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Constraints on Late Time Violations of the Equivalence Principle in the Dark Sector

Cameron C. Thomas and Carsten van de Bruck
Consortium for Fundamental Physics, School of Mathematics and Statistics,

University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom

(Dated: October 19, 2022)

If dark energy is dynamical due to the evolution of a scalar field, then in general it is expected
that the scalar is coupled to matter. While couplings to the standard model particles are highly
constrained by local experiments, bounds on couplings to dark matter (DM) are only obtained from
cosmological observations and they are consequently weaker. It has recently be pointed out that the
coupling itself can become non-zero only at the time of dark energy domination, due to the evolution
of dark energy itself, leading to a violation of the equivalence principle (EP) in the dark sector at
late times. In this paper we study a specific model and show that such late-time violations of the
EP in the DM sector are not strongly constrained by the evolution of the cosmological background
and by observables in the linear regime (e.g. from the cosmic microwave background radiation).
A study of perturbations in non-linear regime is necessary to constrain late–time violations of the
equivalence principle much more strongly.

I. INTRODUCTION

There are several reasons to study alternative theories
to the cosmological constant as a model for dark energy
(DE). Firstly, if DE is due to a non-vanishing cosmologi-
cal constant, its value has to be very small to fit the data.
The expected theoretical value, however, is much larger.
This problem has not been solved, but there are attempts
to address this problem (see [1–3] and references therein).
Secondly, there are several tensions between data sets, pro-
viding tantalising hints that the standard model of cosmol-
ogy, the Λ-Cold-Dark-Matter(ΛCDM) model, may be in
need of corrections (we refer to [4] for a recent overview
over the tensions and [5] for an overview of attempts to
solve the tensions). Among the extensions of the ΛCDM
model which remain the best motivated ones are scalar-
field models of DE, in which the accelerated expansion is
driven by a scalar field [6–8]. It is expected that, in gen-
eral, the scalar is coupled to at least one species of matter,
unless there is a symmetry which forbids such couplings
[9]. Such a coupling results in an additional force mediated
between the coupled species. Since the interaction between
DE and ordinary matter is strongly constrained, in some
models only the coupling to cold dark matter (CDM) is of
cosmological significance [10, 11]. It is this type of theory
which we consider in this paper.

It has recently been suggested, that the potential energy
of scalar fields appearing in string theory cannot be arbi-
trarily flat [12, 13], see [14] for an overview of the swamp-
land programme. If true, the accelerated expansion cannot
be driven by a cosmological constant (de Sitter space is
not realised in string theory) and the equation of state of
dark energy is not constant and deviates potentially sig-
nificantly from the value expected in the ΛCDM model.
Additionally, a coupling of the scalar to some sectors in
the theory are expected. Based on these observations, sev-
eral phenomenological models have been proposed recently
[15–20]. In this paper we study specific a model in which
the coupling function between the dark energy field and
dark matter has a minimum [15]. As a result of the mini-

mum, the coupling switches on only at late times, at the
beginning of the dark energy dominated epoch. One of
our main results of this paper is that the regime in which
linear perturbation theory is valid does not constrain the
parameter of the model greatly. In other words, late time
violations of the equivalence principle in the dark sector
are not strongly constrained by studying the background
evolution or CMB anisotropies. Instead, to obtain stronger
constraints a study of the non-linear regime in considerable
detail is needed.
The paper is organised as follows. In Section II we

present the model and its parameter. In Section III we
describe our methodology, describe the data sets used and
present the constraints on the model. We conclude in Sec-
tion IV.

II. INTERACTING DARK ENERGY

The model we consider consists of the gravitational sec-
tor described by the Einstein–Hilbert action without cos-
mological constant, a part which describes the standard
model (SM) particles and a part for DE described by a
scalar field φ with potential energy V (φ). Finally, the in-
teraction between DE and DM is described by a conformal
coupling. The full action reads

S =

∫

d4x
√−g

(

M2
Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

)

+

∫

d4x
√−gLSM(g,Ψi) +

∫

d4x
√

−g̃LDM(g̃, χ) (1)

where MPl is the reduced Planck mass, R is the Ricci–
scalar, the SM fields are denoted by Ψi and χ is the DM
field (assuming here for simplicity that dark matter con-
sists of only one species). The metrics g and g̃ are related
by a conformal transformation g̃µν = C(φ)gµν . Such the-
ories have been discussed in considerable length in the lit-
erature, but the new ingredient in this paper is that the
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function C(φ) has a minimum. That the coupling func-
tions in string theory could possess a minimum due to non-
perturbative effects was suggested in the works by Damour
and Polyakov [21] and has been used in [22] to construct a
dilaton-model of DE. Combining these theoretical develop-
ments motivated us in [15] to consider a specific model in
which C(φ) has a minimum at some value scalar field value
φ∗. To be concrete, in this paper we consider the following
function for C(φ):

C(φ) = cosh
(√

α (φ− φ∗)/MPl

)

, (2)

where φ∗ denotes the minimum of the function C(φ) and
α is a constant. In this paper we choose φ∗ = 1 MPl

without loss of generality. In [15] it was pointed out that
even if the field starts away from the minimum in the very
early universe, there are attractor mechanism at work in
the early universe which drives the field towards the mini-
mum quickly. Nevertheless, in our analysis below we allow
the field to start away from the minimum value at φ∗ to
find constraints on the initial conditions of the DE field. In
our analysis we choose an exponential potential with

V (φ) = V0e
−λφ/MPl , (3)

where λ denotes the slope of the potential, which in string
theory according to [12] cannot be arbitrarily small and
should be O(1). Finally, we assume in the following that
the universe is spatially flat.
Because of the coupling, there is an exchange of energy

between DM and the DE field. As a result, the evolution of
the DM density and the modified Klein–Gordon equation
are given by

ρ̇DM + 3HρDM = βM−1

Pl
φ̇ρDM

and

φ̈+ 3Hφ̇+ Vφ = −βM−1

Pl
ρDM.

In these equations we have defined

β =
MPl

2

d lnC

dφ
.

The effective gravitational constant between two DM par-
ticles is given by [15, 23]

Geff = GN

(

1 + 2β2
)

. (4)

The evolution ofGeff is shown in Figure 1 for various choices
of the parameter α and λ. In general, the additional force
between DM particles due to the scalar field only becomes
significant at redshifts z < 1, when the DE field starts to
evolve due to the influence of the potential, thereby dis-
placing it from the minimum of the coupling function. We
emphasize that the effective gravitational coupling (4) be-
tween DM particles depends on α as well as on the scalar
field.
To summarize, the parameter of the model we seek to

constrain are the slope of the potential λ, the parameter
α, which is related to strength of the coupling between
DM and DE and the initial field value φini deep inside the
radiation dominated epoch.

FIG. 1. The evolution of the effective gravitational constant,
defined in Equation (4), for models with a different value of α
but same value of λ = 0.1 (top) and for models with a differ-
ent value of λ but same value of 10−4α = 1 (bottom). Where
applicable, the values of our cosmological parameters are taken
from the best fit values of a ΛCDM cosmology based on Planck
TTTEEE+lowE, such as in Table 2 of [24].

III. METHODOLOGY, DATA AND RESULTS

TABLE I. Flat priors for the cosmological parameters sampled
in our analysis.

Parameter Prior

Ωbh
2 [0.005, 0.1]

Ωcdmh2 [0.001, 0.99]
100θs [0.5, 10.0]

ln
(

1010As

)

[2.7, 4.0]
ns [0.9, 1.1]
τreio [0.01, 0.8]
λ [0, 5]

10−4α [0, 50]
φini/MPl [−5, 5]

In our analysis, the IDE model is described by a set
of nine parameters whose priors are specified in Table I
and where h is the reduced Hubble constant defined by
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H0 = 100hkms−1Mpc−1. These parameters are the re-
duced baryon energy density Ωbh

2, the reduced CDM en-
ergy density Ωcdmh2, the ratio of the sound horizon to the
angular diameter distance at decoupling θs, the scalar am-
plitude of the primordial power spectrum As, the scalar
spectral index ns, the reionization optical depth τreio, the
slope of the scalar field potential λ, the conformal coupling
parameter α, and the initial value of the scalar field φini.
In order to numerically study the evolution of the back-

ground and cosmological perturbations for the Interacting
Dark Energy (IDE) model described above we use a mod-
ified version of the CLASS code [25, 26] to calculate the
background evolution and the evolution of perturbations1.
For cosmological parameter exploration we use the Markov
Chain Monte Carlo sampling package MontePython [27, 28],
in conjunction with the data sets outlined below2. In ad-
dition to this, the GetDist [29] Python package3 is used to
analyse the chains and produce the values and plots of the
parameters in Table II and Figure 2 .
We use the following combination of recent observational

data sets in order to analyse and constrain the IDE model:

• Cosmic Microwave Background:

We use the full TTTEEE+lowE Cosmic Microwave
Background (CMB) likelihood from the latest Planck
2018 release [24]. This includes temperature (TT)
and polarisation (EE) anisotropy data as well as
cross-correlation data between temperature and po-
larisation (TE) at high and low multipoles.

• Baryon Acoustic Oscillations:

We consider Baryon Acoustic Oscillations (BAO)
measurements coming from BOSS DR12 [30], 6dFGS
[31], and SDSS-MGS [32] for use in our analysis.

• Type Ia Supernovae:

We use the Pantheon data catalog consisting of 1048
points in the region z ∈ [0.01, 2.3] of SNIa luminosity
distance data as provided by [33].

• Redshift Space Distortions:

We employ the ’Gold 2018’ Redshift Space Distor-
tions (RSD) data set compilation consisting of 22
measurements as described in [34] and a likelihood
code as detailed in [35].

• Cosmic Chronometers:

We use 31 measurements ofH(z) in the redshift range
z ∈ [0.07, 1.965] as detailed in Table 4 of [36].

The results for our data analysis are shown in Ta-
ble II where we compare constraints on ΛCDM with
the IDE model and the uncoupled model using the full

1 https://github.com/lesgourg/class public
2 https://github.com/brinckmann/montepython public
3 https://github.com/cmbant/getdist

PL18+BAO+Pantheon+CC+RSD data set for all models,
and also in Figure 2 where we plot marginalised posterior
distributions for parameters in the IDE model. We utilise
the full PL18+BAO+Pantheon+CC+RSD data set in or-
der to obtain convergence for all the models, with all pa-
rameters achieving |R− 1| < 0.03, where R is the Gelman-
Rubin statistic [37]. In addition to ΛCDM and the IDE
model, we also consider the uncoupled model (i.e. impos-
ing α = 0) for comparison and to illustrate the impact of
including the coupling on the parameter constraints. For
the uncoupled model, owing to the form of the potential,
we fix the initial value of the scalar field, φini, and do not
allow it to vary in our analysis.
One of the first things to notice is the large values of the

coupling constant, α, allowed by the data as can be seen in
Figure 2. We are only able to attain an upper limit for α
of 10−4α < 2.67 at 2σ. As can be seen in the upper panel
of Figure 1, the large values of α supported by the data
actually do not have as drastic an impact on Geff as one
may be led to believe. We can see that a ten-fold increase in
α (from 10−4α = 0.01 to 10−4α = 0.1) leads to an increase
of 5% in Geff , but a ten-fold increase from 10−4α = 0.5
to 10−4α = 5 leads to only a sub-percentage increase in
Geff . Geff appears to be far more sensitive to changes in
the slope of the potential for the model, λ, as can be seen
in the lower panel of Figure 1. The reason for this is that
Geff depends on α and on the value of φ. Larger values of α
imply a steeper coupling function and as a consequence, the
field is kept at the minimum more effectively. For the most
extreme cases, we find that the field excursion is smaller
than the Planck mass, i.e. (|φ− φ∗| < MPl).
We obtain an upper bound on the slope of the potential

of λ < 0.192 at 2σ for the coupled IDE model and an
upper bound of λ < 0.406 at 2σ for the uncoupled model.
We can see that this IDE model does not help to alleviate
the swampland requirement of |V ′/V | ≥ c ∼ O(1) and
in fact exacerbates the requirement when compared to the
uncoupled model. We also note that the coupled model
breaks the degeneracy in the (H0, λ)-plane and the (σ8, λ)-
plane, as it can be seen in Figure 3.

From Figure 2, it is clear that there also exists a nega-
tive correlation between the conformal coupling constant,
α, and slope of the scalar field potential, λ, with lower val-
ues of α preferring higher values of λ.
We justify the prior for the initial value of the scalar field,

φini, to be centred around the minimum of the coupling
function, φ∗, owing to the attractor mechanisms aforemen-
tioned. We allow φini to vary as a cosmological param-
eter in our analysis and find that it is tightly constrained
about the minimum of the coupling function with a mean of
φini/MPl = 1.0004+0.0082

−0.0092, lending credence to the attractor
mechanism discussed in [15].

The IDE model is in strong agreement with ΛCDM for
this data set combination, as can be seen in Table II, with
no significant tensions observed in the cosmological param-
eters between the two models. This is to be expected as the
model behaves like standard uncoupled quintessence (with
an exponential potential) up until z ∼ 1, when the field
switches on, at which point it begins to deviate from an
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uncoupled model.

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied a specific IDE model, in
which a fifth force between DM particles switches on at the
onset of DE domination. This is achieved by considering
a coupling function which possesses a minimum at a cer-
tain field value φ∗. The DE field evolves away from the
minimum due to the influence of the potential energy. In
contrast to other interacting DE models, the fifth force be-
tween DM particles becomes only important at the end of
matter domination, if the field does sit at the minimum of
the coupling function initially. We used several data sets
to constrain φ∗, the coupling parameter α and the slope of
the potential energy λ.
Our findings can be summarized as follows:

• The initial value of the field, deep inside the radiation
dominated epoch, is constrained to be very near the
minimum of the coupling function.

• Our best fit value for the slope λ of the potential is
lower than other IDE models, see e.g. [38], although
different data sets have been used in this study.

• The coupling parameter α is only weakly constrained
(10−4α . 2.6).

• Since the effective coupling depends also on the value
of the DE field φ, the effective gravitational constant
is determined by the dynamics of DE and hence by
both α and λ. The dependence on the effective grav-
itational coupling on λ and α is illustrated in 1.

Our study shows that equivalence principle violations in
the dark sector at the present epoch are much less con-
strained than previously thought. This is because such new
interactions may result from the dynamics of DE itself and
only become important rather late in the cosmic history.
The data sets used in this paper, which measure the evolu-
tion of the cosmological background and cosmological per-
turbations at the linear level, do not constrain the fifth force
strongly and the model is, for a wide range of parameter,
indistinguishable from the ΛCDM model. We do expect
the model to differ from ΛCDM at much smaller length
scales, for which linear perturbation theory is no longer ad-
equate. The fifth force is likely to leave an imprint on the
evolution of non-linear perturbations and affect, for exam-
ple, the matter power spectra on small scales. It would also
be interesting to study the tidal tail test [39] in this model,
since the coupling switches on only at late times. We do
expect this test to constrain this model further. We leave
these studies for future work.
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TABLE II. Observational constraints at a 68% confidence level on the independent and derived cosmological parameters for ΛCDM
and the IDE model using PL18+BAO+Pantheon+CC+RSD. Where 68% confidence limits could not be found, an upper 95%
confidence limit was used, i.e. for parameters 10−4α and λ. For comparison we also calculated the constraints for an uncoupled
quintessence model (last column). The quantities in the second half of this table are the derived parameters of our analysis which
are the redshift of reionization zreio, the Helium fraction YHe, the Hubble constant H0, the absolute magnitude of SN1a as inferred
from the data sets used M , and the present day mass fluctuation amplitude at 8h−1Mpc σ8.

Parameter ΛCDM IDE Uncoupled quintessence
(α = 0)

Ωbh
2 0.02247± 0.00013 0.02247± 0.00013 0.02248± 0.00013

Ωcdmh2 0.11875± 0.00094 0.11864± 0.00098 0.11856± 0.00096
100θs 1.04199± 0.00028 1.04202± 0.00028 1.04201± 0.00028

ln
(

1010As

)

3.041± 0.016 3.041± 0.016 3.042± 0.016
ns 0.9685± 0.0037 0.9687± 0.0039 0.9690± 0.0037
τreio 0.0538± 0.0077 0.0540± 0.0080 0.0545± 0.0076
10−4α - < 2.67 -

λ - < 0.109 < 0.406
φini - 1.0004+0.0082

−0.0092 -

zreio 7.59± 0.78 7.60± 0.82 7.64± 0.77
YHe 0.247880± 0.000057 0.247882± 0.000056 0.247885± 0.000057
H0 67.96± 0.42 68.02± 0.44 67.67+0.56

−0.45

M −19.411± 0.012 −19.409± 0.012 −19.415± 0.013
σ8 0.8055± 0.0068 0.8066± 0.0071 0.8019+0.0080

−0.0072
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