi (x1, x2, … , xN ) + Biui (t )

yi (t ) = Cixi (t ) , i = 1, 2, … , N
(1)

where xi ∈ Rni , ui ∈ Rmi , and yi ∈ Rpi are state, input and

output vectors of the ith subsystem, respectively. output vec-

tors of the ith subsystem, respectively. Besides, fi is considered

as a non-linear function for the ith subsystem non-linearity and

ith subsystem interactions with other subsystem. In the above

equation, N is the number of operating subsystems, Ai , Bi

and the output matrix Ci are known constant real matrices of

appropriate dimensions, in ith subsystem.

2.1 Mathematical modelling of
uncertainties

Uncertainties are usually caused by unknown inputs and param-

eters’ inaccuracies in modelling. In this paper, for simplicity, all

kinds of uncertainties can be merged as an augmented vector

W = [ uT
d

uT
u f T

a ] to the model of the system, where ud ,

uu and fa denote input disturbance, unknown control input,

and all system’s fault vectors, respectively. Let define Bwi
as the

known uncertain gain matrix for the ith subsystem. In gen-

eral, by stating the term Bwi
Wi in further equations, all types

of uncertain inputs to each subsystem, such as plant non-

linearities, modelling uncertainties, unmeasurable system inputs,

non-linear interconnected functions and actuator faults can be

considered to have better analysis of the real implemented pro-

posed decentralized system. Depending on the type of the

considered problem, some rows of the matrix Bwi
Wi can be set

to zero to obtain more specific cases. By assuming uncertainties,

Equation (1) can be rewritten in a more general form for the ith
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4 BAROUMAND ET AL.

subsystem as :

{
ẋi (t ) = Ãixi (t ) + Biui (t ) + Bwi

Wi (t )

yi (t ) = Cixi (t ) , i = 1, 2, … , N
(2)

where the term Bwi
Wi (t ) denotes the whole system’s augmented

uncertainties, and

Ãi = Ai + ΔAi . (3)

where ΔAi represents the linear estimation of the function

firegards to xi . Additionally, Wi is a vector involving mod-

elling uncertainty and rest of plant non-linearities are defined

as ( fi − ΔAi ), where ΔAi is assumed to be the uncertainty in

plant’s linearization with specific norms.

Also, uncertain matrices ΔAi , i = 1, 2, … , N are denoted

for each subsystem as

�Ai = D̄iFi (xi , t ) Ēi (4)

F T
i

(xi , t ) Fi (xi , t ) ≤ I , (5)

where D̄i and Ēi are constant matrices of applicable dimen-

sions and Fi is a time-varying matrix with a specific range. To

formulate further stability derivations, uncertain matrices of all

subsystems are assumed to be bounded. Therefore, we defined

uncertain matrices of subsystems as in (4).

2.2 System architecture under multiple
non-Gaussian deception attacks

Attackers can threaten both sensors and actuators in CPSs. In

this paper, various simultaneous attacks are modelled to analyse

their effects and develop a robust decentralized control strat-

egy against them. The proposed simultaneous attacks involve a

data-integrity attack and a time-delay attack at the same time.

Besides, the attack distribution is assumed to be non-normal

and skewed. With this assumption, all previously developed

defence strategies in CPSs have almost poor efficiency and

performance against skew-distributed attacks since all of them

are developed based on the assumption that all the developed

attacks are with Gaussian distributions, and they cannot work

properly against attacks with other types of distributions. Thus,

this paper presents a fault detection solution and a robust con-

trol strategy under these new and advanced malicious attacks to

overcome this issue.

Based on the false-data injection attack, the cyber intruder

strives to infect the transmitted measurement data from the sen-

sors or the input control signal to the actuators. In our case,

it is assumed that the output measured data from sensors is

infected by a stochastic transmitted signal v(t ) from the attacker

with a skewed and non-normal distribution. Consequently, this

type of attack can be considered as an advanced model of pre-

viously studied attacks since previous methodologies such as
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FIGURE 1 The structure of robust security control for a networked

control system with false-data injection and replayed time-delay attacks

[17] just reviewed attacks with Gaussian distributions. There-

fore, the proposed type of attack in the current article cannot be

detected by formerly developed false-data detection protocols.

So, new false-data detection and control solutions are needed to

be proposed. The whole system is shown in Figure 1.

Since it is assumed that the cyber intruder has access to

the communication channel and all exchanged data between

subsystems, the attacker also tries to save previous data for a

specific time interval and inject them as multiple delayed sig-

nals as Σkxi (t − 𝜏ik
) to the ith subsystem’s control input as a

time-delay attack. In addition to the introduced attack scenar-

ios, we assume that the attacker also transmits a delayed control

input to the control system as a time-delay attack with the form

ũi (t ) = ui (t − 𝜏i ). Consequently, the mathematical model of the

ith subsystem (2) under the combined false-data injection and

time-delay attacks has the following form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋi (t ) = Ãixi (t ) + Bi ũi (t ) +

mi∑
k=1

H̃ik
xi

(
t − 𝜏ik

)
+ Bwi

Wi (t )

Zi (t ) = Cixi (t )

ũi (t ) = ui (t − 𝜏i )

ui (t ) = Ki x̃i (t )

x̃i (t ) = xi (t ) + vi (t )

(6)

where for the ith subsystem, Zi (t ) is the regulated output,

Wi (t ) is an uncertain input, vi (t ) is the random signal sent from

attacker with a skewed and non-normal distribution, ũi (t ) is the

received control signal under the time-delay attack with the spe-

cific delay interval 𝜏i , Ki is the feedback controller gain matrix

and H̃ ik
xi (t − 𝜏ik

) is considered as the model of a time-delay

attack. Hence, (6) can be simplified as follows.

ẋi (t ) = Ãixi (t ) +

mi∑
k=0

H̃ik
xi

(
t − 𝜏ik

)
+ Gi 𝜃i (t ) (7)
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BAROUMAND ET AL. 5

where the above equation’s variables are defined as Gi =

[ BiKi Bwi
], 𝜏i0

= 0, 𝜃i =

[
vi (t )

Wi (t )

]
, H̃i0

= BiKi , H̃ik
= Hik

+

ΔHik
, k ≠ 0 , i = 1, 2, … , N , ΔHik

= Dik
Fi (xi , t )Eik

.

Besides, Hik
( k ≠ 0) are specific fixed-value matrices, and Dik

and Eik
are matrices of applicable dimensions with specific

values.

We defined the matrix H̃i for attacks’ dynamics and its value

can be selected by the attack provider. On the other hand,

the matrix B represents the control input matrix. We can have

two considerations for the matrix H̃i : (1) by assuming a sim-

pler form of attack (H̃i = 1), the total attack signal is rewritten

as
∑mi

k=1
xi (t − 𝜏ik

) that decreases the attack problem’s conser-

vatism; (2) by considering attacks’ dynamics, the total attack

signal is reformulated as
∑mi

k=1
xi (t − 𝜏ik

) and we can have a lin-

ear estimation of the injected delayed signal with the form H̃ik
=

Hik
+ ΔHik

. Also, if there is no information about attacks’

dynamics, Hik
can be assumed as identity matrix and just con-

sider estimation error obtained by the term ΔHik
while, the real

value of ΔHik
is unknown and we can have an estimation of its

norm value.

3 ATTACK ANALYSIS FOR UNCERTAIN
SYSTEMS

3.1 Stability analysis of the proposed
uncertain system under non-Gaussian
deception attacks

According to (7), and if Zi (t ) = Cixi (t ) as the regulated output

and 𝜃i (t ) as an uncertain input of the ith subsystem, the solution

of designing the robust state feedback controller with the form

ui (t ) = Ki x̃i (t ) can be expressed as an optimization problem of

the infinite-norm of the transfer function TZ𝜃 as below.

Problem 1:

min
Kstability

‖TZ𝜃‖∞ = min
Kstability

sup
‖Z (t ) ‖2

‖𝜃 (t ) ‖2

= 𝛾, (𝛾 > 0) , (8)

where K = diag{Ki } and TZ𝜃 is the defined transfer function

from the input vector 𝜃(t ) = vec{𝜃i (t )} to the output vector

Z (t ) = vec{Zi (t )}. By applying the L2-norm, Equation (8) is

equivalent to the following H∞ optimization problem as the one

expressed in [30]:

Problem 2:

min 𝛾, s.t. J (𝜃) < 0 (9)

where J (𝜃) = ∫ ∞

0
[ Z T (s)Z (s) − 𝛾𝜃T (s)𝜃(s) ] ds , 𝛾 > 0.

In other words, solving (9) guarantees the system’s stability

by applying the worst-case uncertain signal 𝜃(t ) in formulations.

Also, ref. [30] proved that the condition in (9) is fulfilled if and

only if the following Hamiltonian function is obtained as the

negative-definite function.

JH =
dV

dt
+ Z T Z − 𝛾𝜃T 𝜃, (10)

where V (x ) is a Lyapunov function that satisfies the condition

V (x(0)) = 0 and V (x ) ≥ 0. In further equations, the proper

Lyapunov function is proposed to solve the presented H∞

robust control problem.

3.2 H
∞

delay-independent controller
modelling

To obtain the delay-independent stability condition for the pro-

posed system, the descriptor form for the ith subsystem (7) is

stated as

⎧⎪⎪⎨⎪⎪⎩

ẋi (t ) = yi (t )

yi (t ) = Ãixi (t ) +

mi∑
k=0

H̃ik
xi

(
t − 𝜏ik

)
+ Gi 𝜃i (t ) ,

(11)

Remark 1. Because we aim to reduce the complexity in formu-

lating stability conditions of the system in (7), we proposed a

less complicated form of (7) in a new descriptor form given

in (11) with a lower order formulation by introducing an addi-

tive variable yi (t ). Thus, a simpler representation of (7) is

obtained by transforming (7) into (11) to reduce complexity and

conservatism.

Accordingly, the above descriptor representation can be

described with more details as

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

ẋi (t ) = yi (t )

yi (t ) = Ãixi (t ) +

(
mi∑

k=0

H̃ik

)
xi (t )

−

mi∑
k=0

H̃ik ∫
t

t−𝜏ik

yi (s) ds + Gi 𝜃i (t ) ,

(12)

Besides, for ith subsystem, the Lyapunov–Krasovskii func-

tional candidate can be presented as

V (t ) =
[

xT
i

(t ) yT
i

(t )
]

E Pi

[
xi (t )

yi (t )

]
+V1 + V2, (13)

where

V1 =

mi∑
k=1

∫
t

t−𝜏ik

yT
i

(s) Qik
yi (s) ds, Qik

> 0, (14)

V2 =

mi∑
k=1

∫
t

t−𝜏ik

xT
i

(s)Uik
xi (s) ds, Uik

> 0, (15)

and =

[
I 0

0 0

]
, Pi =

[
P1 0

P2 P3

]
, P1 = PT

1
> 0. Also, P1, Qik

and Uik
are positive definite matrices, P3 is assumed to be an
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6 BAROUMAND ET AL.

invertible matrix, and 𝜏ik
denotes the upper bound of the delay

interval which is injected via time-delay attacker to the system.

It is worth noting that the elements of the matrices Pi , i =
1, 2, … , n of each subsystem are assumed to be different from

each other. Based on the proposed theorem in the following, the

sufficient conditions for the closed-loop system’s stability under

the assumed attacks can be concluded.

Theorem 1. Consider the proposed uncertain decentralized intercon-

nected system under the presented cyber-attack model in (6). For a given

𝛾 and all non-zero 𝜃 ∈ L
q

2
[0,∞), J (𝜃) < 0 satisfies for the closed-

loop system with the proposed decentralized robust control strategy U (t ) =
Kx(t ) where U (t ) is the set of control inputs to all of the subsystem’s

actuators, and K = diag{Ki } maintains the whole system’s inner stabil-

ity if for any implemented subsystem i, there exist positive symmetrical

matrices Qik
and Uik

( k = 1, … , mi ), and R̄ik
( k = 1, … , mi ),

Xi = [
X1 0

X2 X3

] and X1 = X T
1

such that the following LMI satisfies

for each subsystem i ( i = 1, … , N ):

Wi1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ 0 0

[
0

Gi

]
𝜃̄3 Xi

[
I

0

]
Xi

[
0

I

]

∗ 𝜃̄1 0 0 0 0 0

∗ ∗ 𝜃̄2 0 0 0 0

∗ ∗ ∗ −𝛾2I 0 0 0

∗ ∗ ∗ ∗ 𝜃̄4 0 0

∗ ∗ ∗ ∗ ∗ 𝜃̄5 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜃̄6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

Wi2
=

(
𝜉ik

I −

[
0

Eik

]
R̄ik

[
0 ET

ik

] )
> 0. (16)

where

=

Ψ =

[
0 0

AiX1 + BiYi 0

]
+

[
0 (AiX1 )T

+ (BiYi )
T

0 0

]

+
⎡
⎢⎢⎣

0 I
mi∑

k=1

Hik
−I

⎤
⎥⎥⎦

Xi + X T
i

⎡
⎢⎢⎣
0

mi∑
k=1

H T
ik

I −I

⎤
⎥⎥⎦

+X T
i

[
CiC

T
i

0

0 0

]
Xi

+
⎡⎢⎢⎣

0 0

0 𝜉−1
i

D̄iD̄
T
i
+

mi∑
k=0

𝜉−1
ik

Dik
DT

ik

⎤⎥⎥⎦
Xi

+X T
i

⎡
⎢⎢⎣
𝜉iĒiĒ

T
i
+

mi∑
k=0

𝜉ik
Eik

ET
ik

0

0 0

⎤
⎥⎥⎦

Xi

+
⎡
⎢⎢⎣

0 0

0

mi∑
k=0

𝜏ik
𝜉ik

Dik
DT

ik

⎤
⎥⎥⎦

(17)

and the rest of the variables are defined as

𝜃̄1 = −diag {Q̄−1
ik
}, 𝜃̄2 = −diag {Ū −1

ik
}, 𝜃̄5 = −diag{ Ūik

}, 𝜃̄6 =

−diag{ Q̄ik
}, Q̄ik

= Q−1
ik

, Ūik
= U −1

ik
, k = 1, … , mi

Also, we have

𝜃̄3 = vec

{
𝜏ik

[
0

Hik

]
R̄ik

[
0 H T

ik

] }
,

𝜃̄4 = −diag

{
𝜏ik

(
𝜉ik

I −

[
0

Eik

]
R̄ik

[
0 ET

ik

])}
,

k = 0, … , mi .

Thereupon, the optimal gain of the state-feedback controller

for each subsystem i is achieved by calculating Ki = YiX
−1

i

where Xi =

[
X1 0

X2 X3

]
, i = 1, … , n.

For proof of Theorem 1, see the Appendix.

The obtained LMIs in Theorem 1, guarantee the condition

J (𝜃) < 0 and provide closed-loop asymptotic stability. In other

words, the inequality in (16) satisfies the Hamiltonian function

in (10) which results in having J (𝜃) as a negative definite func-

tion. Therefore, we can conclude that the closed-loop system

is L2-stable with the L2 gain smaller than 𝛾. Additionally, by

removing the corresponding rows and columns of 𝜃 in the

obtained LMI (for Gi = 0) to form a new LMI, V̇ < 0 also

satisfies which yields to asymptotic stability of the unforced

closed-loop system (for the case of 𝜃 = 0).

Remark 2. To simplify the calculations and knowing the fact that

Bwi
is unknown, it can be inferred that Gi𝜃i = 𝜃̃i (t ), where 𝜃̃i (t )

implies the vector of uncertainties in the signal measurements or

model of uncertainties in the system. In this case, to propose a

straightforward control strategy, Gi will be replaced by Identity

matrices in the calculations. However, considering this assump-

tion may lead to a more conservative LMI condition for robust

stability.

Remark 3. Theorem 1 provides internal stability of the closed-

loop system and satisfies the condition J (𝜃) < 0. Accordingly,

to obtain the robust H∞ controller with the form Ki = YiX
−1

i
that has the minimum value of the disturbance attenuation 𝛾,

the following optimization algorithm is required to be solved

for each subsystem:

min 𝛾, s.t. (18)

for Qik
,Uik

, R̄ik
, Xi , Yi

 1
7
5
1
8
6
5
2
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
4
9
/cth

2
.1

2
3
9
3
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

7
/1

1
/2

0
2
2
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



BAROUMAND ET AL. 7

The next section shows how real-time attacks can be detected

when the system is subject to multiple and non-Gaussian

deceptions.

4 REAL-TIME ATTACK DETECTION
UNDER NON-GAUSSIAN MULTIPLE
DECEPTIONS

Following the presented robust control approach in the pre-

vious section, the system’s stability is concluded under the

non-Gaussian distributed attacks. Thus, the system’s tolerance

is significantly increased, which in this case, residual-based

attack detection frameworks are not applicable here since sys-

tem states are assumed to remain in a bounded range after

implementing the robust approach. To overcome this matter

and detect non-Gaussian distributed noise in the communica-

tion network, trend analysis methods are introduced to structure

non-Gaussian attack detection strategies in CPSs. The exis-

tence of non-Gaussian distributed noise in the communication

network leads to causing challenges in attack detection sce-

narios with Gaussian signals’ estimation-based methodologies.

Although formerly developed attack detection protocols such

as the K–L divergence method require the system’s inputs and

outputs simultaneously, it is not necessary to provide input

and output data altogether with trend analysis methods. Only

using one of the system’s signals is sufficient to detect false

trends. In the following, standard signal trend analysis methods

are reviewed. Additionally, the efficacy of the presented attack

detection framework is evaluated by the provided example in

the performance evaluation section.

4.1 Correlation coefficient test

The correlation coefficient is a numerical measurement index

without any units, and it is defined based on the covariance’s

definition. The correlation coefficient is used to calculate the

degree of dependence between the two variables. In this arti-

cle, the ability of standard correlation coefficient methods such

as Pearson’s correlation coefficient and Spearman’s correla-

tion coefficient to detect the mentioned attacks is shown in

numerical simulations.

4.1.1 Pearson’s correlation coefficient test

Pearson’s correlation coefficient is applied to obtain the degree,

type, and direction of the coefficient value between the two

variables. It is worth noting that this correlation coefficient

with zero value only represents the lack of a linear relationship

between two variables. However, the independence of two vari-

ables with zero value of the correlation coefficient cannot be

concluded. On the other hand, this type of correlation does not

necessarily show a causal relationship between system variables.

The zero value of the Pearson correlation coefficient means that

the variables are independent of each other if and only if the

distribution of variables is normal. Thus, using Pearson’s cor-

relation coefficient in detecting attacks is powerless when the

non-linear behaviour of the system increases or the injected

noise from the attacker is considered as a non-normal noise.

4.1.2 Spearman’s correlation coefficient

Spearman’s correlation coefficient shows the tendency of one

variable to follow another variable. Unlike Pearson’s correlation

coefficient, finding the non-linear relationship between the two

variables is developed using Spearman’s correlation coefficient.

Moreover, the degree of correlation of variables in non-linear

systems can be obtained via Spearman’s correlation coefficient.

Last but not least, unlike Pearson’s correlation, there is no

need for normality in Spearman’s correlation, and hence the

Spearman’s correlation is defined as a non-parametric statistical

analysis. In Spearman’s correlation analysis, instead of calculat-

ing the mean and variance values of variables, the correlation

value is obtained using data rankings. Consequently, Spearman’s

correlation is not affected by outlier data. In the present paper,

we expect Spearman’s correlation analysis to be more effective

than Pearson’s since the injected noise signals by the attacker

are non-normal with the skew distribution. Spearman’s correla-

tion coefficient alterations between input and output data of the

system are demonstrated in numerical simulations.

4.2 Change-point detection test

Various parametric and non-parametric statistical methods were

developed to detect if a set of data follows a specific distribution

or a trend. However, trend assessment analysis methods mostly

refer to the analytic techniques to extract fundamental patterns

from a partially or fully noisy signal’s behaviour. So, the change-

point detection method is a vital approach to detect periods with

significant alterations in a signal or any time series. Accordingly,

it is necessary to identify and analyse injected signals’ trends to

detect the time of attacks’ occurrence and prevent the control

systems from destructive failures in the system as quickly as

possible.

In this article, statistical methods such as signals’ trend

assessment and change-point detection methods are applied to

analyse the output measured signal of the system during the

time horizon. Common change-point detection approaches in

statistics include Pettitt’s test [31], von Neumann ratio test [32],

Buishand range test [33], and standard normal homogeneity

(SNH) test [34]. Pettitt’s test is a non-parametric test that is

highly sensitive to sudden interruptions in the signals among

the mentioned change-point methods. Therefore, Pettitt’s test

can precisely detect meaningful changes in the observed signal’s

mean value at any time.

In calculating Pettitt’s test of a signal, let denote x1, x2, …, xn

as measured set of data. Consider a sudden change that occurs

at the time index t0. If the sequence x1, x2, …, xt0 has the

probability distribution function F1(x) and the sequence xt0+1,

xt0+2, …, xn has an altered probability distribution function
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8 BAROUMAND ET AL.

F2(x), then the non-parametric statistical hypothesis testing Ut

for Pettitt’s measure is given as

Ut =

t∑
i=1

n∑
j=t+1

sgn
(
xi − x j

)
, (19)

where sgn(⋅) represents the sign function. Additionally, the statis-

tical hypothesis 𝕜 and the associated confidence level coefficient

𝜌 for n data are defined as follows.

𝕜 = max (|Ut |) ,

𝜌 = exp

(
−𝕜

n2 + n3

)
, (20)

where the approximate significance probability (P ) for a

changepoint test is defined as P = 1 − 𝜌.

It is evident to conclude that when some alterations in a sig-

nal exist, corresponding data series around that altered point is

categorized into two subsections: before and after that altered

point. Additionally, the statistical hypothesis k can be compared

with different statistical confidence levels (such as 1% and 5%)

to detect change points. The calculated Pettitt’s hypothesis on

the system’s output signal under the defined multiple attacks is

also illustrated in numerical simulations.

4.3 Neyman–Pearson error classification

Data classification total error calculation is the most common

performance analysis criterion in binary-based classification

methods. However, asymmetrical classification errors cannot

be obtained using this feature. As a solution, NP binary clas-

sification methods are proposed to deal with asymmetrical

classification errors [35]. Based on the NP classification algo-

rithm, the goal is to minimize the type II error (false negative)

while maintaining the type I error (false positive) lower than

the chosen error threshold (e.g. 5%). It is worth noting that in

detecting cyber-attacks with NP algorithms, false-positive and

false-negative rates need to be defined properly according to

our goals. In this article, the “false-positive rate” is assumed to

be the possibility of incorrectly classified “Class 1” observations

into “Class 0”, in which “Class 0 ” is defined as the set of cor-

rupted data and “Class 1 ”is defined as the set of uncorrupted

data.

Various NP algorithms have been developed based on dif-

ferent classification error grading approaches, such as logistic

regression (LR), random forests (RF), support vector machines

(SVM), linear discriminant analysis (LDA), naive bayes (NB),

ada-boost (AB), and classification trees (CT). However, it is

worth noting that there are few studies devoted to applying

NP methods to detect attacks in CPSs [36, 37], or provid-

ing fault detection and isolation methods. In this paper, we

first investigate if we could use NP classification methods to

detect cyber-attacks. Second, we will compare obtained results

from various developed NP methods in detecting the proposed

cyber-attack.

5 PERFORMANCE EVALUATION

In the current section, to evaluate the proposed method’s

trustworthiness, numerical examples are provided.

Example 1. Consider the following uncertain CPS, which

has two subsystems (i = 1, 2) under the time-delay and

non-Gaussian false data injection attacks as

⎧⎪⎪⎨⎪⎪⎩

ẋ1 = (A1 + ΔA1 ) x1 (t ) + A12x2 (t ) + B1ũ1 (t )

+ (H1 + ΔH1 ) x1 (t − d (t )) ,

ẋ2 = (A2 + ΔA2 ) x2 (t ) + A21x1 (t ) + B2ũ2 (t )

+ (H2 + ΔH2 ) x2 (t − d (t )) ,

where

A1 =

[
−1.2 0.5

−1.6 −0.5

]
, ΔA1 =

[
−0.1 0.1

0 0.1

]
,

A12 =

[
−0.1 0.1 0.2

−0.3 0 0

]
,

B1 =

[
−0.5

0.5

]
, A2 =

⎡⎢⎢⎢⎣

−1.5 −0.1 1

0 −1.3 0.5

1 0 −1

⎤⎥⎥⎥⎦
,

ΔA2 =

⎡
⎢⎢⎢⎣

−0.1 0 0.1

0 0.1 −0.1

0.1 0 0.1

⎤
⎥⎥⎥⎦
,

A21 =

⎡⎢⎢⎢⎣

−0.1 0

0 0

0 0.3

⎤⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎣

−1

1

0.2

⎤⎥⎥⎥⎦
, H1 =

[
−0.5 0

0 0.5

]
,

H2 =

⎡
⎢⎢⎢⎣

−1 0.1 0

0 0.2 0

0 −1 0.2

⎤
⎥⎥⎥⎦
, ΔH1 =

[
0.1 0.1

0 −0.2

]
,

ΔH2 =

⎡
⎢⎢⎢⎣

0.01 0 0

0 0 0

0 0 −0.02

⎤
⎥⎥⎥⎦

Besides, d (t ) represents the injected time delay to the system

state feedback signals as a chirp signal with the frequency ranges

from 0 to 100 Hz as a complex form of time-delay attack in

which the time-delay attack d (t ) is consistently being replayed

continuously in a time-varying form. Also, the injected false data
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FIGURE 2 (a) Example of data integrity attack histogram chart with

skewed distribution and (b) time-delay attack’s delay trajectory
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FIGURE 3 (a) states’ trajectories of the 1st subsystem, (b) states’

trajectories of the 2nd subsystem and (c) control input trajectories under the

combined skew-distributed false-data and time-delay attacks with the article’s

presented robust controller

v(t ) is assumed to be a stochastic skew-distributed signal with a

mean value of 0.4 and a variance value of 0.1. In Figure 2, the

histogram chart of the signal v(t ) and the delay trajectory d (t )

are illustrated. The sampling time is 0.01 s.

It is considered that the first and second subsystems are

under the combined time-delay and false-data injection attacks

starting from the 15th and 25th time steps, respectively. In this

case, the state and newly proposed control input trajectories

are obtained in Figure 3. According to Figure 3, by occurring

attacks, the system states deviate from their ideal equilibrium

trajectory, but with the presented robust control strategy, they

remain bounded close to the perfect trajectories. As a result, by

implementing the developed control protocol, the whole sys-

tem remains stable even under various non-Gaussian malicious

cyber-attacks.
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FIGURE 4 (a) Uncertain system states’ trajectory and (b) control input

trajectory with skew-distributed data integrity or time-delay attacks by

implementing conventional robust controller [29]

The simulations of the current example were done using an

operating system with Intel(R) Core(TM) i5 CPU (3.20 GHz)

and 4 GB of installed memory (RAM) using MATLAB Software

R2020b. The elapsed time to solve the LMI in this example is

approximately 0.44 s.

Example 2. In order to analyse the effectiveness of the

reviewed false-data detection methods, the second subsystem

under the defined attacks is assumed with different initial condi-

tions and attack features, as stated in the previous example. So,

the dynamics of the 2nd subsystem are given as the following

form

ẋ = (A + ΔA) x (t ) + Bũ (t ) + (H + ΔH ) x (t − d (t )) ,

ũ (t ) = u (t − d (t )) , u (t ) = kx̃ (t ) ,

x̃ (t ) = x (t ) +
[

1 0.1 −1.2
]T

v (t ) ,

where the uncertain matrices ΔA(t ) and ΔH (t ) satisfy the con-

ditions ΔA ≤ 0.3 and ΔH ≤ 0.1. Also, D̄ = D = I , Ē = 0.2I

and E1 = 0.1I . Moreover, the term [ 1 0.1 −1.2 ]
T

v(t )

denotes the injected false-data attack with a non-normal

distribution.

As we discussed earlier, since the combined attacks’ dis-

tributions are non-Gaussian, previous conventional robust

controllers like the one studied in [29] are unsuccessful

in controlling the system’s states under uncertainties with

skew-distributed attacks. This matter is depicted in Figure 4.

According to Figure 4, after the attacks’ occurrence, under the

conventional robust controller, the system states will not remain

bounded over time.

Alternatively, the performance of the proposed robust con-

trol solution for the 2nd subsystem under the defined attacks is
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FIGURE 5 (a) System states convergence and (b) control input trajectory

with the proposed robust control solution under simultaneous non-Gaussian

skew-distributed data integrity and time-delay attacks
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FIGURE 6 (a) Spearman’s correlation coefficient and (b) the K–L

divergence alterations between all the three output states and the control input

u(t) under the time-delay and data integrity attack. In order to evaluate the

capability of NP classification methods in attack-detection scenarios, given

tables are provided to represent the test results of various NP classification

techniques on the simulation data.

demonstrated in Figure 5. Based on Figure 5, even by existing

multiple non-Gaussian skew-distributed deception attacks, the

designed robust controller performs appropriately, and the

control input remains bounded, which provides the system’s

stability and bounded states from the time of attacks’ occur-

rence (in the 15th second) and overtime. Finally, the system’s

trustworthiness is guaranteed under multiple skew-distributed

non-normal deception attacks.

In the following, Spearman’s correlation coefficient and Pet-

titt’s tests are applied to detect the attack’s occurrence rapidly.

In Figure 6, the Spearman’s correlation coefficient and the K–

L divergence (Kullback–Leibler divergence) alterations between

all the three output states and the control input u˜(t) are demon-
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FIGURE 7 The proposed Pettitt’s test evaluation to find point changes in

the process of available system data, including (a) Pettitt’s test of the system

state x1, (b) Pettitt’s test of the system state x2, (c) Pettitt’s test of the system

state x3, and (d) Pettitt’s test of the system’s control input u(t )

strated. Unlike using the K–L divergence criterion, Spearman’s

correlation coefficient between the transient states and sud-

den changes due to the attacks significantly differs in detecting

faults. The occurrence of the attack and reduction of the lin-

ear association between the input and output of the system

decreases the size of the correlation coefficient with a fast con-

vergence to zero in the K–L divergence method and therefore,

these kinds of attacks can degrade the system’s performance

stealthily under the supervision of the K–L divergence fault

detection method.

In Figure 7, Pettitt’s test is proposed to find point changes in

the process of available system data, including system states x1,

x2, x3 and the system control input ũ(t ). Unlike the correlation-

based methods, it is not required to simultaneously use both

input and output data to obtain Pettitt’s test value. Therefore,

this test can be implemented separately on each input or out-

put data set. From Figure 7, we can observe that Pettitt’s test

between x3(t ) data set and the control input ũ(t ) correctly

detects the exact point of signal trend changes and the maxi-

mum value of |Ut | under the pvalue ≤ 0.05 with high accuracy.

However, a change in the trend of the signal x3(t ) is detected

with a delay.

Observed from the figures and given the fact that the con-

trol input signal ũ(t ) through the applied feedback is a linear

combination of system states, we expect that one alternative is

to use Pettitt’s test to detect faults very quickly when decep-

tion non-Gaussian attacks occur and alarm the operator to

develop defence and control strategies as soon as possible and

prevent the whole system to enter the failure phase. Alterna-

tively, Spearman’s correlation analysis is not affected by outlier

data since Spearman’s correlation analysis is also practical to

develop false-data detection frameworks because the injected

noise signals by the attacker are non-normal with the skew

distribution. Therefore, the real-time fault detection approach
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TABLE 1 Performance results of the different NP algorithms for false

positive rate α = 0.01

NP methods

Type I error

(α = 0.01)

Overall accuracy

(α = 0.01)

LR 0 0.360

RF 0.002 0.750

SVM 0.004 0.740

LDA 0.005 0.410

NB 0.005 0.570

AB 0.002 0.750

CT 0 0.690

TABLE 2 Performance results of the different NP algorithms for false

positive rate α = 0.05

NP methods

Type I error

(α = 0.05)

Overall accuracy

(α = 0.05)

LR 0.012 0.745

RF 0.022 0.757

SVM 0.035 0.740

LDA 0.041 0.737

NB 0.035 0.732

AB 0.007 0.747

CT 0 0.691

TABLE 3 Performance results of the different NP algorithms for false

positive rate α = 0.1

NP methods

Type I error

(α = 0.1)

Overall accuracy

(α = 0.1)

LR 0.012 0.745

RF 0.036 0.756

SVM 0.083 0.735

LDA 0.086 0.736

NB 0.075 0.717

AB 0.007 0.747

CT 0 0.691

against skew-distributed non-Gaussian deception attacks can

be achieved by implementing Spearman’s correlation analysis

and Pettitt’s change-point detection test. In obtaining simula-

tion results, 1530 data samples are considered as uncorrupted

data (Class 1 dataset), while 1400 data samples are assumed to

be corrupted (Class 0 dataset). As a result, values obtained in

Tables 1–3 verify the fact that developed NP-based classifiers

have type I errors less than the pre-defined error threshold α.

Besides, according to these tables, the false-positive error can

easily be kept close to 0. Therefore, by applying NP classifica-

tion algorithms are feasible in detecting false data or reducing

the attacks’ non-detection (false-positive) errors.

Since various computational and control processes are com-

bined to form an IoT-based network structure in industry these

days, it is always interesting to guarantee the network’s func-

tionality. This matter can only be achieved through analysing

input/output signals from each operating device online for the

goal of tracking the network’s behaviour. Our proposed fault

detection algorithm based on statistical analysis can be applied

to such networks where multiple subsystems with various

types of probability distributions of their inputs and outputs

with/without time delays exist and being altered simultaneously.

Additionally, with the proposed attack detection protocol, mali-

cious signals can be distinguished quickly by applying signals’

trend analysis methods introduced in the current paper to

enhance the network’s efficiency from technical and opera-

tional perspectives under non-divergent and non-residue faulty

signals.

The simulations of the current example were done using an

operating system with Intel(R) Core(TM) i5 CPU (3.20 GHz)

and 4 GB of installed memory (RAM) using MATLAB Software

R2020b. The elapsed time to solve the LMI in this example is

≈0.03 s. Moreover, the statistical analysis in the current article

has been performed using the R software (version 4.0.4).

6 CONCLUSION AND FUTURE WORK

In the present article, attack detection solutions and robust

control in interconnected uncertain CPSs in the presence of

replayed time-varying delays and non-normal skew-distributed

deception attacks have been proposed. Under these circum-

stances, various novel false-data detection methods are provided

to alarm the attacks’ existence very quickly by implement-

ing statistical and trend analysis methods, such as Spearman’s

correlation analysis and Pettitt’s test change-point detection

criterion. Furthermore, the effectiveness of the proposed Spear-

man and Pettitt tests is evaluated via numerical results compared

to the commonly studied K–L divergence false-data detection

method. Additionally, a novel robust fault-tolerant controller

has been proposed that can guarantee stability of a sys-

tem under various combined attacks, such as time-delay and

false-data injection attacks. Finally, numerical results demon-

strate the trustworthiness of the presented robust control

approach under non-Gaussian cyber intruders. Future work

will apply the presented robust control and fault detection

framework to power management networks, smart data cen-

tres, intelligent transportation systems or mobile networks to

maintain their secure performance. Moreover, resilient, adap-

tive control and defence strategies will be conducted in the

future.
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APPENDIX A

This section includes lemmas and the proof of theorem stated

in previous sections.

Lemmas

Lemma 1. [38, 39]: For any z, y ∈ Rn and any positive definite

matrix X ∈ Rn×n, we have

−2zT y ≤ zT X −1z + yT Xy

Lemma 2. [38, 39]: Let A, D, E, and F be real matrices of appropriate

dimensions with F ≤ I . Accordingly, it can be concluded that

For any scalar 𝜖 > 0,

DFE + ET F T DT ≤ 𝜀−1DDT + 𝜀ET E

Furthermore, for any matrix H > 0 and scalar 𝜀 > 0,which

applies to the inequality 𝜀I − EHET > 0, we have

(A + DFE ) H (A + DFE )T ≤ AHAT + 𝜀DDT + Δ,

whereΔ = AHET (𝜀I − EHET )
−1

EHAT . Alternatively, for

any matrix H > 0 and scalar 𝜀 > 0, which applies to the

inequality

H − 𝜀DDT > 0, it is drawn that

(A + DFE )T
H−1 (A + DFE ) ≤ AT

(
H − 𝜀DDT

)−1
A + Δ

where Δ = 𝜀−1ET E

Proof of Theorem 1

From (12) to (15), the below derivative is obtained:

d

dt

( [
xT

i
(t ) yT

i
(t )

]
E Pi

[
xi (t )

yi (t )

])
= 2𝜆, (A1)

where 𝜆 = [ xT
i

(t ) yT
i

(t ) ]PT
i

[
yi (t )

Θi (t )
] and Θi (t ) = −yi (t ) +

Ãixi (t ) + (
∑mi

k=0
H̃ik

) xi (t ) −
∑mi

k=0
H̃ik

∫ t

t−𝜏ik

yi (s) ds +

Gi 𝜃i (t ).

Thus, the derivatives of the assumed Lyapunov functions are

as

dV1

dt
=

mi∑
k=1

yT
i

(t ) Qik
yi (t ) −

mi∑
k=1

yT
i

(
t − 𝜏ik

)
Qik

yi

(
t − 𝜏ik

)
,

(A2)

dV2

dt
=

mi∑
k=1

xT
i

(t )Uik
xi (t ) −

mi∑
k=1

xT
i

(
t − 𝜏ik

)
Uik

xi

(
t − 𝜏ik

)
,

(A3)

Consequently,
dV

dt
equals to

dV

dt
= 𝜇

[
0 I

0 −I

] [
xi (t )

yi (t )

]

+𝜇

[
0 0

Ãi +
∑mi

k=0
H̃ik

0

] [
xi (t )

yi (t )

]

−𝜇

[
0∑mi

k=0
H̃ik

∫ t

t−𝜏ik

yi (s) ds

]
+ 𝜇

[
0

Gi

]
𝜃i (t )

+

mi∑
k=1

yT
i

(t ) Qik
yi (t )

−

mi∑
k=1

yT
i

(
t − 𝜏ik

)
Qik

yi

(
t − 𝜏ik

)

+

mi∑
k=1

xT
i

(t )Uik
xi (t ) −

mi∑
k=1

xT
i

(
t − 𝜏ik

)
Uik

xi

(
t − 𝜏ik

)
,

where 𝜇 = 2[ xT
i

(t ) yT
i

(t ) ]PT
i

. Hence, the Hamiltonian func-
tion (10) can be rewritten as

JH = 𝜉i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̃ 0 0 0 0 0 0 PT
i

[
0

Gi

]

∗ −Q1 0 0 0 0 0 0

∗ ∗ ⋱ 0 0 0 0 0

∗ ∗ ∗ −Qmi
0 0 0 0

∗ ∗ ∗ ∗ U1 0 0 0

∗ ∗ ∗ ∗ ∗ ⋱ 0 0

∗ ∗ ∗ ∗ ∗ ∗ Umi
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜉T
i +

mi∑
k=0

𝜂ik
+ Z T

i Zi , (A4)

where

𝜉i =
[
xT

i
(t ) yT

i
(t ) yT

i

(
t − 𝜏i1

)
… yT

i

(
t − 𝜏i mi

)

xT
i

(
t − 𝜏i1

)
… yT

i

(
t − 𝜏i mi

)
𝜃T

i
(t )
]
, (A5)

and

�̃ = PT
i

⎡
⎢⎢⎢⎣

0 I

Ãi +

mi∑
k=0

H̃ik
−I

⎤
⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

0 ÃT
i +

mi∑
k=0

H̃ T
ik

I −I

⎤
⎥⎥⎥⎦

Pi

+

⎡⎢⎢⎢⎢⎣

mi∑
k=1

Uik
+CiC

T
i 0

0

mi∑
k=1

Qik

⎤⎥⎥⎥⎥⎦
,

(A6)
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and

𝜂ik
= −2∫

t

t−𝜏ik

[
xT

i
(t ) yT

i
(t )

]
PT

i

[
0

H̃ik

]
yi (s) ds . (A7)

Using Lemmas 1 and 2, we can observe that

𝜂ik
≤ 𝜏ik

[
xT

i
(t ) yT

i
(t )
]

PT
i

[
0

H̃ik

]
R−1

ik

[
0 H̃ik

]

×Pi

[
xi (t )

yi (t )

]
+ ∫ t

t−𝜏ik

yT
i

(s) Rik
y (s) ds ≤ 𝜂ik

,

with 𝜂ik
defined as

𝜂ik
=

[
xT

i
(t ) yT

i
(t )

]
𝜏ik

PT
i

([
0

Hik

]
R−1

ik

[
0 H T

ik

]

+

[
0

Hik

]
R−1

ik

[
0 ET

ik

]

(
𝜉ik

I −

[
0

Eik

]
R−1

ik

[
0 ET

ik

])−1 [
0

Eik

]

R−1
ik

[
0 H T

ik

])

Pi

[
xi (t )

yi (t )

]
+ 𝜏ik

[
xT

i
(t ) yT

i
(t )

]

PT
i
𝜉ik

[
0 0

0 Dik
DT

ik

]
Pi

[
xi (t )

yi (t )

]
, (A8)

And for the positive value of 𝜉ik
, the term 𝜉ik

I −

[
0

Eik

]R−1
ik

[ 0 ET
ik

] is a positive value for k = 0, … , mi .

Furthermore, the following inequality can be derived for Ψ̃.

�̃ ≤ � = PT
i

⎡
⎢⎢⎣

0 I

Ai +

mi∑
k=0

Hik
−I

⎤
⎥⎥⎦

+
⎡
⎢⎢⎣
0 Ai +

mi∑
k=0

Hik

I −I

⎤
⎥⎥⎦

Pi +

⎡
⎢⎢⎢⎢⎣

mi∑
k=1

Uik
+CiC

T
i

0

0

mi∑
k=1

Qik

⎤
⎥⎥⎥⎥⎦

+PT
i

⎡⎢⎢⎣

0 0

0

mi∑
k=0

𝜉−1
ik

Dik
DT

ik

⎤⎥⎥⎦
Pi +

⎡⎢⎢⎣

mi∑
k=0

𝜉ik
Eik

ET
ik

0

0 0

⎤⎥⎥⎦

+PT
i

[
0 0

0 𝜉−1
i

D̄iD̄
T
i

]
Pi +

[
𝜉iĒiĒ

T
i

0

0 0

]
,

where 𝜉i > 0, 𝜉ik
> 0, k = 1, … , mi . Thus, based on (24) to

(29), the below inequality can be concluded

JH ≤ 𝜉i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� 0 0 0 0 0 0 PT

[
0

Gi

]

∗ −Q1 0 0 0 0 0 0

∗ ∗ ⋱ 0 0 0 0 0

∗ ∗ ∗ −Qmi
0 0 0 0

∗ ∗ ∗ ∗ U1 0 0 0

∗ ∗ ∗ ∗ ∗ ⋱ 0 0

∗ ∗ ∗ ∗ ∗ ∗ Umi
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×𝜉T
i +

∑mi

k=0
𝜂ik

+ Z T
i Zi .

(A10)

According to (30) and applying Schur complement in deriv-
ing further equations, we can conclude that JH ≤ 0 if the below
LMI holds:

W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̄ 0 0 PT
i

[
0

Gi

]
𝜃3

[
vec{I}

0

] [
0

vec{I}

]

0 𝜃1 0 0 0 0 0

0 0 𝜃2 0 0 0 0

∗ 0 0 −𝛾2I 0 0 0

∗ ∗ ∗ ∗ 𝜃4 0 0

∗ ∗ ∗ ∗ ∗ 𝜃5 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜃6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

W2 =

(
𝜉ik

I −

[
0

Eik

]
R−1

ik

[
0 ET

ik

])
> 0, k = 0, … ,mi , (A11)

where

Ψ = PT
i

⎡⎢⎢⎢⎣

0 I

Ai +

mi∑
k=0

Hik
−I

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣

0 AT
i +

mi∑
k=0

H T
ik

I −I

⎤⎥⎥⎥⎦
Pi

+

[
CiC

T
i 0

0 0

]
+ PT

i

⎡
⎢⎢⎢⎣

0 0

0 𝜉−1
i D̄i D̄

T
i +

mi∑
k=0

𝜉−1
ik

Dik
DT

ik

⎤
⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣

𝜉i Ēi Ē
T
i +

mi∑
k=0

𝜉ik
Eik

ET
ik

0

0 0

⎤⎥⎥⎥⎦
+ PT

i

⎡⎢⎢⎢⎣

0 0

0

mi∑
k=0

𝜏ik
𝜉ik

Dik
DT

ik

⎤⎥⎥⎥⎦
Pi

(A12)

Also, variables 𝜃i, I = 1, … , 6 are defined as
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𝜃1 = −diag {Qik
}, 𝜃2 = −diag {Uik

}, 𝜃5 = −diag{U −1
ik
}, 𝜃6 =

−diag{ Q−1
ik
}, k = 1, … , mi ;

𝜃3 = vec

{
𝜏ik

PT
i

[
0

Hik

]
R−1

ik

[
0 H T

ik

] }
,

𝜃4 = −diag

{
𝜏ik

(
𝜉ik

I −

[
0

Eik

]
R−1

ik

[
0 ET

ik

])}
,

= 0, … , mi .

Let us define Ξ = diag {Xi , I , I , I , I , I , I }, Xi = P−1
i

, and

denote X1Ki by Yi , Q̄ik
= Q−1

ik
and Ūik

= U −1
ik

. Then, by

pre and post multiplying (31) by Ξ and ΞT , respectively,

and using Schur formula again, the inequality in (16) will be

obtained.

The proof of Theorem 1 is completed.
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