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1  |  INTRODUC TION

Understanding and predicting the spatiotemporal distribution of 

individuals, populations and communities is a fundamental aim of 

ecological research. Key drivers of these spatial dynamics are the 

movement decisions of individuals in response to individual and local 

environmental conditions and resources (Fryxell et al., 2008; Nathan 

et al., 2008), the distribution of conspecific and heterospecific indi-

viduals (Osborne et al., 2022) and environmental change (Tuomainen 

& Candolin, 2011) and disturbance (Courbin et al., 2022). Animal 
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Abstract
1. Uncovering the mechanisms behind animal space use patterns is of vital impor-

tance for predictive ecology, thus conservation and management of ecosystems. 

Movement is a core driver of those patterns so understanding how movement 

mechanisms give rise to space use patterns has become an increasingly active 

area of research.

2. This study focuses on a particular strand of research in this area, based around 

step selection analysis (SSA). SSA is a popular way of inferring drivers of move-

ment decisions, but, perhaps less well appreciated, it also parametrises a model 

of animal movement. Of key interest is that this model can be propagated for-

wards in time to predict the space use patterns over broader spatial and tem-

poral scales than those that pertain to the proximate movement decisions of 

animals.

3. Here, we provide a guide for understanding and using the various existing tech-

niques for scaling up step selection models to predict broad- scale space use 

patterns. We give practical guidance on when to use which technique, as well as 

specific examples together with code in R and Python.

4. By pulling together various disparate techniques into one place, and providing 

code and instructions in simple examples, we hope to highlight the importance 

of these techniques and make them accessible to a wider range of ecologists, 

ultimately helping expand the usefulness of SSA.

K E Y W O R D S
home range, individual- based models, integro- difference equations, movement ecology, partial 
differential equations, space use, step selection, utilisation distribution
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movements fundamentally affect other ecological processes, in-

cluding population (Hamilton & May, 1977) and community dy-

namics (Costa- Pereira et al., 2022), transport processes (Abbas 

et al., 2012), disease spread (Merkle et al., 2018) and ecosystem 

processes (Doughty et al., 2016). Under current global change, it is 

becoming increasingly important to robustly predict changes in in-

dividual movement decisions and how these scale up to emergent 

spatial patterns of animal distributions.

Focusing on environmental conditions and resources, habitat 

selection methods aim to identify and quantify the link between 

animal movements and distributions and the environment (Fieberg 

et al., 2021) and are fundamentally based on a comparison between 

the distribution of environmental resources and the use of these 

by the individuals (Manly et al., 2002). A key limitation of such ap-

proaches lies in the definition of what is available to each individual 

(Buskirk & Millspaugh, 2006), as animals are fundamentally limited 

by their movement capacities and cannot reach every point in the 

landscape at every single movement step, an issue which has led to 

long- standing discussions and methodological debates in the litera-

ture (McClean et al., 1998; Northrup et al., 2013). This crucial limita-

tion can be solved by integrated step selection analysis (iSSA), which 

allows simultaneous modelling of movement and habitat selection 

decisions by animals (Avgar et al., 2016), building upon the earlier 

technique of step selection analysis (SSA) (Duchesne et al., 2015; 

Forester et al., 2009; Fortin et al., 2005; Rhodes et al., 2005; 

Thurfjell et al., 2014). Not only has this fundamental methodolog-

ical advancement lead to an explosion of the use of SSA and iSSA 

in recent years (Huggler et al., 2022; Northrup et al., 2022; Viana 

et al., 2018), and methodological extensions (Klappstein et al., 2021; 

Munden et al., 2021), but researchers have increasingly shown how 

the movement kernels parameterised during SSA can be ‘scaled up’ to 

predict broader- scale space use patterns (Avgar et al., 2016; Fieberg 

et al., 2021; Potts, Mokross, et al., 2014; Potts & Schlägel, 2020; 

Signer et al., 2017). Even though this markedly increases the level of 

understanding and the quality of predictions which can be obtained 

from animal movement analyses, such upscaling of SSA is seldom 

done by many studies using SSA, perhaps due to a lack of knowledge 

or perceived methodological difficulties.

The focus of this methods guide is to elucidate the various meth-

ods for scaling up from step selection to utilisation distributions 

and other broader space use patterns. We aim to guide the reader 

through various techniques used for scaling up, when they can be ap-

plied and when not, and summarising the pros and cons when more 

than one technique is potentially applicable. We also give example 

code, in both R and Python, of some simple case studies, to give the 

reader a practical way of getting started with these techniques.

Throughout, we will distinguish between two different types of 

movement models, which each require slightly different methods 

of analysis. The first type models the movement decisions animals 

make due to spatial variables that remain essentially unaffected by 

the animals' presence (e.g. terrain, weather). In these situations, one 

can use a correlative model, whereby the animal movement decision 

is the response variable and the unaffected spatial variable is the 

explanatory variable, and propagate that model forwards through 

time, as exemplified by studies such as Potts, Bastille- Rousseau, 

et al. (2014) and Signer et al. (2017).

In the second type of movement model, there are variables that 

both affect an animal's movement and are affected by the same 

animal's presence. Examples include between- animal interactions, 

whereby the presence of individual A (either in the present or in the 

recent past) affects the movement of individual B, but in turn the 

movements of individual A are affected by the presence individual 

B (Couzin et al., 2002; Giuggioli et al., 2013). Another example is 

where animal movement is affected by the presence or absence of 

some resource that they then consume and deplete. Thus, these an-

imals also affect the resource landscape by their presence, creating 

a feedback loop between animal location and landscape variable 

(Riotte- Lambert & Matthiopoulos, 2020), which may also be medi-

ated by memory (Lewis et al., 2021). In all these situations, while it 

is possible to use correlative models to make inference about the 

effect of variable U on variable V (e.g. the presence of individual A 

on the movement of individual B), these correlative models cannot 

be reliably propagated forwards in time to predict broad space use 

patterns, since the reality is that both variables affect each other. 

There is no a priori sense in which one is the explanatory variable 

and the other the response variable. Instead, scaling up to broader 

spatiotemporal scales requires a dynamic modelling approach, for 

example via individual- based models (IBMs) of interacting individ-

uals (Avgar et al., 2013) or systems of partial differential equations 

(PDEs) (Moorcroft & Lewis, 2006; Potts & Lewis, 2019).

Analysing these dynamic models is much more complicated than 

the case of purely correlative models, and we cannot give a complete 

hands- on guide here. Our approach will therefore be to provide a 

gateway into these techniques by explaining how to construct such 

IBMs and PDEs from the output of step selection, and pointing to 

the possible methods of analysis that might be used. In the case 

of IBMs, we do provide some code to help the reader get started. 

However, in the case of PDE models, there is a world of analytic 

techniques, which are standard tools for many applied mathemati-

cians, but may not be familiar to those without an applied mathe-

matics background. Our guide on PDE techniques will not cover that 

vast background itself, but rather will guide collaborations between 

ecologists and applied mathematicians by showing how to interface 

questions about spatial arrangements of ecological systems with 

mathematical tools for deriving emergent spatial phenomena. We 

contend that such interdisciplinary collaborations are perhaps the 

only way forwards for answering many important questions in spa-

tial ecology.

The ‘scaling up’ procedure we will describe is outlined as follows. 

The first step is to parametrise a step selection function from empir-

ical data. This step is typically called step selection analysis. A recent 

‘How to’ paper already exists that covers the practicalities and inter-

pretation of SSA (Fieberg et al., 2021), so we will be relatively brief 

here, referring the interested reader to that paper, also noting the 

recent review by Northrup et al. (2022). The second step involves 

using the parametrised step selection function to infer broad- scale 
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space use patterns. We will describe various existing techniques for 

this, which use different mathematical formalisms. Some of these 

techniques give exact results and some are approximate, some 

stochastic and some deterministic. Moreover, not all of these tech-

niques can be used in every situation. Therefore, we will give a guide 

as to which technique can (or should) be used in which situations.

Finally, we will explain the sort of information one can gain from 

this approach. This includes (a) predicting whether or not one might 

expect steady state space use distributions to emerge (the alterna-

tive being those that are in perpetual flux), (b) predicting the shape 

of such emergent steady state distributions (e.g. stable home ranges) 

where they exist, and (c) using the emergent spatial patterns as a 

goodness- of- fit test, which can help detect missing features in step 

selection models. The methods presented throughout necessarily 

involve quite a bit of mathematical formalism. To aid the reader, we 

include various supplementary appendices that give specific exam-

ples of our mathematical formalisms, as well as code for implement-

ing the methods in these simple examples, in both R and Python.

2  |  STEP SELEC TION MODEL S OF ANIMAL 
MOVEMENT

The principle aim of SSA is to understand the drivers of animal move-

ment. Such movements can be affected by a very wide range of pos-

sible phenomena, including food distribution, predator avoidance, 

social interactions, corridors to ease passage, physical barriers, to-

pography and many more, together called movement covariates. All of 

these can potentially be revealed through a step selection approach, 

as long as one has the right data. SSA is a type of resource selection 

analysis (RSA), that is, it is a way of estimating the probability that 

an animal will use a given spatial area, as a function of that area's 

‘resource value’ (e.g. access to food, mates, resting area, thermal ref-

uge). SSA specifically focuses on the movement between two loca-

tions. It compares the observed movement step to all other locations 

the animal could have reached during that same time step, given the 

movement capacity of the animal, aiming to determine why the ani-

mal took the particular observed step instead of the many available 

alternatives.

With the increasingly detailed data on animal movement and its 

covariates that has become available over the past years, SSA has 

become a very popular approach for inferring drivers of movement. 

There have also been various variants of SSA introduced, such as 

iSSA (Avgar et al., 2016) and time- varying iSSA (Munden et al., 2021). 

However, for simplicity, we will refer to all of these as SSA unless 

there is a good reason to be specific. To understand how to use SSA 

for inference, there is a recent ‘How to’ paper, which also deals with 

habitat selection more broadly (Fieberg et al., 2021). Those unfamil-

iar with SSA may want to read this paper before continuing. Other 

useful papers related to inference in SSA are Thurfjell et al. (2014) 

and Northrup et al. (2022).

Here, however, our focus is different. Instead of focusing on in-

ference, our aim is to give a guide for how to use the output of SSA 

for predicting space use patterns, given the information provided by 

SSA on both an animal's preferences for resources (i.e. movement 

covariates) and its movement behaviour. In more formal terms, we 

start by observing that a by- product of SSA (or iSSA) is the para-

metrisation of a movement kernel, describing the probability density, 

p�
(
z| x, �x, t

)
 of moving from one location, x, to another location, z, 

between times t and t + τ, given all the information we have on the 

movement covariates, and given that the animal travelled to x on a 

bearing of �x. We want to examine how to derive a utilisation dis-

tribution (UD) from this movement kernel, which is the probability 

distribution of finding the animal at any given location, and closely 

related to the concept of ‘home range’ (Börger et al., 2008). This re-

quires setting up quite a bit of mathematical notation, but a picture 

of what is going on underneath these equations is given in Figure 1, 

and we give some foundational examples in Appendix A to help the 

reader become comfortable with the mathematical formalisms. We 

will also focus on location data that are recorded at fixed intervals 

at a relatively low frequency (e.g. one every few minutes or hours), 

but see Appendix B for modifications away from this case (following 

Munden et al., 2021; Potts et al., 2018).

2.1  |  The movement kernel from step selection

Right away, let us write down the general form for our movement 

kernel, which combines two sets of equations, one to estimate the 

intrinsic movement behaviour of the animals and one for estimating 

the selection for resources, and is written as

We now explain all the terms from Equation (1) in detail. First, Z(x, z, t) 

is a vector of movement covariates. We write Z =
(
Z1, … ,Zn

)

 where, 

for each i = 1, …, n, the function Zi = Zi(x, z, t) may depend upon any 

combination of the start location x, the end location z, or the current 

time t. However, not every Zi need depend upon all of these aspects. 

For example, if the ith covariate is something constant in time over 

the duration of the study, for example, height above sea level, then Zi 

would not depend upon t. Also, Zi may depend upon the start location 

(at time t), the end location (at time t + τ) or both. If Zi depends on both 

x and z, this implicitly means it could depend upon any of the points be-

tween x and z (note that this does not imply that the animal has actually 

moved in a straight line between x and z, merely that it is possible to let 

Zi depend on any points on this line).

Second, �� is a vector denoting the strength of the effect of each 

covariate, Zi. We use the subscript τ in Equation (1) to emphasise 

that �� may depend upon τ (Fieberg et al., 2021). However, for no-

tational convenience, we will usually drop this subscript and write 

�� = � =
(
�1, … , �n

)

. The function exp
[

�� ⋅ Z(x, z, t)
]

 is sometimes 

called a step selection function (Fortin et al., 2005), but this term has 

also been used synonymously with the movement kernel (Forester 

et al., 2009; Potts, Bastille- Rousseau, et al., 2014). Note that we can 

(1)p�
(

z| x, �x, t
)
=

��

(
z, x, �x, t

)
exp

[
�� ⋅ Z(x, z, t)

]

∫
Ω
��

(
z, x, �x, t

)
exp

[
�� ⋅ Z(x, z, t)

]
dz

.
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expand the scalar product of �� and Z(x, z, t) in Equation (1) to give 

�� ⋅ Z(x, z, t) = �1Z1(x, z, t) + ⋯ + �nZn(x, z, t).

Third, ��

(
z, x, �x, t

)
 is a selection- free movement kernel, and has 

historically taken various functional forms, discussed in Fieberg 

et al. (2021, Section 3.1). The function ϕ
τ
 is sometimes referred 

to as a resource- free or resource- independent movement kernel. 

However, here we will use the term ‘selection- free’, as in principle 

ϕ
τ
 could itself depend upon resources and other environmental fea-

tures (Avgar et al., 2016). This kernel can be thought of as describ-

ing the intrinsic ability of an animal to move in a given environment, 

disregarding any decisions the animal makes about where to move. 

In the simplest examples, ϕ
τ
 is just a decaying function of the speed 

∣ z − x ∣ ∕�, for example, ��

(
z, x, �x, t

)
= exp(− | z − x| ∕�), but it can 

have a more complicated dependence on the landscape and/or time 

(Avgar et al., 2016). Note that the possible dependence on �x allows 

for ϕ
τ
 to incorporate a distribution of turning angles, allowing for 

correlated movement.

Finally, Ω is the study area and the denominator in Equation (1) 

ensures that the movement kernel integrates to 1 with respect to 

z, making p�
(
z| x, �x, t

)
 a genuine probability density function. It is 

sometimes convenient to write

Implicit in Equations (1) and (2) is the fact that the movement ker-

nel is truncated so that it is not possible for an animal to move out-

side of Ω, which leads to a boundary condition on any simulation of 

Equation (1), sometimes called a ‘no go’ condition (Potts, Bastille- 

Rousseau, et al., 2014). One could also choose other boundary con-

ditions (e.g. reflective or periodic) but we will stick with this boundary 

condition throughout, for simplicity. Equation (1) appears as equation 

(13) in Fieberg et al. (2021) in a slightly different form. We explain in 

Appendix A how to relate the two formulae precisely, to enable smooth 

linkage between both papers, alongside some examples of movement 

kernels with code.

2.2  |  Incorporating animal interactions

While Equation (1) models the effect of covariates on an animal's 

movement, some covariates are also affected by the animal's move-

ment. This means the two features of interest, animal locations and 

covariate values, feedback on one another. A key example is when an 

animal's movement is affected by the space use of a second animal, 

whose movement is, in turn, affected by the space use of the first 

animal. Such two- way interactions may be social, competitive, mutu-

alistic or predator– prey. In any such case, SSA will lead to a different 

movement kernel for each animal, which interact with each other. 

This situation leads to a system of coupled movement kernels, some-

times called ‘coupled step selection functions’ (Lewis et al., 2021; 

Potts, Mokross, & Lewis, 2014). If we have N interacting animals, 

then the general form of such a system is

where j = 1, …, N indexes the animals.

An example system of coupled movement kernels is where each 

animal j has at least one covariate Zi,j (for some i between 1 and n) 

that denotes the recent space use of a different animal, say animal 

j' where j' ≠ j (perhaps mediated through terrain marking or memory 

(2)K(x, t) = ∫Ω��

(
z, x, �x, t

)
exp

[

�� ⋅ Z(x, z, t)
]

dz.

(3)pj,�
(
z| x, �x, t

)
=
[
Kj(x, t)

]−1
�j,�

(
z, x, �x, t

)
exp

[
� j,� ⋅ Zj(x, z, t)

]
,

F I G U R E  1  From a movement kernel to a utilisation distribution. Panel (a) shows the movement kernel for a simulated animal that has 
a biases towards (i) better resources, denoted by darker green, (ii) a central place at xC and (iii) to continuing in the same direction (i.e. 
correlated movement). It has arrived at location x at time t on a bearing of �x (measured clockwise from north). The subsequent location, z, 
is sampled from the probability distribution given by the contours. Specifically, the animal has a 95% (respectively 50%) probability of being 
located within the blue (respectively magenta) contour at time t + τ (i.e. after one time step). Panel (b) shows the utilisation distribution after 
2000 time steps, where the blue (respectively magenta) curves show 95% (respectively 50%) kernel density estimator, mimicking how home 
ranges are often calculated from field data. This paper aims to explain various techniques for mathematically deriving, hence predicting, the 
utilisation distribution (panel b) from knowledge of the movement kernel (panel a).

(a) (b)
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[Moorcroft & Lewis, 2006; Riotte- Lambert et al., 2015]). This means 

that the movement of animal j is affected by the locations of animal 

j'. But if, in turn, animal j' has a covariate, say Zi',j', that denotes the 

space use of animal j, then the two animal's movements depend on 

one another, generating a feedback loop between them. This is what 

we mean by saying the equations are ‘coupled’.

In principle, Equation (3) can be parametrised using SSA in ex-

actly the same way as Equation (1), for each individual j = 1, …, N. 

However, more needs to be said to put this into practice, as it is 

not a trivial task to determine the ‘recent space use’ of each ani-

mal. Indeed, even conceptually the idea of ‘recent space use’ begs 

questions. How recent? What constitutes ‘space use’? The precise 

one- dimensional path the animal has travelled or some broader area 

demarcated by that path? How do we infer this area from data?

None of these questions have a single catch- all answer. However, 

an important step forward was made by Schlägel et al. (2019). Their 

method starts using the notion of an occurrence distribution (OD) to 

describe the ‘recent space use’ of an animal (Fleming et al., 2016). 

The OD is constructed by taking consecutive measured locations of 

an animal, over a user- defined time- frame, and building a theoreti-

cally optimal estimation of the distribution of actual locations. The 

R package ctmm enables users to construct this OD with just a few 

lines of code, as explained in Calabrese et al. (2016). However, it can 

take a few minutes for the package to fit the model. Furthermore, 

the output can be quite finely resolved, and in practice animals may 

respond to a more smoothed version of the OD. Therefore, it is 

worth users also experimenting with using either a spatial averaging 

of the OD, or something more intrinsically smoothed- out, like ker-

nel density estimation (KDE; Worton, 1989) or autocorrelated KDE 

(AKDE; Fleming et al., 2015).

Whichever method is chosen, to use the OD for SSA simply 

involves considering the OD in exactly the same way as any other 

environmental layer that varies through time. To put this in math-

ematical notation, let us denote the value of the OD of animal j at 

time t and location � by Oj,t(�) (where � stands for either x or z). If 

we hypothesise that this OD covaries with the decision of an ani-

mal j' to move to a location then we set Zi,j�(x, z, t) = Oj,t(z) for some 

i (Schlägel et al., 2019). Alternatively, if we hypothesise that Oj,t(�) 

covaries with the decision of j' to move from a location then we set 

Zi,j�(x, z, t) = Oj,t(x) for some i. Following this procedure for each pair 

of animals j, j' = 1, …, N leads to a collection of covariates in a system 

of coupled movement kernels (Equation 3), which can be parame-

trised using SSA (Avgar et al., 2016; Fieberg et al., 2021).

3  |  EMERGENT PAT TERNS FROM  
SC ALING UP

We now turn to the main topic of this paper, which is how to scale 

up from the movement kernel of Equation (1) to a description of 

broad- scale space use patterns. For this, we use the concept of a 

utilisation distribution (UD), which measures the probability of find-

ing an animal at a location x at time t. We denote the UD by u(x, t). 

We will sometimes be interested in the UD as it changes over time, 

but we will also examine situations where it is possible to derive 

a steady state UD, u∗(x), which denotes the limit as t → ∞ of u(x, t)

. Mathematically, it is not always the case that u∗(x) exists, as u(x, t) 

may exhibit oscillatory behaviour at long times, or more complicated 

spatiotemporal fluctuations (Potts & Lewis, 2019). However, where 

it does exists, and where this limit is approached in an ecologically 

relevant time frame, the UD corresponds to what is usually called a 

home range.

In this section, we will examine how to derive both exact and 

approximate expressions for u(x, t) from Equation (1). We will explain 

the situations in which one can use each of these expressions, and 

the various benefits and drawbacks of each. In general, while exact 

expressions are theoretically ideal, they may be either difficult to 

compute in practice, not amenable to mathematical analysis, or only 

apply to certain subcases of Equation (1). Approximate expressions 

are therefore also valuable. We will explain how to calculate each of 

the expressions in practice and also provide a gateway into mathe-

matical analysis. Finally, we will explain how to determine whether 

u∗(x) exists or not, and how to compute it where possible.

3.1  |  Mathematical formalisms for scaling up: 
Integro- difference equations, PDEs and IBMs

Here we describe how to use mathematical methods to derive the 

space use distribution of an animal, such as a home range, starting 

from the SSA- estimated movement kernel (combining the move-

ment capacity of the animal and the selection for resources in the 

external environment). We then show how it is then possible to pre-

dict the space use distribution of an animal in a landscape with a 

certain distribution of resources, based on knowledge of its step- to- 

step movement decisions.

Perhaps the most general form linking a movement kernel 

to a UD is the so- called master equation (Merkle et al., 2017; van 

Kampen, 1981), which is an example of an integro- difference equa-

tion (IDE). We will begin by assuming that p
τ
 is independent of �x (i.e. 

no correlation in movement), so that p�
(
z| x, �x, t

)
= p� (z ∣ x, t). The 

master equation in this case is

Intuitively, this equation says

1. start with a UD at time t, given by u(x, t),

2. then multiply this by the probability density of moving from z to x 

in a timestep of length τ, given by p� (z ∣ x, t),

3. do this for all x and integrate,

4. and then the result is the probability distribution at time t + τ.

It is also possible to incorporate the aspect of correlated move-

ment (i.e. dependence on �x) with some extra notational baggage. We 

(4)u(z, t + �) = ∫Ωp� (z ∣ x, t)u(x, t)dx.
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explain this in Appendix C, but focus here on uncorrelated movement 

for ease of explanation.

One approach to calculating u(x, t) is to solve Equation (4) nu-

merically. In practice, this involves discretising the study region, Ω, 

and turning the integral into a sum. Let us denote by S a set of points 

obtained from discretising Ω. This discretisation can be chosen by 

the user, but in practice it makes sense to use a grid that is related to 

the underlying environmental covariates, as these themselves often 

arrive as a discrete- space raster. Then, for any pair of grid cells, s and 

s', write the probability of moving from s' to s as P
τ
(s|s',t).

Next let U(s,t) denote the probability of finding an animal at grid 

point s at time t. Then, given this discretisation, Equation (4) becomes

An example of calculating Equation (5) over time is given in Appendix D, 

together with code.

Equation (4) gives an exact solution for the time- evolution of 

the UD, given a movement kernel. Therefore, in principle, it gives 

a complete description of how to scale up from a movement ker-

nel to a UD. Furthermore, Equation (5) gives a way of calculating 

Equation (4), with only some minor approximations due to the dis-

cretisation. So it might feel like the job is done. However, there are 

two key downsides to these equations. The first is that they are 

not particularly amenable to exact mathematical analysis, so there 

is not much exact theory that one can draw on (but see Barnett & 

Moorcroft, 2008, which we discuss in Section 3.2). The second is 

that a numerical solution can be very time- consuming. Calculating 

Equation (5) requires calculation of P
τ
(s|s',t) for every s,s'

∈ S, and 

P
τ
(s|s',t) itself requires computational of a numerical integral, the de-

nominator in Equation (1). We now deal with each drawback in turn 

and how to mitigate against them.

First, to make use of mathematical theory, it is beneficial to de-

rive a PDE from Equation (4), as PDEs are in general far more amena-

ble to mathematical analysis than IDEs. However, it does require 

approximations to be made. Potts and Schlägel (2020) examined the 

PDE limit in a situation where the master equation is of the form 

in Equation (4). Additionally, they made two assumptions about the 

movement kernel in Equation (1). First, ϕ
τ
 must be function of only 

∣ z − x ∣, so that ��

(
x, z, �x, t

)
= �� ( |x − z | ). Second, Z must be func-

tion of only z (the end of the step) and t. They also take the limit as 

τ → 0. Given these assumptions, Potts and Schlägel (2020) showed 

that the UD is approximately governed by the following PDE

where D
τ
 is the diffusion constant, calculated as

x′ is a dummy variable, and ∣ x� ∣ is the length of the vector x′. The 

τ → 0 approximation means that any directional autocorrelation in the 
data is ignored. Often, this is a perfectly adequate assumptio for pre-

dicting broad- scale space use patterns (e.g. the probability density 

function of a correlated random walk is asymptotically the same as a 

Brownian motion). However, if a user wants to use Equation (6) to make 

quantitative predictions for a particular study animal, we recommend 

they truth- test the PDE approximation by running an IBM that includes 

any directional autocorrelation detected in their data. Finally, from the 

perspective of calculating u(x, t) numerically, there is in our experience 

no advantage to using this PDE over the master equation. However, the 

analytic tools for studying PDEs are vast and can give crucial qualitative 

information about space use, which we will discuss more in Section 4.

As an alternative to numerical solutions of either the PDE in 

Equation (6) or the IDE in Equation (4), a conceptually simple ap-

proach is to use a stochastic IBM (Avgar et al., 2016; Potts, Börger, 

et al., 2022; Signer et al., 2017). This simply involves simulating sto-

chastic realisations of the movement kernel in Equation (1) and can 

be done either directly (Appendix A) or via the amt package in R. The 

amt approach is shown, with examples, in Signer et al. (2019). Here, 

we only want to add one word of caution, which is that the UD de-

scribed in Signer et al. (2019), and calculated in amt, is in fact

which is the cumulative UD up to time t. If the UD reaches a steady 

state, u∗(x), then the two definitions of UD coincide, but this is not true 

for transient UDs. Therefore, anyone comparing transient UDs from 

amt with those calculated from the IDE and PDE methods described 

here needs to take this discrepancy into account. In the context of 

home range calculations, the amt method is closer to what is done in 

practice when measuring home ranges from data, as typically people 

will measure home ranges using highly autocorrelated movement data. 

However, conceptually, a home range is usually thought of as reflecting 

the probability density function of an animal's locations, which is more 

accurately described by u(x, t).

While IBMs are conceptually simple, it can be time- consuming 

to use them for calculating u(x, t). For this, it is necessary to simulate 

the movement kernel up to time t sufficiently many times to obtain 

a good measure of the probability distribution, which is the distri-

bution of locations at time t across all simulation runs. The number 

of simulations scales linearly with the number of lattice sites in the 

study area (which could be cells of a rasterised landscape, for exam-

ple), and usually one would need dozens or hundreds of simulations 

per lattice site to obtain a reasonable estimate of the probability 

distribution. To circumvent this, amt estimates Equation (8) instead 

of u(x, t), and in so doing makes use of every point the simulated an-

imal visits, not just the point at time t for each simulation. However, 

information is lost by estimating Equation (8) rather than u(x, t). 

Particularly, if u(x, t) fluctuates over time then these fluctuations are 

averaged- out in the calculation of Equation (8), so are not properly 

captured by the amt method.

(5)U(s, t + �) =
∑

s� ∈ S

P�

(
s| s�, t

)
U
(
s
�, t

)
,

(6)

� u

� t
= D�∇

2
u

⏟⏟⏟

diffusive

movement

− 2D� ∇ ⋅

[

u∇
(
�1Z1 + ⋯ + �nZn

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

drift up the gradient

of �1Z1+ ⋯ +�nZn

,

(7)
D� =

1

4� ∫ℝ2

||x
�||
2
��

(
|x� |

)
dx�,

(8)��� − UD = ∫
t

0

u
(
x, t�

)
dt�,
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If you do want to calculate u(x, t) using IBMs but without requir-

ing prohibitively intensive simulations, it is instead possible to com-

bine simulations with a smoothing method, like KDE (Potts, Mokross, 

et al., 2014). To do this, simulate the movement kernel perhaps a few 

hundred times, each time starting at the same location and running 

the simulation to time t (this much can be done in amt). Then take 

the end- point of each simulation to give a dataset of genuinely inde-

pendent samples of u(x, t). Finally, construct the KDE of this dataset, 

which is an estimation of u(x, t).

In all these methods, if comparing u(x, t) to data, it is advisable to 

ensure that the value of u(x, t) is as small as possible at the boundary 

of the study area, Ω, if at all possible. This avoids any bias that might 

be caused be the effect of the ‘no go’ boundary conditions (see sen-

tences after Equation (2)).

3.2  |  The steady state UD in the absence of animal 
interactions

One of the most oft- studied emergent spatial patterns from animal 

movement data is the home range, that is, the space use distribu-

tion often observed in nature, where animals restrict their move-

ments over time to a certain area in space, and do not roam over 

the entire available landscape (Börger et al., 2008). Mathematically, 

this can be thought of as the steady state of a UD, defined to be a 

configuration that does not change over time. As such, if u(x, t) satis-

fies Equation (4), then the steady state of u(x, t) is a function, u∗(x), 

satisfying the following equation

if such a function exists. Here we have to assume that 

p� (z| x) = p� (z ∣ x, t) , that is, the movement kernel does not change 
over time, otherwise no steady state can exist. That said, ecological 

systems can exhibit multiple time- scales; for example a movement ker-

nel may give rise to a UD that becomes close to a steady state over a 

season, but next season the animal's movement may change, causing 

the UD to change (Börger et al., 2008). In this case, we can assume 

that p� (z| x) = p� (z ∣ x, t) for the duration of a season and use the above 

techniques to calculate the seasonal steady state; but over the course 

of a year, the UD fluctuates.

In this section, we will assume that p� (z| x) is independent 

of u(x, t) . That is, the probability of moving to a specific location 
does not depend upon the past or present UD. This means that 

Equation (9) is linear in u∗(x), which is a requirement for the tech-

niques presented in this section. Notice that this linearity require-

ment precludes the case where we have multiple coupled movement 

kernels, like in Equation (3) (whereby the movement of one animal 

depends on the UD of another, whose movement depends on the 

UD of the first animal). We will return to this case in Section 3.3. 

The linearity requirement also precludes memory effects whereby 

animals are attracted to their own UD.

Let us now write the discrete space version of Equation (9), fol-

lowing the notation of Equation (5), as

As described in Section 3.1, Equation (10) is what we tend to calculate 

in practice. This equation can, in theory, be calculated exactly using 

matrix inversion (Appendix E) but to our knowledge this has never 

been done in the context of step selection, perhaps due to computa-

tional intensity.

Another exact method, which is also relatively computationally 

efficient, is that of Barnett and Moorcroft (2008). This, however, re-

lies on two assumptions. The first is that ��

(
z, x, �x, t

)
 can be written 

as a function of ∣ x − z ∣, that is, ��

(
z, x, �x, t

)
= �� ( |x − z | ). The sec-

ond is that the functions Zi(x, z, t) only depend upon the end- point of 

the step, that is, Zi(x, z, t) = Z̃ i(z) for some function Z̃ i(z). With these 

assumptions in place, Barnett and Moorcroft (2008) show that the 

following exact expression for u∗(x) holds

We show how to compute examples of this, with code, in Appendix F.

It is interesting to look at two limiting cases. First, if ψ
τ
 is a uni-

form distribution, meaning that animals can move over the whole of 

Ω in a single timestep, then (Appendix F)

which is just the usual expression for a resource selection function 

(Manly et al., 2002). Although this assumption on ψ
τ
(l) is quite restric-

tive, there are real examples. For example, an urban fox can often 

traverse its whole territory in just a few minutes (Potts et al., 2013), 

so if Ω were the territory of an urban fox then it makes sense to use 

a uniform distribution for ψ
τ
.

The other extreme is where ψ
τ
 is arbitrarily narrow, so the ani-

mal is making distinct movement choices over much smaller spatial 

scales than Ω, as is often the case with animals with very large home 

ranges. In this case, we have (Appendix F)

which is identical to Equation (12) but with � switched for 2�. In other 

words, the effect of selection on space use doubles as one moves from 

selection on a very broad spatial scale to a very narrow spatial scale 

(Moorcroft & Barnett, 2008). Notice that this factor of 2 also appears 

in the PDE from Equation (6) (before D
τ
); indeed, the steady state of 

Equation (6) is precisely Equation (13) (Potts & Schlägel, 2020).

Figure 2 gives an example of the steady state UD estimations 

from Equations (11)– (13) for a movement kernel of the following 

type

(9)u∗(z) = ∫Ωp� (z| x)u∗(x)dx,

(10)U∗(s) =
∑

s� ∈ S

P�

(
s| s�

)
U∗

(
s
�
)
.

(11)u∗(x) =
exp

(
� ⋅ Z̃(x)

)
∫
Ω
exp

(
� ⋅ Z̃(z)

)
�

�
( |x − z | )dz

∫
Ω

[
exp

(
� ⋅ Z̃(x)

)
∫
Ω
exp

(
� ⋅ Z̃(z)

)
�

�
( |x − z| )dz

]
dx

.

(12)u∗(x) =
exp

(
� ⋅ Z̃(x)

)

∫
Ω
exp

(
� ⋅ Z̃(x)

) ,

(13)u∗(x) =
exp

(
2� ⋅ Z̃(x)

)

∫
Ω
exp

(
2� ⋅ Z̃(x)

) ,
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where R(z) is a resource layer and xC is a localising point (e.g. a den 

or nest site). This models movement in a heterogeneous environ-

ment where there is additionally some localising tendency towards a 

single point, such as a den or nest site. Observe from Figure 2 that 

Equation (12) overestimates the UD size but Equation (13) is an un-

derestimation. We give instructions and example code for reproducing 

Figure 2 and calculating Equations (11)– (13) in Appendix F.

3.3  |  UDs for interacting animals

In Section 3.2, we examined how to find the steady state distribu-

tion in situations where the covariates Zi are not affected by the lo-

cations of the animal or animals. In other words, the causality goes 

one way: covariates affect animal locations, but are not affected by 

those locations. This works fine in many classical examples of step 

selection, where the focus is on things such as presence of food, 

ease of motion on the terrain, proximity to locations of interest and 

so forth. However, in reality, there are many situations where move-

ment covariates are affected by present or past animal locations. 

Examples include memory effects (Merkle et al., 2017), resource de-

pletion (Riotte- Lambert et al., 2015), social interactions (Moorcroft & 

Lewis, 2006), competition (Vanak et al., 2013), prey- taxis (Kareiva & 

Odell, 1987) and predator avoidance (Bastille- Rousseau et al., 2015), 

which are all well- established ecological phenomena.

In such situations, the techniques of Section 3.2 do not directly 

apply. Indeed, there is no guarantee that a steady state emerges at 

all, and one may instead find UDs that fluctuate in perpetuity, never 

settling (Potts, Giunta, et al., 2022). To understand these patterns, 

there are two broad approaches: numerical and analytic. For the nu-

merical approach, one could use the IDE formalism from Equation (1) 

or the PDE of Equation (6). However, we recommend using an IBM 

instead. The principal reason for this is that IDEs and PDEs only keep 

track of the probability distribution of animal locations, but IBMs 

keep track of the actual location of animals (Wang & Grimm, 2007). 

This has two advantages. First, if performing numerical simulations, 

one might as well keep as much realism in them as possible (i.e. why 

not use an IBM?). Second, animals will respond to the actual (past 

and present) locations of themselves and other animals, not a distri-

bution that reflects the probability of all possible locations that each 

animal could have taken. For analytic approaches, PDEs are the best 

tool and we will discuss this more in Section 4.

Writing code for an IBM depends a lot on the specific situation 

that is being modelled, especially for interacting objects. We give a 

basic example in Appendix G, of animals that have a mutual avoid-

ance tendency and attraction to a single static resource layer, to help 

the uninitiated get started. However, we caution the reader that 

construction of an IBM for their specific situation is likely to require 

(14)p�
(
z, x, �x | t

)
= Kj(x, t)

−1exp( − � |z − x | )exp
(
�RR(z) − �C|x − xC|

)
,

F I G U R E  2  Steady state utilisation 
distributions (UDs). Panel (a) shows 
locations of a simulated animal with 
movement process corresponding to 
Equation (14) with the resource layer 
shown in the background (darker green 
means higher quality resources). Panels 
(b– d) overlay this with predicted UDs from 
Equations (11)– (13), respectively, shown 
as a contour line surrounding the 95% 
kernel of the UD estimation. Panel (b) is an 
exact steady state solution to Equation (8), 
so captures the space use well. Panels 
(c), proportional to exp

(
� ⋅ Z̃(x)

)
, and 

panel (d), proportional to exp
(
2� ⋅ Z̃(x)

)

, respectively over- and under- estimate 
space use. Here, λ = 0.2, βC = 0.2, and 
βR = 1.5, xC = (50, 50).

(a) (b)

(c) (d)
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quite significant thought and modification/re- writing of this simple 

model, which will depend on the particular structure of Equation (1).

3.4  |  Goodness- of- fit analysis from 
emergent patterns

Having described tools for ascertaining emergent spatial patterns 

from models parametrised at a finer spatiotemporal scale, we now 

turn our attention to what we can learn from this process. The prin-

ciple aim is to examine the extent to which these fine- scale pro-

cesses capture the observed broad- scale patterns. This process can 

help reveal missing features from the model and generate new hy-

potheses (Potts, Börger, et al., 2022).

An example of this is shown in Figure 3 using simulated data. In 

this example, we assume the following movement kernel describes 

the movement of animal j, for j ∈ {1, 2, 3, 4}

where R(z) is a resource layer, xj,C is a localising point for animal j and 

Oj′(z, t) is the OD of animal j' at time t.

Figure 3a shows the KDE distributions of each simulated an-

imal, moving according to an IBM based on the movement kernel 

in Equation (15). Figure 3b– d shows the distributions of simulated 

animals where one of the covariates is missing. There are some tech-

nical considerations when constructing an IBM of animals that in-

teract through their OD (Potts, Börger, et al., 2022). In short, one 

needs to think about how to construct Oj′(z, t) at each step of the 

simulation, which involves not just the locations where the animal 

makes a turn but also locations in between turns. One way to deal 

with this is to simulate a stepping- stone process (Avgar et al., 2013, 

2016). Details of how we have constructed such a stepping- stone 

process from an example system of coupled movement kernels are 

given in Appendix G.

Comparing panels in Figure 3 reveals that a failure to incorpo-

rate social interactions (i.e. β j,j
' = 0) leads to more overlap between 

home ranges than is actually the case (compare panels (a) and (b)), a 

failure to incorporate localising tendency (i.e. β j,C = 0) leads to UDs 

emerging in the wrong place (panels (a) and (c)), and a failure to in-

clude the resource layer (i.e. β j,R = 0) leads to UDs that fail to grasp 

the environmental heterogeneity in R(z) (panels (a) and (d)). This is 

perhaps quite obvious in the omniscient situation of simulated data. 

However, if in a real situation using empirical data, a researcher 

has not realised about one of these features, and then has parame-

trised a model that does not include that feature, then comparing 

empirical data on space use to emergent patterns from simulations 

of that model can help reveal this missing feature (Potts, Börger, 

et al., 2022).

(15)
pj,�

(
z, x, �x|t

)
=Kj(x, t)

−1exp(−�|z−x|)

exp

(
� j,RR(z)−� j,C ∣x−xj,C ∣ −

∑

j�≠j

� j,j�Oj�(z, t)

)
,

F I G U R E  3  The effect of missing 
covariates. Empirically parametrised 
individual- based models (IBMs) can be 
used to detect missing features from a 
step selection model. Panel (a) shows 
some simulated data from four animals 
in a 100 × 100 box, whose movement 
is governed by three things: Mutual 
avoidance, attraction to resources and 
central place attraction. The green 
shades represent the resource layer 
(darker green implies better resources), 
the contours give utilisation distribution 
(UD) of animal locations, one colour for 
each animal (contours at heights 0.0001, 
0.0002, 0.0005, 0.001, 0.002 from 
the outside in). Panel (b) shows the UD 
when mutual avoidance is removed from 
the model. Panel (c) has central place 
attraction removed. Panel (d) does not 
include resources. If researchers have 
parametrised an SSF model but missed a 
key covariate governing space use then 
they may be able to gain insight into what 
that missing covariate is by comparing 
simulated and empirical UDs, in the same 
way as we might compare panel (a) with 
panels (b– d).

(a) (b)

(c) (d)
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As well as visual examination of discrepancies between data and 

IBM output, various metrics can be calculated to assess goodness- 

of- fit. Two possible metrics are to (i) compare the UD or OD sizes 

between the data and the IBM output, and (ii) to measure the UD or 

OD overlap between data and IBM. UD size can be measured using 

any number of metrics, but the locational variance is perhaps the 

simplest, as it is proportional to standard measures, like 95% KDE, 
but does not require interpolation or smoothing. Following Fieberg 

& Kochanny (2005), we recommend using Bhattacharyya's Affinity 

to measure UD overlap. Details of all these methods are given in 

Potts, Börger, et al. (2022), which also mentions relations to existing 

goodness- of- fit test for SSA that do not examine emergent spatial 

patterns (Fieberg et al., 2018).

4  |  E XPLORING EMERGENT PAT TERNS

While IBMs are valuable for comparing model output with data 

(Section 3.4), they are not always so amenable to mathematical anal-

ysis. This is where PDEs come into their own. There is a wealth of 

techniques for analysing PDEs in the applied mathematics literature 

(Buttenschön & Hillen, 2021; Evans, 2022; Murray, 2003; Robinson 

& Pierre, 2003). Many of these are quite technically demanding, and 

so our best ‘how to’ suggestion for those who do not have a deep 

background in applied mathematics is to form collaborations with 

those who do. The trick for forming such collaborations is to know 

broadly the sort of questions that can be answered by mathemati-

cal techniques and how to phrase them in the language of applied 

maths in a way that might entice collaborators while keeping firmly 

grounded in ecological and natural history knowledge. Our philoso-

phy here will be to try to explain how to do this, with the ultimate 

aim of helping readers form useful collaborations, rather than doing 

the mathematics themselves.

Perhaps the most elementary technique in pattern formation 

analysis of PDEs is linear stability analysis (LSA; also sometimes 

called Turing pattern analysis, after Turing, 1952). This technique 

asks the following question: if a system is homogeneous (in our case, 

this means each animal is equally likely to be found anywhere on 

the whole landscape) and is then perturbed slightly (which will hap-

pen naturally as animals move and interact), will those perturbations 

grow in time? In practice, this means that UDs will segregate or ag-

gregate spontaneously. Therefore, it can be used to answer ques-

tions such as whether avoidance processes are sufficiently strong 

to cause territorial segregation (Potts & Lewis, 2016), or whether 

attraction processes are sufficient to enable aggregations to emerge 

spontaneously (Briscoe et al., 2002). Such analysis may also help re-

searchers to separate- out the effect of social interactions on spatial 

distribution patterns from environmental interactions.

A second question that can be answered by LSA is: as the pat-

terns grow from a homogeneous state, will they oscillate? This 

means that any segregations or aggregations that emerge will not 

be stationary but move around in space. This is of key importance 

in measuring UDs from data, because if a collection of animals have 

movement processes that lead to perpetually fluctuating space use 

patterns, then this has to be taken into account when measuring 

UDs from data. For this, one has to consider a set of locations across 

a time window. The size of this window should be determined by the 

natural period of any emergent oscillatory patterns.

The next question, which requires tools beyond LSA, is whether 

patterns are likely to form suddenly as parameters change. This 

means that a small environmental perturbation might give rise to 

a dramatic change in the structure of UDs (i.e. a ‘tipping point’). 

Figure 4b gives an example of this (in the context of IBMs) whereby 

an increasing tendency for attraction to conspecifics leads to a sud-

den switch in spatial distribution from homogeneous to highly aggre-

gated (which could, e.g., be driven by increased fear of predation). 

F I G U R E  4  Transition from homogeneity to heterogeneous patterns. Panel (a) (respectively panel (b)) shows simulation output from 
an stochastic IBM consisting of two mutually avoiding (respectively mutually attracting) populations. When the strength of avoidance 
(respectively attraction) is low, the populations are well mixed, indistinguishable from non- interacting populations. As this strength is 
increased past the Turing bifurcation point, the populations begin to segregate (respectively aggregate). While the segregation patterns in 
panel (a) emerge in a continuous fashion, the aggregation patterns in panel (b) appear quite suddenly, and a hysteresis effect is observed. The 
precise definitions of the quantities in these plots are given in Appendix H.

(a) (b)

 1
3

6
5

2
6

5
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/1

3
6

5
-2

6
5

6
.1

3
8

3
2

 b
y

 U
n

iv
ersity

 O
f S

h
effield

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
2

/1
1

/2
0

2
2

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



    |  11Journal of Animal EcologyPOTTS and BÖRGER

The existence of these sorts of tipping points can be ascertained 

by a variety of techniques, perhaps the most well used of which is 

weakly nonlinear analysis (others include Crandall– Rabinowitz bifur-

cation theory and centre manifold theory, and different mathemati-

cians have different tastes regarding which to use, so it is valuable 

to be aware of the nomenclature). These techniques can determine 

whether the point at which patterns start to form (known as the bi-

furcation point) is supercritical, meaning that the size of the patterns 

is continuously dependent on the underlying process (Figure 4a), or 

subcritical, meaning there is a discontinuous switch from no patterns 

to patterns (Figure 4b).

The subcritical case is often accompanied by a hysteresis 

phenomenon, whereby the existence of patterns depends upon 

the history of the system. For example, in Figure 4b, in the range 

amin < a < amax, it is possible to see either aggregations or homo-

geneous UDs depending on the history of the system. A real life 

example might be of a population of herbivores in the presence 

of a predation risk that is initially mild, but grows steadily, causing 

them to increase their tendency to move towards one another for 

safety (given by the parameter a). At some point, the predation risk 

becomes sufficiently high that a > amax and an aggregation forms. 

Suppose that after some time the predation risk stops increasing 

and instead starts to decrease (perhaps due to human intervention 

or predator disease). Then a decreases. However, when a decreases 

past amax, the aggregations do not yet collapse. Indeed, not until 

a < amin does this collapse happen and the herbivores return to their 

original, homogeneously spread state.

While the mathematical tools of PDE analysis enable rigorous 

quantification of UD pattern formation properties, the downside 

is that various approximations are made when moving from the 

movement kernel of Equation (1) to the PDE of Equation (6). It is 

therefore valuable to check that the pattern formation properties 

observed in PDE analysis are also observed in the more realistic 

case of an IBM. Recent research has begun to develop techniques 

for doing this, tailored to the specific case of understanding emer-

gent space use patterns from animal movement processes (Potts, 

Giunta, et al., 2022). This research shows both how to relate IBMs 

to PDEs in a rigorous fashion, and gives methods for determining 

whether patterns emerge, whether they are stationary or fluctuat-

ing, aggregative or segregative. Indeed, Figure 4 gives an example 

of the output of such techniques. In particular, Figure 4a shows 

the analytically computed Turing bifurcation point of the PDE sys-

tem, which is close to where the IBMs bifurcate from homoge-

neous to heterogeneous patterns.

5  |  DISCUSSION

5.1  |  Why scale up?

We have described various existing techniques for scaling up from 

step selection to broader- scale space use patterns, some of which 

require some relatively involved mathematical and/or numerical 

analysis. So what is the value in learning and using these techniques? 

We highlight two key points.

1. Prediction in systems with feedbacks. As shown in Sections 2.2 

and 3.3, if there are two or more variables that each affect 

one another so that there is no a priori demarcation into ex-

planatory and response variables, then correlative models alone 

are insufficient for making predictions (including RSA and many 

species distribution models [SDMs]). Instead one needs a dynamic 

model. Step selection provides a technique for parametrising 

such models and the methods described here provide techniques 

for analysing their emergent features. An example of this might 

be predicting the effect of rewilding strategies on ecosystem 

restoration. For example, domestic herbivores may be allowed to 

roam more freely, leading to a more heterogeneous vegetation 

layer, which, in turn, affects their movements and distributions.

2. Testing for missing covariates in movement models. SSA can dem-

onstrate which of a predetermined set of variables covary with 

movement. However, it cannot ascertain whether the user has 

focused on the correct set of variables for describing the animal's 

movement. By propagating the resulting movement kernel for-

wards in time, we can discover the extent to which it can pre-

dict longer- term patterns. Any discrepancy between predictions 

and data can be used to inform further model development, as in 

Section 3.4, and also where best to concentrate data gathering 

efforts.

Underlying both of these is a conceptual move from uncovering 

predictors to building predictive models. Correlative models, such as 

SSA, RSA and SDMs, are well developed for uncovering predictors, 

but they are less developed regarding making actual predictions. 

Accurate model predictions require that the underlying models both 

capture the dynamics correctly (Point 1 above) and contain all the 

necessary mechanisms required for accurate predictions (Point 2 

above). Prediction in spatial animal ecology is notoriously tricky (Hao 

et al., 2019) and requires significant future development. However, 

by plugging these two conceptual gaps, the methods described here 

should provide an important step in improving the predictive power 

of animal space use models.

5.2  |  Future directions

Building models of animal movement that are able to predict broad- 

scale space use patterns is a fundamental goal of movement ecol-

ogy, with a huge range of potential applications to conservation and 

management (see Section 1). However, there is still a long way to 

go before accurate predictions from fine- grained movement mod-

els become widely possible. We end with a few ideas for where we 

would like to see these methods going.

1. Application across taxa and geography. Many of the methods 

described here are relatively new and have yet to be applied 
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in earnest to a wide range of datasets. Broad application across 

different data and research groups is perhaps the best way to 

ascertain the value of these methods and discover practical 

ideas for improvement. Ideally, these would include different 

taxa, populations in contrasting environments, and data sampled 

over different time- scale and intensities.

2. Biologging data. Alongside movement, modern datasets often 

contain a wealth of biologging data, such as heart rate, accel-

eration, body temperature and neurological sensors (Williams et 

al., 2020). These can help inform the behavioural mode of animals, 

which, in turn, affects how they move and use space. Methods to 

incorporate these into movement models, ascertaining the extent 

to which they feed up to broad space use patterns, is a key re-

search frontier (Klappstein et al., 2021).

3. Continuous time formulations. Animals move in continuous time, 

they may make decisions at any point in time, data may be gath-

ered at completely different points in time, all of which makes 

a continuous time framework appealing (Parton et al., 2016). In 

Appendix I, we discuss some current efforts to this end, and some 

possible ways forward. It is also worth mentioning that methods 

from Sections 3.4 and 4 are not implicitly tied to a discrete time 

framework, so it would be valuable to examine how to use these 

in the context of continuous time models.

4. Mathematical analysis of emergent phenomena. Our mathematical 

understanding of emergent phenomena from moving, interact-

ing populations is still in relative infancy (Eftimie, 2018; Potts & 

Lewis, 2019). Specifically, efforts are required that explicitly tie 

these into empirically measured movement processes, for exam-

ple using methods like those in Moorcroft and Lewis (2006) or 

Potts and Schlägel (2020). This will require strong collaborations 

between ecologists and applied mathematicians.
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