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Expressive Local Feature Match for Image Search

Zechao Hu and Adrian G. Bors
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Abstract—Content-based image retrieval (CBIR) aims to
search the most similar images to a given query content, from a
large pool of images. Existing state of the art works would extract
a compact global feature vector for each image and then evaluate
their similarity. Although some CBIR works utilize local features
to get better retrieval results, they either would require extra
codebook training or use re-ranking for improving the retrieved
results. In this work, we propose a many-to-many local feature
matching for large scale CBIR tasks. Unlike existing local feature
based algorithms which tend to extract large amounts of short-
dimensional local features from each image, the characteristic
feature representation in the proposed approach is modeled for
each image aiming to employ fewer but more expressive local
features. Characteristic latent features are selected using k-means
clustering and then fed into a similarity measure, without using
complex matching kernels or codebook references. Despite the
straightforwardness of the proposed CBIR method, experimental
results indicate state of art results on several benchmark datasets.

I. INTRODUCTION

Content-based image retrieval (CBIR) is the task of search-

ing the most similar images from a given database with respect

to a given query. The crucial mechanisms within a CBIR

pipeline, which are explored for improvement in most research

studies, are the feature extraction and the similarity measure

used for the retrieval. Initial CBIR approaches would employ

hand-crafted descriptors using either low-level features such

as colour [1] and texture [2], or more complex information

such as by modelling human observation based image saliency

[3]. Due to the difficulty of bridging the low-level feature

information and high-level semantic gap, such hand-crafted

approaches eventually did not provide good-enough results

and this field was revolutionized by the Convolution Neural

Networks (CNN). The CNN based feature extraction could be

divided into two categories as global and local features. Global

feature methods [4]–[7] extract a compact feature vector for

each image following a single forward processing passing

through the network and then entering them into a similarity

measure such as the L2 distance.

Local feature methods using CNNs preserve the direct

correspondence to a location in the image. The way how

local features are used for CBIR can be categorized into three

different directions. The first category of local feature methods

implements a separate aggregation method to encode local

features into a compact feature vector [8]–[10]. Meanwhile,

the second category would select several local feature vectors

from each image and then employ a similarity measure in

a many-to-many manner [11], [12], or use co-attention [13].

Normally such methods use specific matching kernels and

would require extra codebook training. In a third category,

certain methods [14], [15] utilize the spatial information of

each local feature vector to perform a verification at the re-

ranking stage. In addition, local feature methods normally

involve a feature selection module to filter out unwanted

features as some locations from the convolution feature tensor

correspond to irrelevant background content.

Due to the fixed receptive field of CNNs and the potential

variation in the object size, due to the image acquisition

process, each local feature may only correspond to a part of a

target object. To address this problem, local feature vectors are

extracted from multi-scale representations of the input image

and, despite employing a feature selection mechanism, result

in too many local features extracted for each image. When

considering the memory cost for feature storage at the offline

stage and the time required during the retrieval stage, it will

be impractical to cache a large number of high-dimensional

local features for each image. Consequently, most local feature

methods would employ a feature dimension reduction.

This research study proposes to process the latent-space of a

pre-trained CNN when applied on pairs of query and candidate

search images from a database. We propose extracting a more

expressive local feature representations for each image through

clustering on the features extracted by a baseline CNN. Such

an approach is better and more efficient than storing large

amounts of features for each image. Meanwhile, a corre-

sponding many-to-many similarity measure is implemented

on the extracted local features. The proposed approach does

not require the support of large codebook training or complex

matching kernels.

The contributions of this study are: 1) We propose a

clustering-based representative feature extraction method from

the feature tensor output resulting in fewer, but expressive

local features; 2) We propose an effective many-to-many local

matching method; 3) Extensive experimental results indicate

state-of-the-art capabilities for the proposed method.

II. RELATED WORKS

Global features. The first attempt at estimating compact

feature vectors from probabilistic representations of convolu-

tion feature tensors was the Neural Code model [4], which

implements a fully connected layer to transform the feature

tensor output by the final convolution layer into a compact

feature vector for image retrieval. In [16], spatial pooling

is shown to be a better mechanism for instance retrieval.

A series of spatial pooling methods were proposed to build

compact feature vectors from the statistics of convolution



feature tensors, including sum-pooling [5], max-pooling [6],

[17], [18] and generalized mean pooling [7], [19]. Afterwards,

several modifications or complementary modules have been

considered on the spatial pooling pipeline in various models,

in order to further refine or enhance the compact global

feature vector of each image. For instance, in [17], [18],

an end-to-end trainable region proposal network (RPN) [20]

is implemented to enhance regional max-pooling for image

retrieval. The weighted generalized mean pooling (WGeM)

[19] adds an extra convolutional layer at the end of a CNN

backbone structure as a trainable spatial weighting module

to localize and highlight potential regions of interest before

the final global spatial pooling. The Second-Order Loss and

Attention for image Retrieval (SOLAR) [21] explored using

co-relations on the CNN feature tensor with a second-order

attention layer. Traditional spatial attention modules generate

heatmap-like attention maps for a given image. The second-

order attention layer sensitivity maps for each location on the

convolution feature tensor with respect to all others. These

attention maps would highlight regions relevant to the training

data, leading to better global feature representations for image

retrieval. The recently proposed Deep Orthogonal Local and

Global (DOLG) [22] employs an orthogonal fusion module

to complement the global feature vector with local feature

information.

Local features. The Bag Of Visual words (BOV) [23] is

a representative local aggregation method for local features

representative of an image. During the training, BOV extracts

local feature vectors from a set of sample images and then

applies k-means clustering. Each cluster center is treated as

a “visual word” and a codebook is composed from all these

visual words. At the retrieval stage, for each image, their local

descriptors are extracted and clustered into visual words. Then

the frequency of the visual words is built as the representation

code for each image. The Bag of Local Convolutional Features

(BLCF) [8] represents a method combining CNN-based local

features with BOV. Another popular local feature aggrega-

tion method is the Vector of Locally Aggregated Descriptors

(VLAD) [9], [24]. Similar to BOV, VLAD also needs to train

the codebook and performs local feature clustering for the

images from each database. The difference is that instead of

using the frequency of each visual word, the distance between

each local descriptor and the cluster center are accumulated

and concatenated to build a compact fixed size feature vector

for the whole image. The NetVLAD [10] modifies VLAD as

an end-to-end trainable layer at the tail of a CNN structure.

The experimental results show that the trainable VLAD out-

performs the local feature fusion methods which are not based

on deep learning.

The DEep Local Feature (DELF) [14] is a representative

two-stage local feature model utilizing local features to re-

rank initial retrieval results. It implements a score function

with two processing layers on top of the final convolution layer

for relevant local feature selection. During the initial retrieval

stage, the compact global feature vector is built by a weighted

sum of selected local features. During the re-ranking stage,

after dimension reduction, geometry verification is performed

with these local features to get the final retrieval result. DEep

Local and Global features (DELG) model [15], was derived

from DELF, by unifying the training procedures of global and

local features into a single pipeline while further improving

the performance of this two-stage image retrieval framework.

HOW [11] relies upon the Aggregated Selective Match

Kernel (ASMK) [25] to directly perform many-to-many local

feature matching with selected local features, achieving better

results with lower memory costs than DELF [14]. However,

HOW has to train the codebook as BOV. The codebook of

HOW contains more than 60,000 visual words learned from

20 million local feature samples obtained from 20,000 training

images with 1,000 local features extracted from each image.

III. PRELIMINARY

In this section, we start with introducing spatial pooling

and the baseline model structure. Afterwards, we present the

proposed expressive local feature extraction and the many-to-

many matching method for content-based image retrieval.

A. Spatial Pooling

Considering an input image I, which after being processed

by a convolutional network is mapped into a feature tensor

X ∈ IRH×W×D, where H , W , D represent the height, width

and channel counts. Eventually, the global spatial pooling

compresses the feature tensor into :

Vg =

(
1

L

L∑

l

xl
p

) 1

p

, (1)

where Vg ∈ IR1×D, L = H × W , l = 1, . . . , L and xl

indicates the local feature vector from X at location l, while

p is a power coefficient. When p = 1, Eq. (1) becomes the

sum-pooling (average-pooling) [5], while for p → ∞ it is

the max-pooling [6]. When p ∈ (1,∞), Eq. (1) becomes

the Generalized Mean (GeM) pooling, [7]. The similarity

measure between spatial pooling feature vector is usually

performed by calculating cosine similarity (or L2 distance

after normalization). Due to the usage of the power coefficient

p, the generalized mean pooling is more selective than the

simple average-pooing but involves more local features than

max-pooling.

Given a query image Iq and a candidate image Ic, we have

their corresponding feature tensors Xq , Xc and global spatial

pooling feature vectors Vq and Vc. The cosine similarity

between the query and candidate image representations is :

cos(Vq,Vc) = (η(Vq)Vq)(η(Vc)Vc)
T

=
η(Vq)η(Vc)

(LqLc)
1

p

D∑

d=1




Lq∑

lq=1

Lc∑

lc=1

(
xq,lq,dxc,lc,d

)p



1

p

(2)

where the L2 normalization is defined by η(V) = 1/ ∥V∥.

According to Eq. (2), the cosine similarity between two

global spatial pooling feature vectors can be treated as the

sum of dimension-wise multiplications between the entries of



the corresponding feature tensors, representing the query and

candidate images. According to [11], at the training stage, any

loss function, including the contrastive loss [26] or the triplet

loss [10], that optimizes the cosine similarity between feature

vectors corresponding to an image pair, with the following

consequences. Firstly, the L2 norm of irrelevant background

locations is minimized (
∥∥Xlbg

∥∥ → 0) leading to little or no

contribution to the final similarity score. On the contrary, the

L2 norm of distinct foreground objects or region locations will

be maximized. Meanwhile, the local features from matching

location pairs will be moved towards becoming closer to each

other, while those unmatched will be marginalized in the

feature space.

B. Baseline model structure and training

The general framework of using a deep CNN for feature

tensor extraction followed by a global spatial pooling layer

for building a compact global feature vector was used in the

recent state of the art works, such as DELG [15] and DOLG

[22]. In this research study we also use ResNet101 [27] as the

backbone network for feature tensor extraction. The feature

tensor output from the final convolution layer is pooled by

a generalized mean pooling layer from equation (1), with a

fixed power co-efficient p = 3, followed by a trainable fully

connected layer for feature whitening.

Following the approach in DELG [15], we also consider

image-level class labels and the ArcFace margin loss [28] for

the model training, defined by:

L(V̂g,y) = − log
exp(γ ×AF(V̂gŵ

T

i , yi))∑Nc

j=1
exp(γ ×AF(V̂gŵ

T

j , yj))
, (3)

where V̂g is whitened then L2 normalized global GeM feature

vector as in (1), during training. ŵi refers to the trainable

L2 normalized classifier weights for class i from the ArcFace

weight matrix W ∈ IRNc×D, Nc is the number of classes in

the training dataset. y is an one-hot class label vector and i
is the index of the ground-truth class of V̂g (yi = 1). γ is

a trainable temperature parameter. AF(u, y) is the ArcFace-

adjusted cosine similarity [15]:

AF(u, y) =

{
cos(arccos(u) +m), if y = 1
u, if y = 0

(4)

where u is the cosine similarity, y indicates whether it is the

ground-truth class and m is the ArcFace margin.

The ArcFace margin loss from Eq. (4) could also be referred

as a “cosine classifier” [15]. Within the ArcFace weight matrix

W , each row wi, i ∈ {1, 2, 3, . . . , Nc} could be treated

as a proxy feature vector for class i. In other words, these

proxy features approximate corresponding original class image

features. Accordingly, the ArcFace loss potentially optimizes

the cosine similarity not between single image pairs but

between the query and proxies of image classes. Compared

to the traditional image pair similarity loss (contrastive loss or

triplet loss) this kind of proxy based similarity loss does not

need hard sample mining and would converge faster than the

simple similarity loss between specific image pairs [29].

IV. EXPRESSIVE LOCAL FEATURE

EXTRACTION AND MATCHING

In the following, we describe how we compress the feature

tensor extracted by the backbone network in order to extract

expressive local feature representations for performing many-

to-many local matching for the CBIR task.

A. Local feature selection and clustering

The first problem when performing many-to-many local

matches is the computation cost required by the large number

of local features extracted from a given image. Considering an

input image I of size h×w, after feeding through a ResNet101

[27], considered as backbone, which contains 5 downsampling

blocks, the output feature tensor X size becomes h
25

× w
25

. For

example for a high resolution image of 1024 × 1024 pixels,

it would result in hundreds of local features being extracted.

However, not all local features from the feature tensor are

relevant for CBIR, and irrelevant features, such as for example

those corresponding to the background should be discarded.

Accordingly, we first perform local feature selection over the

feature tensor output by the backbone network. As discussed

in Section III-A, the L2 norm of each entry from the CNN

feature tensor reflects its importance. As shown in the left part

of Fig. 1, the feature selection is performed based on the L2

norm mask of the feature tensor X. We keep only the top

N features with the highest L2 norm, resulting in a set of

local features X1:N = {xi|i = 1, . . . , N}, where xi ∈ IR1×D

indicates the i-th local feature vector from X1:N .

At this stage, each local feature can be treated as corre-

sponding to a small region from the input image. Extracted

features may not be comprehensive enough, as each local

feature contains very limited information. For example it may

only represent a small part from an object of interest and lack

the higher-level semantic meaning. Meanwhile, we want to

further reduce the number of candidate local features for the

sake of controlling the computational complexity. Thus, for the

initially selected local features X1:N , we employ the k-means

clustering in order to build representative feature centers for

groups of features. However, the clustering result for k-means

varies with the number of clusters k and their initialization.

This is an unwanted attribute for a stable image retrieval

system and for this reason we adapt the k-means++ [30] for the

cluster’ center initialization. Considering the candidate image

local features X1:N as input, we consider the following steps

for k-means++ :

1) Let A represent the local features from X1:N that have

not been selected as representative centers, while B

represents the set of those chosen. In the beginning we

have, A = {xi|i = 1, . . . , N} and B = ∅.

2) Choose xm ∈ X1:N , such that m = argmax
xi∈A

∥xi∥, as

the first cluster center. Meanwhile, add B = B
⋃

xm,

while it is deleted from A = A \ xm.

3) For each local feature vector xi ∈ A that has not

been chosen as a center yet, compute the smallest

distance with respect to all chosen initial centers d(xi) =



Fig. 1. Illustration of local feature selection and clustering.

min ∥xi − xj∥, xj ∈ B, j = 1, . . . , |B|, where | · |
denotes the cardinality of a set.

4) Choose xl ∈ A, such that l = argmax
xi∈A

d(xi) as another

cluster center, adding it to B = B
⋃
xl and deleting it

from A = A \ xl.

5) Repeat Steps 3) and 4) until |B| ≡ K.

The selected cluster centers are then used for initializing the

standard k-means clustering. As shown in the right part of

Fig. 1, after clustering, we perform Generalized Mean (GeM)

pooling as in Eq. (1) within each cluster, to obtain its center.

To further reduce the memory requirement, a binary encod-

ing function b : IRD → {0, 1}D is applied to each cluster

center:

b(x) =

{
0, if x ≤ 0
1, if x > 0

(5)

Finally, a binary coded local feature set F1:K = {fi|i =
1, . . . ,K} is extracted from the input image I. fi ∈ {0, 1}1×D

indicates the i-th binary coded local feature vector from F1:K ,

which consists of D bits.

B. Local feature match

Let us consider a pair of images, representing the query

Iq and the candidate Ic, from a given database. After the

feature extraction as mentioned above, two corresponding

binary coded local feature sets Fq,1:K = {fq,i|i = 1, . . . ,K}
and Fc,1:K = {fc,j |j = 1, . . . ,K} are extracted. Then, a

similarity matrix M = {[mi,j ] ∈ K ×K} is obtained by

calculating the similarity score between each pair of query

local feature fq,i and the local feature candidates fc,j :

mi,j = d(fq,i, fc,j), (6)

where d(·, ·) is a similarity function. For feature vectors

described as real numbers, it could be the cosine similarity

while the Hamming distance can be considered between two

binary coded sequences. The Hamming distance represents the

count of those bits which are different between two vectors and

ranges between [0, D] for a vector of dimension D. It can be

normalized to the range [0, 1] by dividing it with the feature

dimension D. In this case we evaluate the similarity using

1− d(fq,i, fc,j)/D. Accordingly, the i-th row of the similarity

matrix M stores the similarity score between fq,i and each

local feature from the candidate image feature set Fc,1:K .

In principle, matrix M needs to be transformed into a

single similarity score between the image pair {Iq, Ic} and its

calculation should be quick. Thus, we first define the similarity

score between a single query local feature xq,i and those from

whole candidate image by:

s(fq,i, Ic) = max
j

mi,j . (7)

Eventually, the similarity between images Iq and Ic is :

S(Iq, Ic) =

K∑
i=1

s(fq,i, Ic)

K
, (8)

where K is the number of clusters.

V. EXPERIMENTS

We first discuss our experimental setup, including the hyper-

parameter setting and implementation details. Then we provide

retrieval results for the proposed methodology followed by

comparisons with the state of the art.

A. Experimental setup

Implementation details. We consider ResNet101 [27] as the

backbone network. For the baseline GeM model training, we

set the margin m = 0.15 and temperature γ =
√
D = 30

for the ArcFace loss in (4) and (3), respectively. We train

the model on a clean subset of Google landmark dataset

version 2 (GLDv2) [31], which contains more than 1.5M

images grouped into 81,313 classes. GLDv2 was also used

for training the state of the art DELG [15] and DOLG [22]

models. We consider data augmentation by randomly cropping,

ratio distorting and then resizing images to 512× 512 pixels.

The model is trained using a Stochastic Gradient Descent

(SGD) optimizer with an initial learning rate of 0.05, weight

decay of 0.0001, batch size of 128 images, and employing

cosine learning rate decay strategy. The spatial pooling power

coefficient is p = 3 in eq. (1). The baseline model is trained

with 4 NVIDIA Tesla GPUs.

At the retrieval stage, if not otherwise specified, we initially

select N = 500 local features and the number of clusters is

set as K = 10 for the k-means clustering. After whitening

and L2 normalization, all clustered local features are binary

encoded by eq. (5).

Evaluation dataset. Revisited Oxford and Paris datasets [32]

have commonly been used for large-scale CBIR performance

evaluation in recent years. These databases are expanded

versions of Oxford [33] and Paris [34] datasets after removing

the images with incorrect annotation and adding several new



query images. Revisited Oxford (ROxf) contains 4993 images

while Revisited Paris (RPar) has 6322 images. Both datasets

contain 70 query images. The ground-truth matching images

to each query image are divided into 3 groups, Easy, Medium,

Hard, according to the level of difficulty in assessing the

similarity in their image representation with respect to the

corresponding query. In addition, R1M [32] is a new distractor

set containing 1 million unbiased high resolution (1024× 768
pixels) images for ROxf and RPar. The similarity measure

between feature vectors is performed with cosine similarity.

All retrieval results are assessed considering the mean average

precision (mAP) [33].

Feature extraction with the multi-scale scheme. Multi-scale

feature extraction has been widely used in CBIR for both

global and local features. When not considering local feature

matching, but directly feeding the feature tensor into the gen-

eralized mean pooling layer and using the resulting compact

global feature tensor for similarity measure, we use 3 scales

{1,
√
2, 1√

2
}, as in other global feature approaches [7], [15].

The global feature vectors corresponding to different scales

are fused by average pooling then L2 normalized again. When

considering the local feature matching, as described in Sec-

tion IV, we select features from 5 scales { 1

2
√
2
, 1

2
, 1√

2
, 1,

√
2},

as in [11]. Local features resulting from processing different

image scales are merged and L2 normalized.

B. Local match visualization

In Fig. 2, we show five examples of the query and target

images, the local match maps and the L2 norm attention maps,

on each row. The local matching map is displayed as a heatmap

showing which locations contribute most to the final global

similarity score for the given image pair. Matching scores

for the locations that are not selected are set to zero. Local

features grouped into the same cluster share the corresponding

cluster center as their representative vector. Matching scores

of all local features from different input image scales are

projected back to the corresponding locations (or regions) from

the original image and accumulate, resulting in the final score

map. The L2 norm reflects the importance of each location, as

discussed in Section III-A, or how much it contributes to the

final feature vector obtained by global pooling. Accordingly,

the L2 norm attention map also reflects each location’s con-

tribution to the image pair similarity. As we can observe, the

L2 norm attention maps tend to be evenly distributed over the

relevant content of the training data, in this case represented

by landmarks or buildings. For some easy cases, when the

target region is salient and/or of large scale, it can work very

well, but not for some hard cases where there are multiple

potential relevant objects. All examples shown in Fig. 2 are

rather hard and the L2 norm cannot find the exact location

to focus on and would highlight many unwanted regions or

even indicate wrong places. On the contrary, when considering

our local matching implementation, most corresponding local

feature pairs between the query and target images would

have the highest similarity score. As a result, these matching

local feature locations would also represent most important

contributions to the final similarity score of the image pair.

When comparing examples 4 and 5, they have different query

images but the same target. The local matching in this case

highlights the exact part of the query content. In a way, the

visualization of local matching maps looks like co-attention,

as the importance of each local feature from the candidate

image is no longer fixed as in the traditional global spatial

pooling. Nevertheless, the effectiveness and contribution of

the local features for each candidate image varies with the

query feature. In each candidate image from Fig. 2, the local

match score comes mostly from the region that matches the

query content, even when the target object is not salient or is

surrounded by some other similar class objects.

Fig. 2. Visualization of the local matching and L2 norm.

C. Retrieval results

Image retrieval comparison results with the current state

of the art are provided in Table I. The retrieval performance

is greatly improved by introducing the local match into the

CBIR pipeline. Especially, on the Hard image sets of ROxf

and RPar our method achieves the best results of 71.2% and

83.7%, respectively, outperforming both DELG (with spatial

verification re-ranking) and the current state-of-the-art DOLG1

method. When considering the +1M distractor set, our local

match method still gives a great improvement over the baseline

model and shows comparable results to DOLG. It seems that

when considering the +1M distractor, the mAP improvement

is not as significant as before, which means that our method

is not robust enough when considering a large scale distractor

set. As our baseline model is only trained with a simple global

feature vector loss function, more robust local feature training

strategy could be explored in future work.

1https://github.com/feymanpriv/DOLG



Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

(A) Local features + re-ranking

HesAff-rSIFT-ASMK*+SP [25] 60.6 46.8 61.4 42.3 36.7 26.9 35.0 16.8

HardNet-ASMK*+SP [35] 65.6 - 65.2 - 41.1 - 38.5 -

DELF-ASMK*+SP [36] 67.8 53.8 76.9 57.3 43.1 31.2 55.4 26.4

DELF-D2R-R-ASMK*+SP [36] 76.0 64.0 80.2 59.7 52.4 38.1 58.6 29.4

HOW [11] 79.4 65.8 81.6 61.8 56.9 38.9 62.4 33.7

HOW-MDA [12] 82.0 68.7 83.3 64.7 62.2 45.3 66.2 38.9

(B) Global features

Res101-R-MAC [17] 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0

Res101-GeM (GLD) [7] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8

Res101-GeM-AP [37] 67.5 47.5 80.1 52.5 42.8 23.2 60.5 25.1

Res101-DSM [38] 65.3 47.6 77.4 52.8 39.2 23.2 56.2 25.0

Res101-SOLAR [21] 69.9 53.5 81.6 59.2 47.9 29.9 64.5 33.4

Res101-DELG (GLDv2) [15] 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9

Res101-DELG (GLDv2) + SP [15] 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7

Res101-DOLG1 [22] 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9

(C) Our method

Res101-GeM (Baseline) 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

Res101-GeM-Local Match 85.9 77.2 92.0 79.9 71.2 55.1 83.7 61.7

TABLE I
IMAGE RETRIEVAL RESULTS ON ROXF/RPAR DATASETS (AND THEIR EXTENDED VERSION +1M DISTRACTOR SET R1M), CONSIDERING Medium AND

Hard EVALUATION PROTOCOLS. GROUPS (A) AND (B) SEPARATELY SHOW THE RESULTS OF LOCAL FEATURE AND GLOBAL FEATURE METHODS. THE

BOTTOM GROUP (C) SHOWS THE RESULTS OF OUR MODEL. “SP” REFERS TO THE SPATIAL VERIFICATION RE-RANKING [36].

Fig. 3. Ablation study on clustering parameters.

D. Ablation experiments and discussion

Two diagrams in Fig. 3 (a), (b) show the impact of the num-

ber of the initially selected features N as well as the number of

clusters K for k-means on the retrieval performance. A small

N=200 could not model enough local features, while N=1000

is too large and may pick out too many background or irrele-

vant local features, making the feature selection meaningless.

A smaller K could further reduce the computation cost but it

would arbitrarily fuse many local features into larger clusters

reducing the local matching benefits as well. Relatively larger

K could further improve the retrieval performance, but it

would also require additional computation costs for a limited

improvement.

In the following, we discuss the computation and memory

costs of the proposed local match method considering the

hyper-parameter setting from Section V-A. After the binary

encoding, each element of the clustered local feature vector

is a 1 bit in a binary number. In this case, for each candi-

date image, the memory cost to cache its local features is

K × D × 1 bits. With ResNet101 as the backbone network

(D = 2048), K = 10, the memory cost for one candidate

image cache is 10 × 2048 × 1 bit ≈ 0.00256 MB. It

takes around 2.5GB to cache the ROxf/RPar dataset along

with the +1M distractor set. The feature extraction, including

feeding through the backbone network, feature selection and

the clustering procedure, takes in average 200ms to cache

a single candidate image’s local features when considering

5 input image scales. Such processing becomes rather time

consuming when considering large-scale databases, but it is

done offline and only once. For the online retrieval speed,

searching on ROxf/RPar with +1M distractor dataset, for one

query image it takes on average 2s with the multi-process

python implementation on a CPU.

VI. CONCLUSION

In this paper we explore extracting few but expressive local

features from an input image which along with a correspond-

ing many-to-many local matching method leads to an optimal

similarity evaluation under very challenging situations. Unlike

other local matching methods that extract large numbers of

low-dimensional local features which may require significant

codebook training, the proposed local matching method is

based on the L2 norm local feature selection and clustering to

extract the appropriate number of expressive local features for

the local matching. This approach was shown to work with

binary encoding for further memory requirement reduction.

The proposed model achieves new state of art performance on

benchmark datasets.
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