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ABSTRACT
Content-based image retrieval (CBIR) consists in searching
the most similar images to the query content from a given
pool of images or database. Existing works’ success relies on
taking advantage of both local and global feature information
leading to better retrieval performance than when using either
of these. Lately, CBIR area has been dominated by the two-
stage image retrieval framework which utilizes global features
to get initial retrieval results, while using local features for re-
ranking in a second stage. In this study, instead of utilizing
local and global features separately during two stages, we pro-
pose to use a dot-product based local and global (DPLG) fea-
ture fusion module leading to a comprehensive global feature
descriptor. The proposed fusion module is jointly end-to-end
trained within the convolution backbone structure. Accord-
ing to the experimental results, the proposed module achieves
new state-of-the-art results on some benchmark datasets.

Index Terms— Content based image retrieval, Local and
global features, Dot-product attention.

1. INTRODUCTION

Content-based image retrieval (CBIR) is a classic computer
vision task, which received increasing attention during the last
30 years. Due to the complexity and variability of image con-
tent, the main challenge is represented by the image feature
extraction and the ability to yield a compact image representa-
tion. Early conventional image feature extraction approaches
rely on low-level feature information and hand-crafted extrac-
tors, which cannot bridge the gap between low-level feature
representation and high-level semantic meaning.

The success of deep convolution neural networks revolu-
tionized image feature extraction. Generally, there are two
types of Convolution Neural Networks (CNN) based feature
extraction methods for the CBIR task: local and global feature
methods. Local feature methods preserve the correspondence
between each location of the convolution feature tensor and a
region from the input image. The local features would either
be aggregated into a compact feature vector by a separate ag-
gregation method [1] or directly used for evaluating the simi-
larity in a many-to-many manner [2]. Global feature methods
aim to extract a compact global feature vector from the input
image by employing a single forward data processing through
the model [3, 4, 5].

Generally speaking, global features are robust to view-
point and illumination changes while local features represent
low level information such as texture and contrast. To ben-
efit from both worlds, an effective two-stage framework has
been proposed recently [6, 7]. During the first initial retrieval
stage, global features are utilized to get initial retrieval re-
sults. At the second, re-ranking stage, local feature vectors
are used to perform nearest neighbor search and spatial verifi-
cation for re-ranking, leading to an improved final retrieval
performance. Although it achieves decent retrieval perfor-
mance even for some hard cases, the two-stage framework
still suffers from two important problems: first, the second
re-ranking stage relies on a large number of local features.
Even when these local features have been compressed by di-
mension reduction and binary encoding, it is still expansive to
perform spatial verification, like for example using the classic
RANSAC algorithm [8]. This is also the reason why the sec-
ond stage re-ranking is strictly limited to the top 100 initial
retrieval results [6, 7]. In other words, if the global features at
the first stage could not rank wanted images within top 100,
these images actually could not benefit from the local features
at all. Second, dividing the retrieval procedure into separate
two stages means that errors will be passed over between them
and accumulate, which would have a negative impact on the
model performance [9].

In this work, we abandon the two-stage framework and
explore building a more comprehensive global image rep-
resentation by fusing global and local feature information
through an end-to-end trainable fusion module. The pro-
posed fusion module is designed based on the dot-product
attention mechanism [10] which is also the core component
of many popular deep learning models, such as the Self-
Attention mechanism [10] or the Visual Transformer [11].
We notice that the recent CBIR work DOLG [9] share a sim-
ilar motivation with our work but our method shows better
retrieval results under the exact same setting.

The contributions of the paper are: 1) we propose an
effective dot-product attention based module for global and
local feature fusion. 2) we show that the dot-product atten-
tion implicitly serves as spatial attention for local feature
re-weighting. 3) The global feature model performance is
greatly improved, in challenging examples, when embedding
the proposed fusion module, to reach new state of the art
performance on various benchmark datasets.



2. RELATED WORK

Local feature methods. Many local feature aggregation
approaches using deep CNNs, rely on conventional ap-
proaches such as the Vector of Locally Aggregated De-
scriptors (VLAD) [12]. NetVLAD [13] modifies VLAD
as an end-to-end trainable layer at the tail of a CNN struc-
ture. The experimental results show that the trainable VLAD
outperforms the local feature fusion methods which are not
based on deep learning. HOW [2] employs the Aggregated
Selective Match Kernel (ASMK) [14] to directly perform
many-to-many local feature matching with the features yield
by a CNN, reaching good balance between performance and
computation cost. The DEep Local Feature (DELF) [6] is a
representative two-stage local feature model utilizing local
features to re-rank the initial retrieval results. It implements a
score function with two processing layers on top of the final
convolution layer for relevant local feature selection. During
the initial retrieval stage, the compact global feature vector is
built by a weighted sum of selected local features. During the
re-ranking stage, after dimension reduction, geometry verifi-
cation is performed with these local features to get the final
retrieval result. DEep Local and Global features (DELG)
model [7], was derived from DELF, by unifying the training
procedures of global and local features into a single pipeline.

Global feature methods. The earliest deep CNN-based
global feature method for CBIR task can be tracked back
to the Neural Code model [15] where a feature vector is
extracted by a fully connected layer. After Razavian et al.
[16], proved that spatial pooling is better for instance fea-
ture extraction, various studies proposed sum-pooling [3],
max-pooling [4] and generalized mean pooling [5]. Atten-
tion mechanisms have been embedded into the global feature
extraction pipeline for better global image representation as
in the Weighted Generalized Mean pooling (WGeM) [17]
which applies a trainable spatial weighting module by adding
an extra convolutional layer, or in the conditional attention
mechanism [18]. WGeM can effectively localize the objects
of interest while ignoring redundant regions. The Second-
Order Loss and Attention for image Retrieval (SOLAR) [19]
explored the co-relations at each location in the CNN feature
map using the second-order spatial information.

The Deep Orthogonal Local and Global (DOLG) [9]
proposes a more comprehensive global feature extraction
pipeline, in which an Orthogonal Fusion module comple-
ments the global feature vector with critical local feature
information leading to the current state-of-the-art results for
CBIR. The orthogonal fusion module in DOLG computes
residual vectors between the global feature vector and that
corresponding to each location. The resulting residual vec-
tors are summed and serve as complementary to the global
feature vector. We can see that the strategy of complementary
local feature information extraction from the local feature
tensor is pre-fixed by the orthogonal design. In our proposed

approach, we make the fusion strategy end-to-end trainable
by the proposed dot-product based fusion module.

3. DOT-PRODUCT FEATURE FUSION FOR CBIR

3.1. The processing pipeline

The proposed CBIR methodology is illustrated in Figure 1.
We consider Resnet50 [20] as the backbone network. In
Resnet50 the initial processing blocks Res1-Res5 indicate 5
residual convolution blocks. Unlike in most existing global
feature methods that would only use the output of the final
convolution layer for feature extraction, we keep both fea-
ture tensors X4 ∈ IRH4×W4×D4 and X5 ∈ IRH5×W5×D5

(H4 = H5 × 2,W4 = W5 × 2, D4 = 1024, D5 = 2048 )
which are the image representation outputs of Res4 and Res5.

The global feature tensor X5 is fed into the GeM pooling
layer, resulting in Vg ∈ IR1×D5 , which is defined by :

Vg =

(
1

L5

L∑
l

X5,l
p

) 1
p

, (1)

where L5 = H5 × W5, l = 1, . . . , L5 indicates entries on
X5,l. The power coefficient is set as p = 3, as in other works.
Dimension reduction is performed on Vg by a convolution
layer with kernel size 1 × 1, resulting in the global feature
vector V′

g ∈ IR1×D4 .
The local feature tensor X4 is first fed into the Recep-

tive field block [21] for feature refinement and then into the
Dot-product attention module along with the global feature
vector V′

g , resulting in a compact local feature information
feature vector Vl ∈ IR1×D4 . Local feature information Vl

and global feature V′
g are then element-wise added and fed

into a fully connected layer (FC) to produce the final fused
global feature vector, F ∈ IR1×D. The core components of
the proposed model pipeline are the Receptive Field Block
(RFB) and the Dot-product fusion module.

3.2. Pyramid features by the Receptive field block (RFB)

RFB, adapted from [21], represents a pyramid feature extrac-
tion block which handles different target object scales. RFB
consists of several convolution layer branches, where each
branch contains 2 convolution layers. The first convolution
layer has various kernel sizes while the second varies the di-
lation rate. This design enables the feature extraction pipeline
not only just for multiple receptive fields but also for different
resolutions from previous convolution layers. This attribute
enables it to catch features at different scales while each entry
is more distinctive [21]. An additional global GeM pooling
branch is added at the bottom of RFB in Figure 1. The output
of 3 convolution layer branches along with the GeM pooling
branch are concatenated1 then fed into a convolution layer to
output the final refined local feature tensor X′

4.
1The feature vector output by GeM pooling is expanded to the same size

as the other 3 convolution layers’ outputs
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Fig. 1. Illustration of the DPLG model structure. Purple grids indicate convolution layers of different kernel sizes and dilations,
where (k, r, d) represent kernel size, dilation rate and output channel (dimension), respectively.

3.3. The Dot-product fusion module

The dot-product fusion module, shown in the right part of Fig-
ure 1, takes the local feature tensor X′

4 and the global vector
V′

g as inputs. First, the local feature tensor X′
4 is mapped and

reshaped into XK ,XV ∈ IR(H4×W4)×D4 separately by con-
volution layers K and V , while the global feature vector V′

g

is mapped to XQ ∈ IR1×D4 by the convolution layer Q2. The
dot-product weight matrix A ∈ IR1×(H4×W4) is :

A = softmax
(
(XQX

T
K)/

√
D4

)
. (2)

A is a sequence of weights with respect to all locations on the
local feature tensor X′

4. The dot-product attention weighted
local feature information vector Vl ∈ IR1×D4 is defined by :

Vl = AXV . (3)

Finally, feature vectors V′
g and Vl are element-wise added

and fed into a fully connected layer generating the final global
descriptor for the input image.

What the dot-product fusion aims for? Intuitively
speaking, the feature tensor output by a shallow residual
block, like X4, contains more localized and relatively low-
level feature information as it was processed by fewer convo-
lution and down-sampling layers. On the contrary, the feature
output by the deep residual block, like X5, has higher-level
semantic meaning and wider receptive field due to the ad-
ditional convolution layer processing. The purpose of the
dot-product fusion is to enable the feature extraction pipeline
with the ability to dynamically extract additional comple-
mentary local information from the shallow layer output
X4, representing the local information, and with respect to
the global feature vector Vg and then fuse them together to
build a more comprehensive global descriptor F ∈ IR1×D.

2For expression consistency, we implement Q as a convolution layer with
kernel size 1 while V′

g is reshaped into IR1×D4×1×1 to meet the input
shape requirement for the convolution layer

Compared with the orthogonal fusion, our fusion strategy is
not pre-fixed and it is automatically learned by the proposed
dot-product fusion module during the training stage.

3.4. Implementation details

For the model training, following the practice from DELG
[7], we also consider image-level class labels and the ArcFace
margin loss [24], defined by:

L(V̂g,y) = − log
exp(γ ×AF(V̂gŵ

T
i , yi))∑Nc

j=1 exp(γ ×AF(V̂gŵT
j , yj))

, (4)

where F̂ represents the L2 normalized global feature vector
F while ŵi is the trainable proxy feature vector wi for class
i from the ArcFace weight matrix W ∈ IRNc×D, Nc is the
number of classes in the training dataset. y is the one-hot
class label vector. AF(u, y) is the ArcFace-adjusted cosine
similarity [7]:

AF(u, y) =

{
cos(arccos(u) +m), if y = 1

u, if y = 0
. (5)

We set the ArcFace margin m = 0.15 and temperature γ =
30. The model is trained on the GLDv2 dataset [25], using
the SGD optimizer with cosine learning rate decay strategy,
initial learning rate 0.03. The model is trained for no more
than 100 epochs. The retrieval performance is evaluated on
ROxf/RParis datasets [26]. During the evaluation stage, a
multi-scale feature extraction scheme [5] is applied with 5
scales: { 1

2
√
2
, 1
2 ,

1√
2
, 1,

√
2}. The feature dimension output

by the final fully connected layer is set to D = 512.

4. EXPERIMENTAL RESULTS

Retrieval results of the proposed model and comparisons with
the state-of-the-art are provided in Table 1. We mainly fo-
cus on comparison to the current state of the works HOW



Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M
(A) Local features + re-ranking
DELF-ASMK*+SP [22] 67.8 53.8 76.9 57.3 43.1 31.2 55.4 26.4
DELF-D2R-R-ASMK*+SP [22] 76.0 64.0 80.2 59.7 52.4 38.1 58.6 29.4
R50-HOW [2] 79.4 65.8 81.6 61.8 56.9 38.9 62.4 33.7
(A) Global features + re-ranking
R101-R-MAC [23] 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0
R101-GeM (GLD) [5] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8
R101-SOLAR [19] 69.9 53.5 81.6 59.2 47.9 29.9 64.5 33.4
R50-DELG (GLDv2) [7, 9] 77.5 74.8 87.9 77.3 54.8 50.4 73.8 61.0
R50-DELG (GLDv2) + SP [7, 9] 79.1 75.9 88.8 77.7 58.4 52.4 76.2 61.6
R50-DOLG [9] 80.5 76.6 89.8 80.8 58.8 52.2 77.7 62.8
(C) Our method
R50-DPLG 81.1 77.2 90.0 81.7 60.2 53.1 78.4 62.0

Table 1. Mean average precision (mAP) on ROxf/RPar datasets (with 1M distractor set), considering Medium and Hard
evaluation protocols. All methods have Resnet50 as their backbone for fair comparison. “SP” is Spatial verification.

query

candidate

Fig. 2. Visualization of the dot-product attention matrix A.

[2], DELG [7] and DOLG [9] considering Resnet50 as the
backbone structure. The results for DELG come from the re-
port in DOLG paper which re-trained DELG on the GLDv2
dataset by the same training setting for 100 epochs for fair
comparison. Our model outperforms all other methods except
for RPar+1M with the Hard evaluation protocol. However,
our model surpasses DOLG on the Hard protocol of ROxf
(ROxf+1M) by 1.7%(0.9%), so our model still performs over-
all better than DOLG.

We visualize the attention A from Eq. (2) for 3 pairs of
matching images in Fig. 2. We observe that the dot-product
attention mainly focuses on the relevant objects’ representa-
tive parts such as the building’s tower in the middle image
while the background information is removed from the field
of interest. The dot-product mechanism serves as a spatial at-
tention mechanism to pick out only important local features
for global and local feature fusion. However, sometimes the
dot-product attention could uniformly highlight all landmark-
like objects like the remote building from the left side is also
highlighted in the third image from the bottom row of Fig. 2.

Table 2 contains the ablation study for the impact of each
component from the proposed processing pipeline. When not
using the RFB (3rd row), each location on the local feature

RFB Dot-product
Medium (%) Hard (%)
ROxf RPar ROxf RPar

% % 78.3 88.0 56.1 73.9
" % 78.5 87.8 55.5 74.0
% " 80.8 89.4 59.3 77.5
" " 81.1 90.0 60.2 78.4

Table 2. mAP results on ROxf and RPar datasets, where with-
out RFB means that we replace RFB with a 1× 1 kernel size
convolution layer. Without Dot-product means the local fea-
ture tensor X′

4 is the global GeM pooled then element-wise
added with V′

g . Without both RFB and Dot-product means
the model is the same to original GeM from [5].

tensor X′
4 would not be able to represent the object and the

model performance is decreased. When not using the Dot-
product fusion (2nd row) but naı̈vely pooling the local feature
tensor X′

4 and adding it to the global feature vector V′
g would

just uniformly embed all relatively low-level local feature in-
formation into the global feature vector, making no positive
contribution to the model performance.

5. CONCLUSION

In this paper, we propose an effective dot-product fused local
and global feature fusion module for content-based image re-
trieval. Unlike existing feature fusion mechanisms which use
a fixed strategy to extract complementary local information
from the local feature tensor. The proposed dot-product fu-
sion module is automatically learned during the training. We
also demonstrate that the dot-product attention also implicitly
learns a spatial weighting mechanism which is good at mask-
ing out irrelevant information such as sky or grass from the
background. When including the fusion module, the proposed
model globally outperforms current state of the art works on
common benchmark datasets.
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