
This is a repository copy of Unitarity and quantum resolution of gravitational singularities.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193152/

Version: Accepted Version

Article:

Gielen, S. orcid.org/0000-0002-8653-5430 and Menéndez-Pidal, L. (2022) Unitarity and 
quantum resolution of gravitational singularities. International Journal of Modern Physics 
D, 31 (14). 2241005. ISSN 0218-2718 

https://doi.org/10.1142/s021827182241005x

Electronic version of an article published as International Journal of Modern Physics D, 
2022 https://doi.org/10.1142/s021827182241005x © 2022 World Scientific Publishing 
Company https://www.worldscientific.com/worldscinet/ijmpd

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Unitarity and quantum resolution of gravitational singularities

Steffen Gielen∗

School of Mathematics and Statistics, University of Sheffield,

Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom

Lućıa Menéndez-Pidal†

School of Mathematical Sciences, University of Nottingham,

University Park, Nottingham NG7 2RD, United Kingdom

(Dated: July 7, 2022)

We explore the consequences of requiring that quantum theories of gravity be unitary,

mostly focusing on simple cosmological models to illustrate the main points. We show that

unitarity for a clock that encounters a classical singularity at finite time implies quantum

singularity resolution, but for a clock that encounters future infinity at finite time leads to a

quantum recollapse. We then find that our starting point – assuming the general covariance

of general relativity – is actually incompatible with general quantum unitarity: singularity

resolution in quantum gravity can always be engineered by choosing the right clock, or

avoided by using a different one.
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One of the most fascinating and troubling features of classical general relativity is its tendency

to develop singularities from generic initial conditions, where the theory breaks down and must

presumably be replaced by some quantum theory of gravity. Far from being just a mathematical

curiosity, such singularities describe both the beginning of our Universe at the Big Bang and the

endpoint of gravitational collapse in black holes. Understanding whether or how they might be

resolved through quantum effects is hence one of the most important questions of gravitational

physics research.

We do not have a complete theory of quantum gravity, with fully understood foundations and

unambiguous predictions, but the general consensus is that the principles of quantum theory should

continue to apply when gravity is involved, lest we would not have a starting point for even formu-

lating candidate theories. One of the most important properties of quantum theory is the unitarity

of time evolution, which preserves the norm of the state:

〈ψ(t1)|ψ(t1)〉 = 〈ψ(t0)|Û †Û |ψ(t0)〉 = 〈ψ(t0)|ψ(t0)〉 , (1)

where Û is the unitary operator for time evolution from time t0 to t1. An immediate question

in a generally covariant theory like general relativity is what time coordinate the “t” label in (1)

should refer to; a natural starting point might be to demand that, unless we want to break general

covariance, unitarity should hold for all possible choices of time coordinate.

Upon reflection, it becomes clear that this requirement is not physically meaningful; after all,

values of a coordinate time are not observable. It does not make sense to think of a quantum state

as a function of a coordinate label “t”. This apparent absence of time evolution in quantum gravity

has long puzzled researchers as the problem of time [1]. While there are different approaches towards

resolving it, the way out is the same as in classical relativity: meaningful physical statements must

be made in coordinate-independent, relational terms. What is observable is the answer to the

question: “what is the value taken by quantity A when quantity B satisfies B = b0?,” where A and

B might refer to matter or gravitational degrees of freedom [2]. A quantity B with useful dynamical

properties might serve as a “clock” characterising the evolution of other degrees of freedom. Ideally,

such B evolves monotonically so that each “B = b0” characterises exactly one instant of time, and

its interaction with other degrees of freedom should be as weak as possible.

Our desideratum of unitarity in quantum gravity then becomes the demand that time evolution

should be unitary with respect to physically reasonable choices of clock degree of freedom. When

restricting to simple situations such as spherical symmetry or homogeneous cosmology, it is not

too difficult to find models which contain one or more ideally suited clocks which should clearly be

classed as “physically reasonable,” so that the notion of unitarity can be addressed explicitly. In a

general framework without any symmetry, this would clearly be a more difficult problem but also

there suitable matter clocks can be defined [3].
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So far, nothing we have said might seem particularly controversial. There is however an immedi-

ate clash between the notion of unitarity and the behaviour of classical general relativity: classical

solutions tend to terminate in finite proper time along a geodesic, where they end in a singularity.

Any model in which there is a physical (matter) clock measuring proper time will have to reconcile

this classical behaviour with the requirement of unitarity, which says that the quantum state should

be well-defined at all times: in particular, a state sharply peaked around some classical solution

must be defined beyond the range where this classical solution is well-defined. In other words, our

notion of unitarity of quantum gravity is not compatible with the notion of singularities appearing

after a finite time. Singularities must then be resolved through quantum effects, which lead to

departure from classical physics.

To the best of our knowledge, this argument was first presented as a general conjecture about

quantum resolution of cosmological (spatially homogeneous) singularities by Gotay and Demaret

in [4]. They classified the possible clock variables near singularities as “slow” or “fast”: a slow

clock is one that only measures a finite amount of time before hitting the singularity, whereas a

fast one measures an infinite amount. Any clock related to proper time is usually slow for matter

satisfying the usual energy conditions, given that the classical singularity theorems tell us that

singularities appear at finite proper time. An important subtlety is that the clock variable must be

valued over the entire real line to avoid, e.g., redefinitions T → f(T ) mapping the real line to an

interval, which would make any clock variable T appear “slow”. As a well-known example consider

“Misner time” log(v), where v =
√
deth is the volume element of space if hij is the spatial metric.

The cosmological singularity occurs at log(v) = −∞, and Misner time would be classified as a fast

clock. In an expanding Universe, we might expect quantum gravity to be unitary with respect to

Misner time and, as Misner already discusses in [5], this notion of unitarity is compatible with the

persistence of the classical singularity in the quantum theory, given that this appears infinitely “far”

in the past. For slow clocks, however, unitarity is incompatible with the existence of a singularity.

Hence, whether classical singularities must be resolved in quantum gravity depends on the choice

of clock.

We have studied the implications of quantum-mechanical unitarity for the resolution of cosmo-

logical singularities in [6], confirming Gotay and Demaret’s conjecture in a new example involving

three possible choices of clock. Only one of the three clocks is slow with respect to the cosmological

singularity, and only this choice of clock leads to a quantum theory that resolves the singularity

by a “bounce”. Such a bounce might be regarded as quite a desirable feature for a quantisation

of gravity. However, even future infinity in an expanding Universe is only a finite time away for

some choices of time. The example in our model is that of a free massless scalar field, which settles

down to a constant value as the Universe expands. There is nothing unusual or unphysical about
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this clock, which is indeed a popular choice of matter clock in quantum cosmology. But if quan-

tum gravity is unitary with respect to such a matter clock, future infinity must be “resolved” by

quantum effects just as we usually hope cosmological singularities to be. The quantum state must

continue beyond the time at which the classical solution terminates by reaching infinite volume;

quantum effects trigger a quantum recollapse, or transition from future infinity to the past infinity

of a new classical solution [6]. The logic behind Gotay and Demaret’s conjecture applies to future

(or past) infinity just as it applies to singularities.

The cosmological model in [6] is simple enough to be analytically solvable, but complicated

enough to give insights into ambiguous physical consequences of demanding unitarity. It can be

defined as a quantum spatially flat, homogeneous and isotropic Universe with metric

ds2 = −N(τ)2dτ2 + a(τ)2hij dx
idxj (2)

where N is the lapse, a the scale factor, and hij is flat. This Universe is filled with a free, massless

scalar field and subject to the dynamics of unimodular gravity [7] where the cosmological constant

of general relativity appears as an integration constant. While classically equivalent to usual general

relativity, this allows for superposition of different values of Λ in the quantum theory, which can

be used to define one notion of unitarity [8].

The Hamiltonian for the dynamics of gravity and matter is given by

H = N

[

− 1

12V0a
π2a +

1

2V0a3
π2φ + V0a

3Λ

]

(3)

where we have chosen units in which 8πG = 1, V0 =
∫

d3x
√
h is the (unspecified) coordinate volume

of space, and πa and πφ are canonical momenta to the scale factor a and scalar field φ, respectively.

Λ is canonically conjugate to a dynamical variable T (i.e., {T,Λ} = 1) which plays the role of a

Lagrange multiplier for the constraint dΛ/dτ = 0 [6]. After suitable variable redefinitions (3) can

be brought into the simpler form

H = Ñ

[

−π2v +
π2ϕ
v2

+ λ

]

(4)

where Ñ := Na3 is a rescaled lapse and v :=
√

4V0

3
a3 is proportional to the volume of space; πv is

the momentum conjugate to v. Finally, λ := V0Λ is a rescaled cosmological “integration constant”

(now conjugate to t := V −1

0
T ) and πϕ = Cπφ for a suitable constant C (so that ϕ = C−1φ to

obtain a canonical pair).

The dynamical equations arising from the classical Hamiltonian (4) can be solved analytically;

they reproduce, of course, known cosmological solutions for a Universe with a free massless scalar

field and a cosmological constant. In line with the philosophy we have outlined for quantum
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FIG. 1: Classical solutions v(t) and v(ϕ) for λ > 0 (solid), λ = 0 (dotted), λ < 0 (dashed).

mechanical unitarity and to bring these solutions into a form that corresponds to observable (gauge-

invariant) statements, the solutions must now be expressed in terms of an “internal clock” by

choosing one of the dynamical variables as reference for the others. There are various choices one

can make, but three obvious ones are the scalar field ϕ, the unimodular “dark energy time” t, and

the Misner volume time log(v).

We are interested in points where the volume v reaches zero, corresponding to a big bang or

big crunch singularity, or (past or future) infinity. In fig. 1 we show the classical solutions for v as

a function of the clocks t and ϕ. t is a slow clock at the singularity and ϕ is slow at infinity (for

λ > 0), which is where we expect a quantum departure from classical solutions.

We can quantise this model in the usual way by replacing canonical momenta by derivatives

with respect to coordinates. There are ordering ambiguities which we fix by demanding covariance

with respect to redefinitions of the (v, ϕ) coordinates as in [9]; this leads to the Wheeler–DeWitt

equation

ĈΨ(v, ϕ, t) :=

(

~
2
∂2

∂v2
+

~
2

v

∂

∂v
− ~

2

v2
∂2

∂ϕ2
− i~

∂

∂t

)

Ψ(v, ϕ, t) = 0 . (5)

Given that the classical HamiltonianH must vanish, Ψ must be annihilated by its quantum analogue

Ĉ. The naive time evolution operator in (1), given by e−iĈτ for some time evolution parameter τ ,

would be equal to the identity on any physical state, which is another way of describing the problem

of time. The way out, as we have stressed before, is to choose one of log(v), ϕ or t as clock and

view (5) as describing evolution of Ψ in this particular time: this transforms the problem of time

into a multiple choice problem.
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The general solution to (5) can be given in terms of Bessel functions,

Ψ(v, ϕ, t) =

∫ ∞

−∞

dλ

2π~

∫ ∞

−∞

dk

2π
eikϕeiλ

t

~

[

α(k, λ)Ji|k|

(√
λ

~
v

)

+ β(k, λ)J−i|k|

(√
λ

~
v

)]

+

∫ ∞

−∞

dλ

2π~

∫ ∞

−∞

dκ

2π
eκϕeiλ

t

~

[

γ(κ, λ)J|κ|

(√
λ

~
v

)

+ ǫ(κ, λ)J−|κ|

(√
λ

~
v

)]

. (6)

The crucial point is now to demand that the quantum theory be unitary, i.e., that a suitably

chosen inner product is conserved under “time” evolution for our three possible physical clocks.

Writing the Wheeler–DeWitt equation for our three clock choices as

i~
∂

∂t
Ψ = Ĉ1Ψ, −~

2
∂2

∂ϕ2
Ψ = Ĉ2Ψ, −~

2
∂2

∂ log(v)2
Ψ = Ĉ3Ψ (7)

where

Ĉ1 = ~
2
∂2

∂v2
+

~
2

v

∂

∂v
− ~

2

v2
∂2

∂ϕ2
, Ĉ2 = −~

2

(

v
∂

∂v

)2

+ i~v2
∂

∂t
, Ĉ3 = −~

2
∂2

∂ϕ2
− i~v2

∂

∂t
, (8)

the natural requirement is to have unitarity in a Schrödinger inner product for the t clock, and in

a Klein–Gordon inner product if ϕ or log(v) is the clock. Each of these conditions translates into

a requirement for Ĉ1, Ĉ2 or Ĉ3 to be self-adjoint in a corresponding L2 inner product. One finds

that while Ĉ3 is time-dependent (as it depends on v) but automatically self-adjoint, demanding

self-adjointness of Ĉ1 or Ĉ2 leads to a boundary condition at v = 0 for Ĉ1 and at v = ∞ for Ĉ2; at
these points these operators are equivalent to strongly attractive potentials in standard quantum

mechanics. The boundary conditions then lead to a reflection of the quantum state at points where

the classical solutions would terminate (see again fig. 1), explicitly realising the general argument

we outlined above. The quantum state, even if it was initially sharply peaked around a classical

trajectory, cannot follow the classical solution into its singularity or into infinity; it must be reflected

and mapped into a different solution with opposite arrow of time.

The consequences of this behaviour can be understood most directly when computing quantum

expectation values in these theories. As analogues of the classical solutions v(t) and v(ϕ), we can

compute 〈Ψsc(t)| v |Ψsc(t)〉 = 〈v(t)〉
Ψsc

for the Schrödinger-like t theory and 〈Ψsc(ϕ)| v |Ψsc(ϕ)〉 =
〈v(ϕ)〉

Ψsc
for the Klein–Gordon-like ϕ theory, where Ψsc is a semiclassical state obtained by choosing

sharply peaked Gaussians as α(k, λ) and β(k, λ) in (6). For Gaussians peaked around k = kc and

λ = λc, these expectation values can be compared to classical trajectories v(t) and v(ϕ) where

λ = λc and πϕ = ~kc. If log(v) is the clock, v itself is no longer an observable but we can compare

〈Ψsc(v)| t |Ψsc(v)〉 = 〈t(v)〉
Ψsc

to a classical trajectory t(v).

Figure 2 shows how classical singularities and spatial infinity are both “resolved” by unitary

quantum dynamics. In fig. 2a, the singularity is replaced by a big bounce (the expectation value

of v remains bounded away from zero), and in fig. 2b we see how the Universe reaches a maximum
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(a) 〈v(t)〉
Ψsc

compared to v(t) (bold) (b) log 〈v(ϕ)〉
Ψsc

compared to log v(ϕ) (bold)

(c) 〈t(v)〉
Ψsc

compared to t(v) (bold)

FIG. 2: Expectation values in three different unitary quantum theories.

volume and then recollapses due to quantum effects. Figure 2c shows that in the Misner clock

theory expectation values do not depart from the classical trajectories. The different colours in

these figures correspond to different choices of Gaussian.

Mathematically, the behaviour seen in our model is easy to understand: quantum evolution

must extend beyond the “time” when a classical solution would terminate, and this extension

removes classical singularities or can replace infinity by a recollapse. More specifically we saw that

this behaviour results from boundary conditions needed to have self-adjointness of an operator

appearing in the corresponding time evolution problem.

However, the implications are now rather startling. It looks like the old dream of resolving

classical singularities in quantum gravity is easy to achieve: all we need to do is pick a quantum

clock that is slow where we want a singularity to be resolved, and demand that quantum theory

remains unitary. We showed this explicitly in a simple homogeneous cosmological model, but there

is no reason why similar constructions would not be possible for black holes or other spacetimes of
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physical interest. Black hole singularities would then also be replaced, presumably by a “bounce”

into a white hole, as is often expected in quantum gravity. No departure from general relativity

as the theory of gravity would be needed, and no introduction of new quantisation principles or

degrees of freedom beyond the spacetime metric, as for instance in string theory or loop quantum

gravity.

At the same time, we are abandoning the main principles of general relativity in defining such

quantum theories. The meaning of unitarity is tied to a specific clock choice and has different

physical consequences for different clocks, in stark contrast with the general covariance of classical

general relativity that we started off with. As another drastic example of what we seem to have

concluded, notice that de Sitter space can be foliated by positively curved slices leading to a

scale factor that is globally regular, a(t) ∼ cosh
(

√

Λ/3 t
)

, or by negatively curved slices with

a(t) ∼ sinh
(

√

Λ/3 t
)

, with a coordinate “singularity” at t = 0. The same general arguments would

now suggest that, in an appropriate time coordinate such as proper time, the open slicing could

require “singularity resolution” at t = 0 where classical solutions terminate, and quantum evolution

would necessarily depart from the classical solution; but the closed slicing is classically well-defined

and does not require any quantum corrections. In this example the same classical spacetime has

two different quantum analogues depending on the foliation, again a violent breaking of general

covariance.

If we decide that general covariance is sacred in quantum gravity, it seems that it is the notion

of unitarity that has to go, in the sense that it might apply only to some clocks but not others, even

if these are equally good clocks classically. How are we to select these preferred notions of time

and what singles them out? What interpretation of quantum mechanics are we supposed to attach

to a time in which the “sum of probabilities” is not conserved? Our attempt at working from a

conservative starting point – only relying on basic principles of general covariance in relativity and

unitarity of quantum mechanics – has clearly failed, as it has led us to the conclusion that some

basic principles need to be abandoned after all.
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