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Abstract. Ice fabrics – the distribution of crystal orientations
in a polycrystal – are key for understanding and predicting
ice flow dynamics. Despite their importance, the character-
istics and evolution of fabrics produced outside of the de-
formation regimes of pure and simple shear flow has largely
been neglected, yet they are a common occurrence within ice
sheets. Here, we use a recently developed numerical model
(SpecCAF) to classify all fabrics produced over a continu-
ous spectrum of incompressible two-dimensional deforma-
tion regimes and temperatures. The model has been shown
to accurately predict ice fabrics produced in experiments,
where the ice has been deformed in either uniaxial compres-
sion or simple shear. Here we use the model to reveal fabrics
produced in regimes intermediate to pure and simple shear,
as well as those that are more rotational than simple shear.
We find that intermediate deformation regimes between pure
and simple shear result in a smooth transition between a fab-
ric characterised by a girdle and a secondary cluster pattern.
Highly rotational deformation regimes are revealed to pro-
duce a weak girdle fabric. Furthermore, we provide regime
diagrams to help constrain deformation conditions of mea-
sured ice fabrics. We also obtain predictions for the strain
scales over which fabric evolution takes place at any given
temperature. The use of our model in large-scale ice flow
models and for interpreting fabrics observed in ice cores and
seismic anisotropy provides new tools supporting the com-
munity in predicting and interpreting ice flow in a changing
climate.

1 Introduction

Mass loss from ice sheets is set to be the main contributor
to sea level rise this century (e.g. Shepherd et al., 2018). Re-
liably predicting sea level rise depends on accurately mod-
elling ice flow. One of the most important controls on ice
flow dynamics is the ice fabric, i.e. the collective distribu-
tion of crystal orientations within a given polycrystal. Strong
alignment of the crystal orientations may cause the strain
rate response to an applied stress to vary by a factor of 9 in
different directions (e.g. Pimienta and Duval, 1987). Hence,
understanding the fabrics present in any flowing ice sheet,
i.e. Antarctica or Greenland, is important for predicting ice-
sheet flow and, in turn, the loss of ice over time.

To date, the analysis and discussion of ice fabrics has fo-
cused primarily on those formed under the specific deforma-
tion regimes of uniaxial compression and pure shear (both
irrotational deformations), as well as simple shear. However,
these regimes represent isolated points in a parameter space
of deformation regimes that occur in nature. Kamb (1972)
conducted experiments to produce fabrics for intermediate
deformations between uniaxial compression and pure or sim-
ple shear and produced illustrative pole figures across this
space. He found that for these intermediate deformations,
the fabric pattern produced exhibits a continuous transition
between what is seen for the known end points. This transi-
tion is measured using the stress character, the ratio of max-
imum and minimum in stress difference between principal
axes. Kamb (1972) also examines the steady-state character-
istics of the fabric, finding it is primarily dependent on total
strain and weakly dependent on stress. However the experi-
ments are limited to strains of around 0.5 and high tempera-
tures (−5 to 0 ◦C), which limits the application of this work
to conditions seen in ice sheets.
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The objective of the present paper is to use the fabric evo-
lution model SpecCAF (Richards et al., 2021) to take a step
away from the isolated conditions of irrotational deformation
and simple shear where the model has been validated, and
explore the continuous space of deformation regimes lying
between these cases, and extrapolate beyond to deformation
regimes more rotational than simple shear. One way to model
ice flow is to simplify it to the two-dimensional x–z plane
(along the flow direction and the vertical, e.g. Martín et al.,
2009). This is done in order to understand vertical variation
of the ice flow and compare to ice core profiles. Analysis of
this flow shows that it commonly resides outside the regimes
of pure and simple shear (we will illustrate this further in
Sect. 2.2.1 below). Therefore, an exploration of the fabrics
arising in this generalised situation is a necessary step to-
wards improving our understanding of ice fabrics: both to aid
the interpretation of fabrics measured from ice cores and to
predict future ice flow taking ice fabric effects into account.

To summarise, in this paper we seek to address a num-
ber of open questions. First, what fabrics are produced un-
der any given (incompressible) two-dimensional deformation
regime? Second, how do these fabrics change over the space
of increasing vorticity and temperature, and can we use this
information to aid in interpreting ice cores? Third, how do
fabrics evolve at very high strains which have remained in-
accessible to laboratory experiments, and at what strain does
the fabric reach a steady state?

We address these questions by making use of a new con-
tinuum model SpecCAF (Richards et al., 2021), which is the
first fabric evolution model to accurately predict ice fabrics
produced in laboratory experiments, and is computationally
efficient enough to be incorporated into large-scale ice-sheet
models.

2 Background

2.1 Fabric development

2.1.1 Processes governing fabric development

The distribution of crystallographic orientations within a
polycrystal is called the fabric or crystallographic preferred
orientation (CPO). The distribution of the c axes is the dom-
inant control on the mechanical properties (such as viscous
anisotropy) of ice (Pimienta and Duval, 1987). Ice deforms
and flows primarily through dislocation glide, which occurs
almost exclusively along the basal plane. The orientation of
the basal plane can be described by its normal vector, the
c axis. Both the intensity and pattern of the fabric produced
is dependent on the conditions of deformation, which will in-
fluence the relative activity of different mechanisms. As ice
deforms, the fabric evolves through dislocation glide along
the basal plane, which causes c axes to rotate (Steinemann,
1958; Hondoh, 2000), rigid-body rotation, which simply ro-

tates grains around the rotation axis, and recrystallisation
processes, which rearrange the grain boundary network.

There are two main recrystallisation processes that af-
fect the ice fabric. The first is migration recrystallisation,
which can include a combination of strain-induced grain
boundary migration and nucleation (Doherty et al., 1997).
Grain boundary migration in a deforming crystalline ma-
terial is mainly driven by differences in stored strain en-
ergy, i.e. energy related to dislocation density either side of
a grain boundary (e.g. Gottstein and Shvindlerman, 2009;
Humphreys and Hatherly, 2004). Hence, in the case of such
strain-induced migration recrystallisation, the less strained
grain grows at the expense of the more strained grain result-
ing in an overall decrease in the strain energy of the system
(Drury et al., 1985; Drury and Urai, 1990). The dislocation
density accumulated within a certain grain is primarily a re-
sponse to its orientation relative to the deviatoric stress axes.
For example, a grain favourably oriented for basal slip will
accumulate fewer dislocations than a grain that is oriented
unfavourably. Consequently, depending on the deformation
regime, grains of certain orientation will grow at the expense
of grains of less favourable orientations. Grains may also nu-
cleate spontaneously in areas of high dislocation density and
then grow if they are favourably orientated (Doherty et al.,
1997). As a result, the effect of migration recrystallisation
is to produce c axes clustered towards certain orientations in
a polycrystal. It should be noted that, while the local stress
axes are influenced by the environment around the respective
grain (e.g. Grennerat et al., 2012; Piazolo et al., 2015), grains
with the c axis oriented less favourably for slip relative to the
far field stress axes will statistically have higher stored strain
energy.

The second recrystallisation process is rotational recrys-
tallisation. This occurs when dislocations recover into sub-
grain boundaries which, with increasing strain, will develop
into grains (Drury et al., 1985). These dislocations tend to be
concentrated closer to grain boundaries due to stress hetero-
geneity, as observed in shallow and deep polar ice (Kipfstuhl
et al., 2006, 2009), and which can be thought of as an ice
grain having a stressed outer “mantle” and a less stressed
inner “core” (Faria et al., 2009). Therefore, new grains de-
veloping from subgrains will tend to occur near grain bound-
aries. The orientation of these new grains is similar to, but
slightly different to, the parent grain. With increasing strain,
the difference in orientation tends to increase (Halfpenny
et al., 2006). This randomisation of orientations acts to dif-
fuse concentrations in the fabric (Alley, 1992).

2.1.2 Observed fabrics

Ice fabrics can be observed through laboratory experiments,
through ice cores from real-world locations, and, more re-
cently, inferred through radar and seismic measurements. In
the laboratory, the majority of experiments are performed by
compressing a block of ice, resulting in an irrotational de-
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formation: either pure shear if the block is confined in one
direction or uniaxial compression otherwise (e.g. Jacka and
Maccagnan, 1984; Jacka and Li, 2000; Craw et al., 2018; Fan
et al., 2020; Piazolo et al., 2013). The other oft-studied case
is simple shear (Journaux et al., 2019; Qi et al., 2019). Lab-
oratory experiments provide detailed fabric measurements in
known conditions. However, experiments are mostly limited
to single deformation regimes, as well as to strains of around
0.4 for uniaxial compression (Fan et al., 2020) and 2 for di-
rect simple shear (Qi et al., 2019).

Experiments have been performed for deformations inter-
mediate to pure and simple shear, at temperatures close to the
melting point of ice (Duval, 1981; Li et al., 1996; Budd et al.,
2013). Fabrics from Duval (1981) combining uniaxial com-
pression and simple shear show a broad cluster with 3 or 4
maxima inside it. Budd et al. (2013) show, for an experiment
with mostly simple shear combined with some pure shear and
at an equivalent strain to that used later in this paper of 0.75,
the merging of a double cluster (from pure shear) and a sin-
gle maximum (from simple shear). There are no experiments
exploring deformation regimes more rotational than simple
shear. As a preliminary motivation in Sect. 2.2.2, we will
show that deformation regimes that lie in between pure and
simple shear, as well as those that are more rotational than
simple shear, occur widely in natural ice-sheet flows along
both horizontal and vertical cross sections.

Fabrics can also be analysed by taking ice cores in ice
sheets. A detailed understanding of the fabrics produced over
possible deformations and temperatures enables us to inter-
pret the deformation regime and temperature history of ice
cores. Initial studies of ice cores have concentrated on ice
domes or divides (Gow, 1961; Holtzscherer et al., 1954;
Johnsen et al., 1995). These locations are deliberately cho-
sen because they have minimal deformation, and thus act as a
good proxy for past climate data. At the centre of a dome, the
ice will deform vertically in uniaxial compression, producing
either a single-maximum or a girdle fabric (Fig. 1). Recently,
ice cores have become available in locations with more com-
plex deformation regime histories (Stoll et al., 2018; Trever-
row et al., 2010). Stoll et al. (2018) show examples of a va-
riety of fabric shapes such as girdles and single-maximum
fabrics orientated in different directions as well as relatively
faster fabric development with depth compared to ice cores
at domes. Fabrics can also be measured from boreholes us-
ing sonic and optical techniques (Gusmeroli et al., 2012;
Kluskiewicz et al., 2017).

Recently, data from radar and seismic data have also been
used to infer fabric properties (Matsuoka et al., 2003; Fujita
et al., 2006; Booth et al., 2020). These methods can capture
natural ice fabrics without expensive drilling, allowing data
to be collected at more active locations such as ice streams
(Jordan et al., 2020).

Figure 1. Illustration showing common fabrics or fabrics which de-
velop in ice, illustrated by their pole figures, as well as the deforma-
tion regime and temperature they typically occur at. The pole fig-
ures show the distribution of c-axis orientations, with the compres-
sion axis at the centre. Panel (a) shows a single-maximum fabric,
produced in uniaxial compression or simple shear at low tempera-
tures (Qi et al., 2019). Panel (b) shows a girdle fabric, produced in
uniaxial compression at higher temperatures, when grain boundary
migration is active (Paterson, 1999). This can also be considered
a girdle fabric when the cone angle approaches 90◦. (c) shows a
double-maximum fabric produced in pure shear (Budd et al., 2013).
(d) shows a single maximum with a secondary cluster, produced in
simple shear at higher temperatures (Kamb, 1972; Qi et al., 2019).
Note: this simple shear deformation is rotated 45◦ to keep the prin-
cipal deformation axes constant relative to the other figures.

2.1.3 Fabric development

In experiments and observations a number of common fab-
ric patterns occur (Fig. 1). Fabrics are commonly visualised
by pole figures, showing a hemisphere where each point rep-
resents a possible orientation. As the c axes are antipodally
symmetric, a hemisphere is sufficient to show all possible
orientations. The colour then indicates concentrations of ori-
entation at the direction. The mechanisms of basal-slip de-
formation, rigid-body rotation, migration and rotational re-
crystallisation act in different ways and with different magni-
tudes depending on the deformation regime and temperature.
For uniaxial compression, at low temperatures (T ≈−30 ◦C)
basal-slip deformation dominates and this causes c axes to
rotate towards the axis of compression, producing the single-
maximum pattern (Fig. 1a). At high temperatures, migration
recrystallisation is also active. This process acts to consume
grains orientated towards the compression axis and, on its
own, grows grains orientated in a ring 45◦ away from the
compression axis (the orientation easiest for basal slip and
hence likely to be with the least dislocations). Therefore, the
balance of basal-slip deformation and migration recrystalli-
sation produces a girdle pattern, with an angle always < 45◦

due to the interaction between the two processes (Fig. 1b).
In pure shear, the grains produced by migration recrystalli-
sation instead form two clusters at 45◦ and hence a double-
maximum fabric is produced (Fig. 1c), as observed in exper-
iments (Budd et al., 2013).
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Recent experiments in simple shear produced either a sin-
gle maximum at low temperatures or a single maximum with
an offset secondary cluster (Fig. 1d) at intermediate strains
and high temperatures (Qi et al., 2019; Journaux et al., 2019).
This pattern is similar to a double maximum but the presence
of vorticity in simple shear causes an imbalance in cluster
strengths. For the stronger, primary cluster the vorticity acts
to move c axes in the opposite direction to the basal-slip de-
formation, resulting in a stable position. For the weaker, sec-
ondary cluster the vorticity and basal-slip deformation both
rotate c axes away, towards the compression axis. This results
in the imbalance in cluster strengths illustrated in Fig. 1d.

2.2 Classifying flow regimes

2.2.1 General deformation regimes

There exists a significant variety of deformation regimes in
the natural world. One way to classify a deformation regime
is by the vorticity number (Passchier, 1991), which measures
the ratio of vorticity magnitude to strain rate magnitude:

W =

√
WijWij

DijDij
, (1)

where W= 1
2 (∇u−∇uT ) is the antisymmetric part of the ve-

locity gradient (the spin-rate tensor) and D= 1
2 (∇u+∇uT )

is the symmetric part of the velocity gradient (the strain rate
tensor).

As a note for people unfamiliar, in Eq. (1) we have used
both summation notationWij and vector notation W.Wij is a
second-rank tensor (shown by the number of indices) and the
operation WijWij , indicating summation over the repeated
indices, is the tensor inner product W :W.

Figure 2 illustrates the flow regimes associated with differ-
ent vorticity numbers W . The vorticity number is 0 for pure
shear or uniaxial compression, 1 for simple shear and∞ for
rigid-body rotation. Ice in the natural world will experience
deformation regimes with vorticity numbers from 0 to ∞.
However, the most extensive analysis to date has focused on
the specific cases of W = 0 and W = 1 due to the difficulty
of producing other deformation regimes in experiments. Pure
shear and simple shear also tend to dominate discussions re-
garding the interpretation of fabrics in ice-sheet flow. In the
late 1990s and early 2000s it was recognised in the geologi-
cal community that flow in rocks cannot be approximated by
the isolated conditions of W = 0 and W = 1 alone (Jiang,
1994; Bailey and Eyster, 2003). Since then, many papers
within structural geology have developed conceptual mod-
els and analytical techniques to predict and recognise natu-
ral geological flows with vorticity numbers between 0 and 1
(Fossen and Tikoff, 1993; Tikoff and Fossen, 1995; Piazolo
et al., 2002, 2004; Ten Grotenhuis et al., 2002). In contrast,
such analysis is less common in discussions surrounding ice-
core interpretation. This may be because such scenarios are

Figure 2. Schematics illustrating two-dimensional flow regimes at
different vorticity numbers W (Eq. 1): (a) Pure shear (W = 0),
(b) Simple shear (W = 1), (c) A pure rotation deformation (W =
∞). For each flow the streamlines and deformation regime pro-
duced are shown.

(a) experimentally straightforward to achieve, and (b) these
cases can – as a first approximation – be associated with dif-
ferent ice flow scenarios of an ice divide and the shallow ice
approximation (although it should be noted, as we discuss
below, that the shallow ice approximation is only in simple
shear near the base).

2.2.2 Two-dimensional deformation regimes in natural
ice flow

As a first step towards exploring the fabrics produced
by all possible deformation regimes, we will focus here
on general incompressible two-dimensional deformations.
Although deformation regimes in the natural world will
be three-dimensional, exploring fabrics produced by two-
dimensional deformation regimes is a natural first step away
from the canonical regimes of pure and simple shear. It is also
common to limit the modelling of ice sheets to two dimen-
sions, either in the vertical cross section (Pattyn et al., 2008;
Martín et al., 2009) or through depth-integrated approaches
(e.g Pegler, 2016; Joughin et al., 2021).

In order to illustrate the range of vorticity numbers which
are expected to occur in natural flows, we explore here a
number of scenarios. For an ice divide, the simulation shows
that the vorticity number varies smoothly between 0 and 1
(Fig. 3). Due to the vanishing of horizontal velocity at the
central divide itself, the vorticity number is 0 there, corre-
sponding to the regime of pure shear along x = 0. Away from
the divide the flow is dominated by a balance between grav-
ity and the divergence of vertical shear stresses (the shallow
ice approximation). The vorticity number transitions contin-
uously from 1 at the base, corresponding to simple shear, to-
wards close to 0 at the surface, corresponding to pure shear.

If we consider a 2D flow of ice over a Gaussian bump
(Fig. 4), flowing from left to right down a hill of angle 3.0◦,
we find that vorticity numbers both between 0 and 1 and
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Figure 3. The vorticity number for ice flowing at a divide, showing a range from 0 to 1. The problem setup is from Martín et al. (2009)
with isotropic ice. The simulation has an aspect ratio of 20, but only the region from x = 0 to x = 10H , where H is the height of model
domain, is shown. The domain has the velocity from the shallow ice approximation imposed at the left and right boundaries, and the surface
accumulation is set to match the outflow, corresponding to a steady state. No slip is imposed at the base and a free surface is assumed at the
top. The vorticity number is shown, alongside streamlines. This flow was computed using a full-Stokes solver written in FEniCS (Martin
Alnæs et al., 2015) with n= 3 and solved using Taylor–Hood elements.

Figure 4. The vorticity number for ice flowing over a Gaussian bump, performed in Elmer/ICE (Gagliardini et al., 2013) with n= 3. The ice
is flowing from left to right, down a hill with angle 3.0◦. There is no slip at the base and a free surface at the top. The bump height h=H/10,
where H is the domain height. Over the bump the flow accelerates leading to vorticity numbers greater than 1.

greater than 1, corresponding to deformation regimes more
rotational than simple shear, can occur. This indicates that,
even in relatively simple configurations, vorticity numbers
greater than 1 (in this case reaching 1.6) can potentially oc-
cur in the vertical cross section. However, to date, the fabrics
produced for vorticity numbers above 1 have not been anal-
ysed.

The above examples focused on the two-dimensional flow
in vertical cross sections of ice-sheet simulations. To further
explore the occurrence of vorticity numbers away from 0
or 1 in natural flows, we calculate an estimate of the vor-
ticity number in the horizontal flow near the surface of the
Antarctic Ice Sheet. To do this, we use surface velocity data
from Antarctica (Mouginot et al., 2019a), shown in Fig. 5.
The vorticity number is calculated by combining surface ve-
locity gradients with an estimate of the vertical shear rate
(∂u/∂z,∂v/∂z). In order to estimate the lower bound of the

vorticity number near the surface, we estimate the upper
bound on the vertical shear by using the shallow ice approxi-
mation to assume no sliding at the base of the ice sheet. This
is likely to be a conservative estimate of vorticity number in
areas where it is known there is significant sliding at the base
of the ice stream. We estimate the vertical shear for no basal
slip, at a depth of 25 % into the ice sheet, such that these vor-
ticity numbers are at least valid to this depth: in regions with
more slip at the base of the ice sheet, the vertical shear rate
will be reduced and this estimate remains valid to a greater
depth. The derivative ∂w/∂z is calculated using mass conti-
nuity, and we have neglected the higher-order contributions
∂w/∂x and ∂w/∂y.

The resulting prediction for the vorticity number shown
in the map of Fig. 5 indicates that there are widespread re-
gions of Antarctica where the surface vorticity number near
the surface is at intermediate values between 0 and 1 or at
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values greater than 1. The regions characterised by high vor-
ticity numbers (W > 1) typically occur in highly dynamic re-
gions such as ice streams. In the majority of the ice sheet, the
vorticity number will tend to 1 as depth increases due to the
large vertical shear at the base. For ice streams and shelves,
the vorticity number predicted here may also apply closer to
the base.

2.3 Hierarchy of ice modelling spanning the microscale
to the macroscale

The effects of deformation on the dynamics of ice cover a
vast range of scales from the order of micrometres for study-
ing grain–grain interactions to continental scales of 1000s of
kilometres when studying ice sheets. Consequently, different
approaches must be used depending on the scale one seeks to
work on, with micro-scale models serving to provide param-
eterisations of small-scale processes for use in larger-scale
models. At the scale of micrometres and millimetres, there
exist several approaches for modelling the microstructure di-
rectly (e.g. Llorens et al., 2016; Kennedy and Pettit, 2015).
This involves simulating grain-to-grain interactions with de-
formation regimes imposed via stress or velocity boundary
conditions at the edges of the numerical domain. This is use-
ful for improving our understanding of ice microstructure
and fabric evolution. However, it cannot be scaled up to be
incorporated into ice-sheet models due to the numerical cost.
At the largest scale, ice-sheet models typically neglect the ef-
fect of fabric entirely. The state of the art for incorporating
fabric evolution into large-scale models is to track the evo-
lution of a second-rank tensor representing the second mo-
ment of the orientation distribution function (to be defined
below in Eq. 2). As taking the second moment only retains
information from terms up to order 2 in a spherical harmonic
expansion (Montgomery-Smith et al., 2010), it is impossible
with this approach to reproduce observed fabric patterns like
a secondary cluster.

In this contribution, we use the SpecCAF model from
Richards et al. (2021), which forms a continuum model of
the full orientation distribution function with parameterisa-
tions of the underlying processes calibrated using labora-
tory experiments. In the hierarchy of ice modelling, Spec-
CAF seeks to model ice fabrics at a larger scale than models
such as Llorens et al. (2017). SpecCAF acts as a continuum
model for fabric evolution which, through the use of spheri-
cal harmonic expansion, is sufficiently efficient computation-
ally that it can be incorporated into ice-sheet models while
retaining all key processes. In this approach, grain-to-grain
interactions are incorporated by considering ice as a contin-
uum mixture of orientations (Faria, 2006). Parameterisations
then describe the effect of different microstructural processes
on the orientation distribution function. Since it incorporates
parameterisations of the mean effect of grain–grain interac-
tions, there is no need to represent the strain and stress fields
explicitly within the microstructure. However, these interac-

tions are incorporated statistically within the model and cal-
ibrated using laboratory experiments for which parameters
such as strain, deformation rate and temperature are known.
This model (SpecCAF) has been shown to predict fabrics ac-
curately in both uniaxial compression and simple shear and
can make predictions of fabric evolution with only the veloc-
ity gradient and temperature as inputs.

We note that, by itself, SpecCAF models fabric evolution
only for given applied deformation. It does not include a vis-
cosity formulation like the CAFFE model of Placidi et al.
(2010). Thus, we take the velocity gradient as being pre-
scribed and consider the evolution of fabrics that occur as
a result. In principle, the model could be coupled to any flow
law (viscosity formulation) describing the effect of the fabric
on the anisotropy. This could be considered in future.

2.4 Outline of paper

In Sect. 3 we review the SpecCAF model and clarify its un-
derlying modelling assumptions and comparison with other
modelling approaches. In Sect. 4.1 we determine the evolu-
tion of fabrics in general 2D deformation regimes, for the
first time bridging the complete spectrum from pure shear to
rigid-body rotation, across the range of temperatures seen in
ice sheets. In Sect. 4.2 we construct a complete regime dia-
gram for two-dimensional deformation regimes documenting
fabrics that arise over the space of temperature, deformation
regime, and strain, and explain the physical balances leading
to these fabrics. Finally, in Sect. 4.3 we investigate the time
or strain scales over which ice fabric evolution takes place, as
well as investigating the steady-state strength of ice fabrics,
across the space of deformation regime and temperature. We
then discuss the implication of these results for the interpre-
tation of ice cores (Sect. 5.3) and ice flow (Sect. 5.4).

3 Methods

3.1 The continuum approach

We begin by reviewing the SpecCAF model, which is de-
veloped, experimentally calibrated, tested and solved in
Richards et al. (2021) and based on a mathematical con-
tinuum approach of Faria (2001, 2006) and Placidi et al.
(2010). The SpecCAF model uses a continuum approach to
represent the mass distribution of c axes within a polycrys-
tal ρ∗(x, t,n), termed the orientation mass density, defined
according to

ρ(x, t)=

∫
S2

ρ∗(x, t,n) dn, (2)

where ρ(x, t) is the mass density of ice, and n is a unit vector
representing the direction of a c axis. Here, ρ∗(x, t,n) dn is
the mass fraction of grains with orientations directed towards
n within the solid angle dn. In accordance with the equation
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Figure 5. Figure to illustrate the range of vorticity numbers near the surface in Antarctica. This is calculated from the surface velocity data
of Antarctica (Mouginot et al., 2019a) after averaging over a 10× 10 block and taking the mean value within each block. The calculation
uses the horizontal velocity fields from the observed surface velocity combined with an estimate of the average vertical shear predicted
to occur in the top 25 % of the ice sheet using the shallow ice approximation. The colour shows the vorticity number on a log scale. The
transparency is used to hide areas with large uncertainty in the vorticity number. The inset shows the Ross Ice Shelf, with the easting and
northing in Antarctic polar stereographic coordinates. This shows considerable variation across the continent, including deformation regimes
not accessible in the laboratory.

above, integrating ρ∗ over the space of possible orientations
(the surface of a unit sphere S2) gives the mass density of ice
at that particular point in physical space, ρ(x, t). The non-
dimensional equivalent of this is the orientation distribution
function:

f ∗ = ρ∗/ρ. (3)

SpecCAF incorporates the effect of basal-slip deformation,
migration recrystallisation and rotation recrystallisation (all
as functions of temperature), as well as rigid-body rotation,
to develop an evolution equation for the orientation mass
density ρ∗. As discussed above, the model evolves ρ∗ as
the dependent variable, with the net effects of grain-to-grain
interactions incorporated through parameterisations. This is
similar to other continuum approaches, for example how ex-
plicit descriptions of particle interactions are not included in
the Stokes equations, yet are satisfactorily modelled statis-
tically through parameterisation in the form of a constitutive

relation. In the present case, rotation recrystallisation is mod-
elled as a diffusion of concentrations of ρ∗, originally the
idea of Gödert (2003). The effect of migration recrystalli-
sation is modelled through an orientation-dependent source
term producing ρ∗ preferentially at orientations where grains
would be likely to have a large basal shear stress, and vice
versa. Basal slip deformation is incorporated in accordance
with the “deck-of-cards” analogy, and assuming linear de-
pendence on the strain rate tensor (Placidi et al., 2010). The
resulting continuum model has been shown to reproduce all
detailed features of the orientation distribution functions cal-
culated from experimental samples (Richards et al., 2021).

The essential continuum approach was proposed previ-
ously by Faria (2001, 2006). Grains with the same orienta-
tions are called a species. There has been discussion in the lit-
erature (Gagliardini, 2008; Faria et al., 2008) on whether this
theory implicitly includes a Taylor assumption, namely, that
all ice grains forming the polycrystal experience the same
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Table 1. List of mathematical symbols used in this paper, including units and the equation if they are explicitly defined.

Symbol Name Unit Defined in

∇u Velocity gradient s−1

D Strain-rate tensor s−1

W Spin-rate tensor s−1

W Vorticity number – Eq. (1)
ρ Density kgm−3

ρ∗ Orientation mass density kgm−3 Eq. (2)
f ∗ Orientation distribution function – Eq. (3)
(·)∗ Quantity defined over orientation space
n Unit orientation vector –
∇
∗ Gradient over orientation space – Eq. (5)

v∗ Orientation transition rate s−1 Eq. (6)
D∗ Deformability – Eq. (7)
〈(·)∗〉 Average over orientation space
λ Rotation recrystallisation rate s−1

β Migration recrystallisation rate s−1

ι Ratio between basal-slip deformation and rigid-body rotation –
γ̇ Strain rate s−1 Eq. (9)
˜(·) Non-dimensionalised quantity –
γ Strain – Eq. (13)
T Temperature ◦C
J J index – Eq. (14)

strain rate. The Taylor assumption has been shown not to be
valid for ice (Castelnau et al., 1998). To summarise this de-
bate, Gagliardini (2008) suggests that the assumption in Faria
(2006) that the strain rate of a species is independent of ori-
entation is equivalent to every grain undergoing the same de-
formation (a Taylor assumption). However, Faria et al. (2008)
rejected this assertion and replied that this assumption only
requires that grains move with the surrounding material, with
no direct constraint on the individual deformation of grains.
In accordance with the continuum approach, the net effect of
deformations on individual grains, which can vary from grain
to grain, is incorporated via parameterisations of the overall
net effect of these interactions. Since these parameterisations
are calibrated using laboratory experiments (Richards et al.,
2021), they represent net effects relevant to real samples in
which grains do not all experience the same strain. Therefore,
the continuum model does not impose a Taylor assumption
on the grain deformation. Furthermore, care should be taken
to attribute our calibrated parameters as applying specifically
to the bulk interactions representing their net statistical ef-
fects in the model, as opposed to grain–grain interactions.

Despite the model not including the Taylor hypothesis, the
term for basal- slip deformation in the equation below is sim-
ilar to that which would be derived from a Taylor homogeni-
sation of ice under a simple basal slip only model (Gagliar-
dini et al., 2009). The only exception is that the rate of vis-
coplastic deformation can vary relative to rigid-body rota-
tion.

3.2 Model specification

The evolution equation for ρ∗ under the framework described
above was first defined in Placidi et al. (2010):

∂ρ∗

∂t
=−∇

∗
· (ρ∗v∗)+ λ∇∗

2
(ρ∗)+β

(
D∗−〈D∗〉

)
ρ∗, (4)

where λ and β are parameters, to be defined below. Here, ∇∗

is the gradient operator in orientation space, restricted to the
surface of a sphere (i.e. the space of possible orientations)
defined by

∇
∗v∗ =

∂v∗

∂n
−

(
∂v∗

∂n
·n

)
n=

∂v∗i

∂nj
−
∂v∗i

∂nl
nlnj . (5)

The parameters λ and β represent the rates of rotational and
migration recrystallisation, respectively. The orientationally
dependent term D∗ will be defined below in Eq. (7). The term
v∗ defines the orientation transition rate, defined by Placidi
et al. (2010) as

v∗i =Wijnj − ι(Dijnj − ninjnkDjk). (6)

This equation is broadly similar to the rotation of an individ-
ual c axis in a discrete model. The termWijnj in Eq. (6) rep-
resents the effect of rigid-body on the fabric, and the second
term models basal-slip deformation. The non-dimensional
parameter ι represents the ratio of basal-slip deformation to
rigid-body rotation.

The parameter λ (s−1) represents the rate of rotational
recrystallisation, modelled as a diffusional term. Migration
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recrystallisation is modelled by an orientation-dependent
source term, with the rate controlled by β (s−1). The orien-
tation dependence is governed by the deformability, defined
by

D∗ = 5
(Dijnj )(Diknk)− (Dijnjni)

2

DmnDnm
. (7)

For a given stretching tensor D, and for a basal plane with
normal n this function represents the normalised strain rate
(or stretching) acting on the basal plane. Therefore, D∗ will
be greater at orientations where it is easier to slip along the
basal plane. Because ice deforms primarily by slip along the
basal plane, this is a good approximation for the accumula-
tion of deformation energy in a physical grain, which drives
migration recrystallisation. The average of D∗ is defined as

〈D∗〉 =
∫
S2

ρ∗

ρ
D∗ dn. (8)

If D∗ is greater than the average value 〈D∗〉, then this term
acts as a source term for ρ∗ at this orientation. This parame-
terises grains growing or nucleating at this orientation. Note
that the total production and consumption of D∗ always bal-
ance. The factor of 5 in Eq. (7) is a convention.

3.3 Non-dimensionalisation

To apply Eq. (4) to spatially homogeneous fabrics and to
compare to fabrics deformed in the laboratory we perform
a non-dimensionalisation, where we non-dimensionalise by
a characteristic density ρ0 and strain rate, which we define as

γ̇ =

√
1
2
DijDji . (9)

This is the effective strain rate, corresponding to the second
invariant of the strain rate tensor D. The non-dimensional
variables are represented with tildes and are defined as

f ∗ =
ρ∗

ρ0
, D̃=

D
γ̇
, W̃=

W
γ̇
,

λ̃(T , γ̇ )=
λ(T , γ̇ )

γ̇
, β̃(T , γ̇ )=

β(T , γ̇ )

γ̇
, (10)

where for clarity we use f ∗ to refer to the non-dimensional
orientation distribution function (note that the strain rate we
non-dimensionalise within this paper is half the strain rate
we used in Richards et al. (2021), which was based on the
experimental strain rate). Recasting Eq. (4) in terms of the
non-dimensional variables above, we obtain

∂f ∗

∂t̃
=−∇

∗
· [f ∗ṽ∗]+ λ̃∇∗

2
(f ∗)+f ∗β̃

(
D∗−〈D∗〉

)
, (11)

where

ṽ∗i = W̃ijnj − ι(D̃ijnj − ninjnkD̃jk)

Figure 6. The model parameters ι, λ̃, β̃ as functions of temperature,
determined by linear regression to experimental data in both com-
pression and simple shear, as conducted in Richards et al. (2021).
The 95 % and 80 % confidence intervals are shown.

is the non-dimensional form of the orientation transition
rate (Eq. 6). Richards et al. (2021) constrained the non-
dimensional parameters λ̃, ι, β̃ as functions of temperature.
This was done by finding the parameters which gave a best
fit to experimental results in simple shear. These parameters
were then found to predict well fabrics produced in uniaxial
compression. In this paper, we use a best fit from the entire
inversion performed in Richards et al. (2021), rather than just
from the inversion performed in simple shear. Furthermore,
as the strain rate we use to non-dimensionalise is half that
used in Richards et al. (2021), the non-dimensional recrys-
tallisation parameters (λ̃, β̃) used in this paper are double
those used in Richards et al. (2021). The non-dimensional
parameters as functions of temperature are shown in Fig. 6,
along with the data points used in the inversion from
Richards et al. (2021) and 80 % and 95 % confidence inter-
vals. In the accompanying Supplement to this article a pa-
rameter sensitivity study can be found, reproducing the fig-
ures below with (a) ιmax, β̃max, λ̃min and (b) ιmin, β̃min, λ̃max,
with the maximum and minimum values taken from the 80 %
confidence interval in Fig. 6. (a) and (b) give the strongest
and weakest fabric, respectively.

Equation (11) and the parameters defined by the best fit
lines in Fig. 6 combined, when solved with the spectral
method defined in Richards et al. (2021), represent the Spec-
CAF model.

3.4 Pole figure and cross section representation

As a preliminary illustration of the model output and its rep-
resentation, we show in Fig. 7 an example of model out-
put obtained by solving the model at T =−5 ◦C, in simple
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shear (W = 1). The principal axes are orientated at θ =±45◦

directions of the pole figure. To visualise how the fabric
changes with increasing strain, we plot slices of the pole fig-
ure at y = 0. The example pole figure in (a) is plotted at a
strain of γ = 0.345. The value of ρ∗ at y = 0 is plotted in (c)
for each strain. This shows how the fabric develops from an
isotropic fabric. A secondary cluster can clearly be seen as a
transient feature which has mostly disappeared by γ = 0.8.

As an example comparison of the model prediction and
experimental observations, we have included a pole figure
from laboratory experiments (Qi et al., 2019) in Fig. 7b. This
is at the same temperature and strain as the model output
in (a). There is very good agreement between the model and
experiments. More experimental comparisons are detailed in
Richards et al. (2021), showing that the model is able to gen-
erally capture both qualitative and quantitative features of
fabrics observed in existing experiments.

4 Results

4.1 General fabric evolution: dependence on
temperature and vorticity number

We explore fabric evolution across a complete, continuous
range of vorticity numbers W for two-dimensional deforma-
tion regimes (spanning W = 0 to∞), and a continuous range
of temperatures T relevant to ice-sheet flow (T =−30 to
−5 ◦C). For all cases, we assume an initially isotropic fabric.
To make comparisons, we will limit our analysis to fabrics
undergoing a constant two-dimensional deformation and at
a constant temperature. We apply a velocity gradient which
varies with vorticity number. This is chosen to be

∇u=

 1 0 k

0 0 0
−k 0 −1

 such that D=

1 0 0
0 0 0
0 0 −1


and W=

 0 0 k

0 0 0
−k 0 0

 . (12)

This gives γ̇ = 1, and the vorticity number W = k. The vor-
ticity number, defined in Eq. (1), gives the ratio of vorticity
to strain rate magnitude. This gives pure shear for W = 0,
simple shear for W = 1 and rigid-body rotation as W→∞.
This velocity gradient is chosen such that the principal strain
axes are unchanging as W varies. Because of this, the simple
shear (W = 1) condition is rotated 45◦ from the usual defi-
nition of ∂u/∂z= 1, 0 otherwise, and this is seen in the pole
figures.

We define the strain as

γ =

∫
γ̇ dt =

∫ √
1
2
DijDji dt, (13)

i.e. based on the effective strain rate defined in Eq. (9). Dif-
ferent measurements (e.g. an axial strain) are sometimes used

Figure 7. To illustrate the fabric we show a simulation in simple
shear at T =−5 ◦C. Panel (a) shows a pole figure from the model
at an effective strain of γ = 0.345 (where the strain rate is defined
as in Eq. 9). Panel (b) shows a pole figure from laboratory exper-
iments (Qi et al., 2019) at the same temperature and strain, show-
ing good agreement. More comparisons like this can be found in
Richards et al. (2021). The white dotted line in (a) and (b) shows
y = 0. Panel (c) shows f ∗ at y = 0 against strain. Here the white
dotted line highlights the strain at which the pole figure is plotted.
θ is the polar angle. The grey arrow shows the secondary cluster
transposed from the pole figure to the γ − θ diagram. Also high-
lighted is the classification of the different fabric types at different
strains, from double maximum to secondary cluster to the steady-
state single maximum. For this figure only the principal strain axes
are oriented at θ =±45◦.

in experiments but these can be converted to the effective
strain by normalising by the effective strain rate of the defor-
mation. With the velocity gradient fully defined, we explore
the fabric dynamics produced across T –W space in Fig. 8.
For each square we show the slice through the pole figure
at y = 0 (explained in Fig. 7) up to a finite strain of γ = 1.
The temperature range is from −30 ◦C to −5 ◦C, tempera-
tures typical in ice sheets (Duval et al., 2010). The vortic-
ity number ranges from W = 0.1, very close to pure shear,
and W = 10 representing highly vortical flow with curved
streamlines. This provides a detailed picture of how the fabric
evolves with increasing strain, providing insights into defor-
mation regimes between pure and simple shear as well anal-
ysis of fabrics produced by deformation regimes more rota-
tional than simple shear. For low vorticity numbers, a single
maximum can be seen at low temperatures which develops
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into double maximum as strain increases. At high temper-
atures with a double maximum, as W increases the clusters
are moved by the rotational component of the deformation. In
combination with basal-slip deformation, this results in one
stable and one unstable cluster (see Sect. 2.1.3). The c axes of
the unstable cluster rotate under basal-slip deformation and
vorticity such that they are at an orientation where they are
consumed by migration recrystallisation as strain increases,
leading to a single maximum at high strains, for W ∼O(1).

Figures S1 and S2 in the Supplement show that variations
in the parameters from Fig. 6 affect the strength of the pri-
mary cluster primarily, but do not affect the variation with
vorticity number or the transition from one fabric type to an-
other.

We also show in Fig. 8 analysis of fabrics produced in
highly rotational (W > 1) deformation regimes, which we
have shown to occur (Figs. 4, 5). Figure 8 shows that the fab-
ric is strongest for W = 1 and weakens as vorticity increases
past this. For example, for W = 10 there is only a very weak
fabric produced. Furthermore, at large vorticity numbers os-
cillation can be seen in the fabric pattern.

To further analyse the limit of very large vorticity numbers
we show the fabric produced as W→∞ in Fig. 9. This fab-
ric is seen for any vorticity number above W ≈ 50. To mea-
sure fabric concentration the J index is often used (Bunge,
1982), defined by

J =

∫
S2

f ∗
2 dn. (14)

Although the M index can also be used to measure fabric
strength and may be more reliable (Skemer et al., 2005), the
J index can be calculated very efficiently, enabling explo-
ration of the parameter space used in this paper. The J in-
dex of this fabric is 1.16, very close to completely isotropic
(J = 1). It is unlikely this weak girdle fabric would be dis-
tinguishable from an isotropic fabric in a physical sample,
where the fabric is determined by sampling a limited num-
ber of grain orientations. Sensitivity analysis in the Supple-
ment reveals no change in the fabric pattern and only a small
change in fabric strength, ranging between 1.11–1.23 for the
min and max parameters.

4.2 Fabric regime diagrams for cluster angle and
fabric type

To distil all the complex information shown in Fig. 8 and
make this information more easily accessible, we present re-
sults showing a regime diagram of fabric patterns (Fig. 10) as
well as the angle between the primary cluster and the closest
principal strain axes (i.e. the axis of compression, Fig. 11).
To define whether a fabric is a double maximum, secondary
cluster or single maximum we take the ratio of the two largest
peaks in the fabric. If the second largest peak is less than
10 % the strength of the largest peak, it is defined as a sin-
gle maximum. If the strength of the second largest peak is

between 10 % and 90 % of the largest peak, it is defined as
a secondary cluster. If it is > 90 % it is defined as a dou-
ble maximum. Contour lines of primary cluster angle at 20
and 50◦ are also shown. This shows the different fabric types
(Fig. 1) across the space of temperature, vorticity number and
finite strain.

Figure 10a shows the initial fabric after a finite strain of
only γ = 0.3. There are three regimes at this finite strain.
For approximately W < 0.7 a double maximum is produced.
There is a small region, at high vorticity numbers and primar-
ily at low temperatures but extending into high temperatures,
at which a single maximum is produced. Otherwise a sec-
ondary cluster is produced; this occurs for relatively high vor-
ticity numbers and is more dominant at higher temperatures,
as expected. At higher finite strain the double-maximum pat-
tern becomes less prevalent, only occurring at lower vorticity
numbers or not at all. This highlights the transient nature of
this pattern. As a reminder, the double maximum is the 2D
equivalent of a girdle fabric (Fig. 1). The double- maximum
fabric is only present up to a finite strain of about γ = 0.5.
In Fig. 10c, at γ = 1.0 the parameters space is dominated
by single maximum and secondary cluster patterns. Ice fab-
rics which develop at higher temperatures T >−20 ◦C are
dominated by secondary cluster patterns, with the exception
of around W ≈ 3, where a single maximum occurs because
the secondary cluster is too weak. At lower temperatures
T <−25 ◦C a single maximum is produced because migra-
tion recrystallisation is not active enough for multiple clus-
ters to be produced. This balance between a single-maximum
fabric and a secondary cluster fabric continues as the finite
strain increases, with a single maximum also becoming more
prevalent at high temperatures for vorticity numbers around
1 (Fig. 10e and f).

Figures S5 and S6 in the Supplement show Fig. 10 with the
strongest and weakest possible fabric based on the 80 % con-
fidence intervals in Fig. 6. The overall picture is similar. The
variation with vorticity number is approximately unchanged
and boundaries between the regimes shift by roughly ±7 ◦C.

The angle between the primary cluster and the closest prin-
cipal axis of deformation (i.e. the axis of compression) is
shown in Fig. 11 at six separate finite strain values, across
W–T space. Even at a low finite strain of γ = 0.3 there is al-
ready an established difference in angle across the parameter
space (Fig. 11a). Low temperatures and low vorticity num-
bers have the primary cluster most closely aligned with the
compression axis. The angle then increases as both temper-
ature and especially vorticity number increase. As strain in-
creases the variation in angle increases. However, for a fi-
nite strain greater than 0.5 the angle is mostly invariant with
strain. Across the strain and temperature range, an angle of
around 40◦ implies simple shear (W ≈ 1), whereas if the pri-
mary cluster and compression axis are coincident, this sug-
gests pure shear at T ≈−30 ◦C.

Figures S7 and S8 in the Supplement show Fig. 11 with the
strongest and weakest possible fabric based on the 80 % con-
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Figure 8. Slices of the pole figure showing the value of the orientation distribution function f ∗ at y = 0 for an array of temperatures and
vorticity numbers. All plots go to a strain of γ = 1. The colour limits are the same for all plots.

fidence intervals in Fig. 6. At low vorticity numbers and tem-
peratures, the angle between the primary cluster and com-
pression axis is slightly sensitive to variations in parameters,
but outside of this space the angle is roughly unchanged.

To illustrate the difference in pole figure patterns at the
same finite strain but different temperatures and deforma-
tion regimes we plot pole figures at a finite strain of γ = 2
(Fig. 12) overlaid onto a regime diagram of fabric patterns.
The pole figures are centred at the vorticity number and tem-
perature they are simulated at. Figure 12 highlights fabrics
are still variable despite being in the same regime. The fab-
ric at W = 1,T =−5 ◦C is much stronger than the fabric
at W = 10,T =−30 ◦C or W = 0.1,T =−30 ◦C however

they are all single maxima. We also note the difference in
angle of the primary cluster across the parameter space: ap-
proximately 0◦ for W = 0.1,T =−30 ◦C but increasing as
W and T increase, as shown in Fig. 11.

4.3 Analysis of fabric evolution timescales

A variable that is central to the interpretation of ice core fab-
rics is the timescale or, equivalently in the non-dimensional
problem, the finite strain over which fabric evolution occurs.
In Fig. 13 we explore fabric evolution timescales. Figure 13a
shows J index, representing fabric strength, at steady state.
We also show the strain at halfway to steady state (Fig. 13b)
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Figure 9. Pole figure for W→∞ and T =−5 ◦C at steady state. A
very weak girdle fabric is produced, with the girdle coincident with
the axis of vorticity, shown by an arrow. This fabric has a J index
of 1.16, where J = 1 is an isotropic fabric.

and the J index at a finite strain of 0.5 (Fig. 13c). An example
showing the evolution of the J index with strain at a single
temperature and vorticity number is shown in Fig. 13d.

Figure 13a shows that as the steady-state fabric always
increases in strength. Furthermore, the steady-state fabrics
are strongest at a vorticity number of around 0.7 across al-
most the whole temperature space. Comparing to the fabric
strength at γ = 0.5, (Fig. 13c) highlights how far fabrics are
from reaching steady state at this strain; the fabric is approxi-
mately 2

3 of the steady-state value at γ = 0.5. This also shows
that at this strain, the strongest fabrics occur not for vorticity
numbers around 1, but for higher vorticity numbers of ∼ 3.

Figure 13b shows the finite strain at which the J index
is halfway to its steady-state value. This can be considered
the half-life over which fabric evolution occurs. Measuring
the strain at halfway to steady state gives insight into the
timescale over which fabric development occurs and is more
robust measure than estimating the strain at steady state,
which we found was sensitive to parameter variations such
as those shown in the Supplement. Vorticity numbers closest
to 0 and the coldest temperatures have the highest halfway
strain. Under these conditions, neither rigid-body rotation
nor migration recrystallisation is active to a significant de-
gree: the fabric evolution is dominated by basal-slip defor-
mation. Fabrics also take longer to develop closer to a vortic-
ity number of 0.7, due to the fact that this vorticity number
has the strongest fabrics generally. For W > 1 the strain to
reach half strength decreases, as the fabrics are shown to be
generally weaker as vorticity number increases.

Figures S11 and S12 in the Supplement show Fig. 13 with
the strongest and weakest possible fabric based on the 80 %
confidence intervals in Fig. 6. These figures show that the
halfway strain is fairly insensitive to changes in the parame-
ters, with the maximum varying by around±20 %. The max-

imum halfway strain remains at W = 0.1,T =−30 ◦C for
both Figs. S11 and S12. The J index at steady state is more
sensitive to changes in parameters, but the general picture of
how this variable changes across the T –W space is similar,
with the upper bound showing generally less variation across
the parameter space.

5 Discussion

The analysis presented here gives predictions for the fab-
ric patterns produced over the whole range of vorticity
numbers and temperatures arising for incompressible two-
dimensional deformation regimes, a first for fabric mod-
elling. We have limited the analysis here to fabrics produced
under a constant deformation regime and temperature. Al-
though ice in the natural world will undergo changing de-
formation regimes, our analysis is a first step to provide in-
sights into fabrics produced for deformation regimes away
from pure and simple shear. Furthermore, the fabrics anal-
ysed here are highly relevant for ice deformed in the labora-
tory, which is in most cases deformed at constant temperature
and vorticity number.

Ice in the real world will undergo three-dimensional de-
formations yet it is common to model ice sheets in two di-
mensions: either along the vertical cross section, such as in
Fig. 3 or Martín et al. (2009), or through depth-integrated
approaches (e.g Joughin et al., 2021). However, caution must
be used when applying the conclusions of this paper to areas
with highly three-dimensional deformations, such as curved
ice streams or other areas where there is both vertical and
horizontal deformation. Nevertheless, exploring general two-
dimensional deformations is a good first step away from
the isolated, two-dimensional conditions of pure and simple
shear alone.

5.1 Fabric patterns across deformation regime and
temperature space

Previous work has focused on modelling fabrics produced
at single deformation regimes (Llorens et al., 2016), or
modelling the deformation experienced by ice at a divide
(Bargmann et al., 2012). Due to the computational efficiency
of our model, we have been able to perform thousands of
simulations across the parameter space of temperature and
vorticity number to show how fabrics vary.

Our work generally shows a smooth transition between
the two deformation regimes of pure and simple shear, as
can be seen in Fig. 8 and agreeing with the high tempera-
ture experiments of Kamb (1972). Such intermediate defor-
mation regimes are important in the real world (Figs. 3, 4, 5)
and must be taken into account when considering ice fabrics,
rather than focusing on the isolated cases of pure and simple
shear.

https://doi.org/10.5194/tc-16-4571-2022 The Cryosphere, 16, 4571–4592, 2022



4584 D. H. Richards et al.: Ice fabrics in two-dimensional flows

Figure 10. Regime diagram of the different fabric patterns which occur (defined in Fig. 1). The angle of the primary cluster in Fig. 11 at
20 and 50◦ is also overlaid. The diagrams are shown for discrete strain values. The resolution of this figure is 50× 50 across the parameter
space.

The weak fabric seen for highly rotational flows had not
previously been studied at all to date. This result is interest-
ing as it reveals for the first time the fabric produced by rota-
tional deformation regimes: a weak girdle fabric. Throughout
these deformation regimes we have kept the magnitude of D,
the strain rate tensor, constant. Therefore, at high vorticity
numbers the weak fabric seen in Figs. 8 and 9 is not caused
by a lack of deformation. Instead it is due to the rotational
component acting to quickly smear any cluster produced by
basal-slip deformation or migration recrystallisation to ori-
entations where the cluster is consumed by migration recrys-
tallisation. The end result as W→∞ is a very weak girdle
fabric with the girdle aligned to the axis of vorticity.

The regime diagram in Fig. 10 shows the fabric patterns
produced across the space of vorticity number, temperature

and strain. From experimentally deformed ice, the vast ma-
jority of fabrics produced are girdle fabrics (Fan et al., 2020).
However, ice deformed in the laboratory in compression can
only reach strains of up to γ = 0.5 and Fig. 10 highlights
how double-maximum fabrics – the two-dimensional equiv-
alent of a girdle – are only present up to these strains. Above
γ = 0.5, secondary cluster and single-maximum patterns are
more prevalent. Importantly, as suggested by Kamb (1972),
secondary cluster fabrics, which are commonly only consid-
ered in simple shear (W = 1), can occur at very low vorticity
numbers (Fig. 10c and d).

Experimental results from Budd et al. (2013) show a
secondary cluster fabric for W = 0.85,γ = 0.34 and T =

−2 ◦C. Extrapolating Fig. 10a would suggest this agrees with
our model. Budd et al. (2013) also have another labora-
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Figure 11. Contour plots showing the angle (in degrees) of the largest cluster from the compression axis. Panels are shown for progressively
increasing finite strain values. The resolution of this figure is 50× 50 across the parameter space.

tory data point at W = 0.52,γ = 0.72 and T =−2 ◦C which
shows a single-maximum pattern. Visual extrapolation of the
regimes in Fig. 10 would predict a secondary cluster fab-
ric. However, it is close to the parametric boundary where
the fabric switches to becoming a single-maximum fabric. It
should also be noted SpecCAF has only been constrained up
to T =−5 ◦C, and, as ice approaches the melting point, the
parameters are likely to depend non-linearly on temperature,
so a simple extrapolation cannot be relied upon.

5.2 Finite strains required for fabric evolution

For the interpretation of ice fabrics, it is essential that we
know the timescale (or in the non-dimensional case here, to-
tal finite strain) over which fabrics evolve to steady state. In

this paper we have presented the first assessment of fabric
timescales (i.e. strains), by examining the “half-life” for fab-
rics to reach steady state (Fig. 13). In compression, experi-
ments can only reach a maximum effective strain of γ ≈ 0.5.
It is often assumed that a strain of around γ = 0.2 repre-
sents a steady state in the mechanical properties (e.g. Fan
et al., 2020). However, recent experiments show that the fab-
ric continues to evolve past this (Piazolo et al., 2013; Qi et al.,
2017). It is also known that fabrics require higher finite strain
to reach steady state in simple shear (Journaux et al., 2019).
Qi et al. (2017) note that fabric data are required at higher
strains than has been achieved to date by compression exper-
iments to link to high-strain natural environments. The re-
sults in our paper fill this missing gap. The analysis of fabric
regimes extends to very high strains of γ = 10. For low W ,
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Figure 12. Pole figures overlaid onto the regimes at γ = 2. The
pole figures are centred at the vorticity number and temperature they
occur.

in experiments and in Fig. 8, a fabric quickly develops at very
low strain γ ≈ 0.2, (also seen in Craw et al., 2018). Although
the fabric pattern does not change as strain increases, it can-
not be said to be in steady state because the concentration
of orientation at the clusters continues to increase. It should
be noted that any change in fabric intensity will directly af-
fect the mechanical properties such as the degree of viscous
and seismic anisotropy (Duval et al., 1983; Matsuoka et al.,
2003).

Figure 13a shows that, for very low temperatures (T ≈
−30 ◦C), the strain to reach halfway to steady state is the
highest, around γ = 0.5. As can be seen in Fig. 13c the true
steady state can not be reached until much later as the J index
approaches the steady-state value slowly. From this we can
remark that reaching true steady states at these temperatures
in laboratory experiments will be impossible for deforma-
tions close to pure shear. Although Fig. 13a shows that, above
very low temperatures (T >−24 ◦C), deformation regimes
closer to simple shear take longer to reach steady state. How-
ever these strains are more achievable in the laboratory as
fabrics can be deformed in torsion, allowing very high strains

such as γ > 1.5 to be reached (Journaux et al., 2019). Fur-
thermore, the strain to reach halfway to steady state is pri-
marily dependent on vorticity number W , rather than tem-
perature.

5.3 Consequences for ice core interpretation

Analysis and interpretation of ice cores remain key for un-
derstanding the processes occurring in the natural world, for
both understanding the past climate history (Dansgaard et al.,
1969) as well as understanding ice sheet dynamics (Schytt,
1958). The regime diagrams we have constructed (Figs. 10,
11) can be used as a tool kit to interpret ice cores. For ex-
ample a single-maximum fabric with an angle less than 20◦

between the compression axis and primary cluster centre im-
plies the core has undergone mostly compression at low tem-
perature. If other constraints are available such as knowledge
that the deformation regime history or temperature has been
constant to good approximation, the dominant deformation
regime and temperature can be further constrained. As our
work here is for constant temperature and vorticity number,
any ice core fabric interpretation will inherently assume that
an ice core that has been deformed primarily at a dominant
temperature and deformation regime over its recent history.
Since temperature varies with depth in an ice sheet (Pater-
son, 1999), this method is likely to be most reliable for ice
cores where the ice is primarily moving horizontally, i.e. far
from ice divides. We have also assumed an initially uni-
formly distributed orientation for the fabric (corresponding
to initially randomly distributed orientations). Although de-
formation regime history in the natural world is likely to be
complex, this is a reasonable assumption because ice formed
from surface accumulation will initially have a random dis-
tribution of orientations (Montagnat et al., 2020).

The fabric pattern is a robust way to interpret ice cores,
as it requires no assumption about the deformation regime
direction. The regime diagram in Fig. 10, which is based
on the fabric pattern only, is complex but allows insights to
be drawn. For example, the presence of double- maximum
fabrics (two equal strength clusters) implies that the fabric
has undergone a relatively low strain. A secondary cluster
fabric implies that the fabric is likely to be at intermediate
strains, and at temperatures T >−20 ◦C. A very weak sec-
ondary cluster fabric implies a rotational deformation regime
W > 3. Furthermore, we have shown that the presence of a
fabric that appears to be isotropic could be indicative not only
of no deformation, but also of a highly rotational deformation
regime.

If other information about the fabric history is known,
Figs. 10 and 11 can be used in combination to extend this
knowledge. For example, if there are independent constraints
on the orientation of the deformation regime axis, then the
angle of the primary cluster can be used to interpret ice cores
as well. As can be seen in Fig. 11 the angle between the pri-
mary cluster and the compression axis is relatively invariant
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Figure 13. Properties of steady-state fabrics across the W–T parameter space. (a) shows the J index at the steady state. (b) shows the finite
strain required to reach halfway to the steady-state value of J . (c) shows the J index at a strain of γ = 0.5. (d) shows the plot of J against
strain γ , illustrating the strain at halfway to steady state and J index at γ = 0.5.

with strain. Knowing this angle can therefore give a good es-
timate of the vorticity number and temperature.

5.4 Implications for ice flow properties and modelling

Viscous anisotropy of ice is controlled by the fabric and
is a key control of the flow field (e.g. Alley, 1988). This
anisotropy is dependent on the pattern, direction and strength
of the fabric. The current approach common in ice-sheet
models is to represent anisotropy with an enhancement fac-
tor that scales the viscosity, either globally (Graham et al.,
2018) or locally (Placidi et al., 2010). The model SpecCAF
used in our paper can, in principle, be coupled with any
anisotropic viscosity formulation to include directional vari-
ation in viscosity. Martín et al. (2009) have coupled a fab-
ric model to an anisotropic viscosity, but the fabric evolu-
tion model used did not include recrystallisation, which is a
key process in controlling fabric evolution and its approach
to final steady state. Their model also neglects the consider-
able effect of temperature dependence. The high sensitivity
of fabric strength and patterns to temperature shown in our
paper, in agreement with experiments (Qi et al., 2019), may
lead to further interesting flow features on top of those caused
by anisotropy alone. This can only be captured with a cou-
pled fabric model including a temperature-dependent fabric.

Temperature can also affect the flow through viscous heating
(e.g Hindmarsh, 2004) and a temperature-dependent fabric
model coupled to anisotropic viscosity such as Gillet-Chaulet
et al. (2005) would allow us to understand what proportion of
the effects of temperature are a consequence of viscous heat-
ing and what proportion arise through temperature-induced
changes to the fabric.

Our analysis of fabrics here can also give insight into
where anisotropy may be most important in an ice sheet.
Areas with strong fabrics will be highly anisotropic, with
the viscosity varying in different directions. Anisotropic
flow is not well studied but initial simulations with coupled
anisotropic flow show that it can explain hitherto unexplained
observations such as syncline patterns observed under ice di-
vides (Martín et al., 2009). Our analysis of fabrics produced
in highly rotational deformation regimes showing an almost
isotropic fabric (as seen in Figs. 8 and 13b) implies that in
the regions of Antarctica where the flow is highly rotational
(i.e. those highlighted in Fig. 5), the fabric will evolve to-
wards a state with limited anisotropy (directional variation
in viscosity). However areas of approximately simple shear
(W = 1) show the strongest fabrics and hence the strongest
effect of anisotropy. This means viscous anisotropic effects
are expected to be widespread, further motivating the need
to fully represent them in models. In future work it would
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be possible to explore how seismic wave velocities vary with
the different fabrics modelled in this paper, again comparing
to real-world observations (e.g. Smith et al., 2017).

6 Conclusions

Accurately predicting ice fabric evolution is pivotal for the
correct interpretation of ice core fabrics as well as the reli-
able prediction of ice losses in a changing climate. Our work
extends the ability to predict fabric evolution from the de-
formation regimes of pure and simple shear to general two-
dimensional deformation regimes. This represents a step to-
wards understanding fabrics in fully general conditions: key
for understanding viscous anisotropy and, in turn, large-scale
ice-sheet flow modelling. We have shown that deformation
regimes outside of pure and simple shear are important in
common flow scenarios seen in ice sheets. Future work could
use the modelled fabric to predict seismic properties, to com-
pare to real world observations.

The regime diagrams presented are a useful tool to help
with the interpretation of ice core data. In combination with
other information, such as the plane of deformation regime or
an estimate of the temperature at which a core was deformed,
these regime diagrams can be used to determine the primary
deformation regime and temperature undergone by an ice
core. We show that for two-dimensional deformations, the
double-maximum fabric is not present at high strains when
only a small amount of vorticity is present in the deformation
regime W > 0.1. This is important as many laboratory exper-
iments are performed for W = 0. Future work could inves-
tigate whether this conclusion extends to three-dimensional
girdle fabrics.

Highly rotational deformation regimes were investigated
for the first time and showed a weak girdle fabric aligned to
the axis of vorticity. We have also shown how the timescale
for fabric evolution, shown by the halfway strain to reach
steady state, changes over the parameter space. Laboratory
experiments around simple shear may be able to reach the
strains required to get close to steady state; however com-
pression experiments, especially at low temperatures, cannot
achieve the required strains for steady state.

Our predictions of ice fabric evolution over a wide range
of deformation regimes provide insights into how and where
viscous anisotropy will be important for ice-flow dynamics.
Intermediate deformation regimes between pure and simple
shear produce the strongest fabrics, suggesting anisotropy
will be most important in these regions. Similarly, as highly
rotational deformation regimes produce a weak fabric, there
is likely to be a less dominant effect of anisotropy in such re-
gions. Our understanding of these issues could be further im-
proved by combining our model with an anisotropic viscos-
ity formulation to model the coupled fully anisotropic flow of
ice. This is an important future step for accurately predicting
ice flow.
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