UNIVERSITY of York

This is a repository copy of Verifying and Assuring Robotic Systems with Isabelle/UTP.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/193104/</u>

Version: Published Version

Conference or Workshop Item:

Foster, Simon David orcid.org/0000-0002-9889-9514 (2022) Verifying and Assuring Robotic Systems with Isabelle/UTP. In: YorRobots and RoboStar Industry Exhibition, 11-12 Oct 2022, University of York.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Verifying and Assuring Robotic Systems with Isabelle/UTP

A hybrid automaton with differential equations in each mode

THE CHALLENGE

- Robotic Systems share variables with the real-word corresponding to **physical quantities**.
- Challenging to verify due to heterogeneous paradigms: reactive, concurrent, cyber-physical.
- We cannot compute every possible behaviour (state explosion), but only **approximate** them.
- Alternatively, we can model **all** behaviours by characterising them **symbolically**.
- We need a scalable tool that can handle their inherent semantic heterogeneity.

A RoboChart safety controller state machine

VERIFYING ROBOTIC SYSTEMS WITH ISABELLE/UTP

- Isabelle/UTP is our library for verification tools based on "Unifying Theories of Programming".
- Uses heterogeneous semantics for combining varied programming and modelling notations. ▶ e.g. Z notation (ISO 13568), CSP, RoboChart, hybrid programs (used for modelling robots).
- Applied to creation of usable, efficient, and scalable automated verification tools.
- e.g. differential induction: verifying non-linear ODEs without needing explicit solutions.


```
variables p:::\mathbb{R} vec[2]" v:::\mathbb{R} vec[2]"
    a::"\mathbb{R} vec[2]" \phi::\mathbb{R} s::\mathbb{R}
  "ODE \equiv { p' = v, v' = a, a' = 0, \phi' = \omega }"
lemma "\{s^2 = v \cdot v\} ODE \{s^2 = v \cdot v\}"
  by (dWeaken, metis orient_vec_mag_n)
lemma "\{a = \emptyset \land v = V\} ODE \{a = \emptyset \land v = V\}"
 Verifying the kinematics with differential induction
```


Verifying a robot model in the Z abstract machine notation

THE SOLUTION: THEOREM PROVING WITH ISABELLE/HOL

- Isabelle/HOL: a state-of-the-art interactive theorem prover and assured development platform.
- Trustworthy by design (LCF), highly flexible, and scalable to large developments.
- High degree of **automation**, including SMT solvers, Computer Algebra Systems, etc.
- Allows us to model any mathematical concept symbolically, and prove theorems about it.
- Can model and verify CPSs, including a controller model, the differential equations, and code.

Can we model a complex autonomous transport network?

FUTURE WORK

- Integrating Isabelle into development processes with bidirectional model transformations.
- Verifying complex concurrent robots (e.g. fleets, swarms) using compositional verification.
- CyPhyCircus: a semantically heterogeneous formal robotics modelling language.
- Verified code generation for deployment on a physical robotic platform (e.g. ROS).

Simon Foster

Verifying imperative code with Hoare logic and VCG

Code generation via Haskell

• Animation and visualisation using code generation and the Functional Mockup Interface (FMI).

Engineering and **Physical Sciences Research Council**