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Simple Summary: The pro-inflammatory cytokine, IL1β, plays a pivotal role in breast cancer bone

metastasis. Inhibiting IL-1 signalling with the IL1β specific antibody, Canakinumab, or the IL1R1

antagonist Anakinra almost eliminates bone metastases but has adverse effects on tumours growing

outside of the bone and immune regulation. This current study demonstrated that pharmacological

inhibition of other members of the IL-1 signalling pathway Caspase-1, IL1β and IL1R reduced

migration and invasion of E0771 and Py8119 cells in vitro and also reduced spontaneous metastasis

and metastatic outgrowth of breast cancer in the bone, in vivo. Interestingly, targeting IRAK1 had no

anti-tumour effects. Importantly, inhibiting Caspase-1 reduces bone metastasis without adversely

affecting tumours outside of bone or immune cell regulation, suggesting that targeting immediately

upstream of IL1β may be a good therapeutic strategy for treating patients with breast-cancer-induced

bone disease.

Abstract: Breast cancer bone metastasis is currently incurable. Evidence suggests that inhibiting

IL-1 signalling with the IL1R antagonist, Anakinra, or the IL1β antibody, Canakinumab, prevents

metastasis and almost eliminates breast cancer growth in the bone. However, these drugs increase

primary tumour growth. We, therefore, investigated whether targeting other members of the IL-1

pathway (Caspase-1, IL1β or IRAK1) could reduce bone metastases without increasing tumour growth

outside of the bone. Inhibition of IL-1 via MLX01 (IL1β secretion inhibitor), VRT043198/VX765

(Caspase-1 inhibitor), Pacritinib (IRAK1 inhibitor) or Anakinra (IL1R antagonist) on tumour cell

viability, migration and invasion were assessed in mouse mammary E0771 and Py8119 cells in vitro

and on primary tumour growth, spontaneous metastasis and metastatic outgrowth in vivo. In vitro,

Inhibition of IL-1 signalling by MLX01, VRT043198 and Anakinra reduced migration of E0771

and Py8119 cells and reversed tumour-derived IL1β induced-increased invasion and migration

towards bone cells. In vivo, VX765 and Anakinra significantly reduced spontaneous metastasis

and metastatic outgrowth in the bone, whereas MLX01 reduced primary tumour growth and bone

metastasis. Pacritinib had no effect on metastasis in vitro or in vivo. Targeting IL-1 signalling with

small molecule inhibitors may provide a new therapeutic strategy for breast cancer bone metastasis.

Keywords: breast cancer; bone metastasis; IL1β; mouse models

1. Introduction

Over 2.3 million women are diagnosed with breast cancer every year, and ~685,000
will die as a result of this condition (www.who.int) (accessed on 23 May 2022). Whilst
improvements in targeted treatments for primary breast cancers have proven to be ben-
eficial, with >80% of women making a full recovery, for patients whose tumours spread
to distant organs, there are still no curative treatments. Around 70–80% of patients with
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late-stage breast cancer develop secondary tumours in their skeletons, and life expectancy
for these patients drops to 2–3 years following diagnosis of bone involvement [1]. There is,
therefore, a clear need for improved therapies for patients whose tumours spread to bones.
There is increasing evidence that the pro-inflammatory cytokine IL1β plays a critical role in
breast cancer spread to the bone and metastatic outgrowth in this site: In patient samples,
expression of IL1β by breast cancer cells is associated with an increased likelihood of future
relapse in the bone [2,3]. Overexpression of IL1β in tumour cells facilitates epithelial to
mesenchymal transition (EMT), migration and invasion towards bone cells in vitro, as well
as inducing bone homing properties and promoting the dissemination of tumour cells in the
bone in in vivo models [2–8]. Once cancer cells are disseminated in the bone, interactions
between tumour cells and the bone metastatic niche (osteoblasts, haematopoietic stem cells
and blood vessels) lead to increased secretion of IL1β in the local environment. Environ-
mental IL1β promotes the expansion of the niche, and IL1β driven wnt activation leads
to metastatic outgrowth of tumour cells disseminated in this site [2,7,9,10]. Importantly,
inhibition of IL-1 signalling with the anti-IL1β antibody Canakinumab, or the IL1R antago-
nist, Anakinra, inhibits bone metastasis in pre-clinical models of breast cancer. Similarly,
Canakinumab has been shown to have potent anti-cancer effects in a clinical trial [11], sug-
gesting that targeting IL-1 may be an attractive therapeutic strategy for preventing/treating
breast cancer-induced bone disease 1, [12,13].

In addition to its direct anti-metastatic properties, IL1β plays a central role in regu-
lating immunity [14], and it has recently become apparent that IL1β within the tumour
microenvironment is important for recruiting anti-tumour immune cells, especially in soft
tissue tumours [7,10]. Global removal of IL1β in IL1β knockout mice leads to increased
growth of primary mammary tumours, and administration of Anakinra/Canakinumab
also increases the growth of primary breast cancers in mice [2,13]. Anakinra also in-
creases the growth of disseminated tumour cells in the lungs [15–17]. Interestingly, IL1β
appears to regulate anti-tumour immunity differently in the bone and soft tissue sites,
promoting the recruitment of anti-tumour macrophages, neutrophils and Th1 cells in soft
tissues and reducing myeloid cells in the bone [13,18]. Moreover, the administration of
Canakinumab had been shown to significantly reduce the development of lung cancers in
patients with atherosclerosis but had the adverse effect of increasing incidences of serious
infections [11,19].

Given the promising outcomes of inhibiting IL-1 in suppressing breast cancer bone
metastasis, we have evaluated the effects of small molecule inhibitors that target different
parts of the IL1β signalling pathway (Caspase-1, IL1β and IRAK1, Interleukin 1 Receptor
Associated Kinase 1) on breast cancer bone metastasis. Using in vitro and in vivo mod-
els, we have attempted to identify these inhibitors that could prevent IL1β-driven bone
metastasis without stimulating tumour growth outside the bone or adversely affecting
systemic immunity.

2. Materials and Methods

2.1. Cell Lines

Mouse mammary tumour E0771 were originally provided by Professor Sandra McAl-
lister’s laboratory (Department of Medicine, Harvard Medical School, Boston, MA, USA)
and Py8119 cells purchased from ATCC. These cells were manipulated to make E0771
Luc2 V5 GFP, E0771 Luc2 V5 IL1B GFP, E0771 Luc2 V5 IL1R1 cell lines and Py8119 Luc2
V5 GFP, Py8119 Luc2 V5 IL1B GFP, and Py8119 Luc2 V5 IL1R1 GFP as previously pub-
lished and expression levels of IL1B and IL1R1 were confirmed by real-time PCR and
ELISA (Figure S1A–D) [13]. E0771 and Py8119 Cell lines were cultured in RPMI 1640
Medium (61870-010, Gibco, Waltham, MA, USA) with 10% v/v fetal bovine serum (FBS)
(F7524, Sigma, St. Louis, MI, USA). Pre-osteoblast OB1 cells were a kind gift from Marianna
Kruithof de Julio (University of Bern, Bern, Switzerland), and this cell was cultured by
DMEM medium (61966-021, Gibco) with 10% v/v FBS. HUVECs were purchased from Pro-
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moCell (Heidelberg, Germany) and cultured in the media supplied (Promocell, Heidelberg,
Germany, C-12211 and C-39220).

2.2. Drugs

Anakinra (r-metHu1L-ra) was obtained from Amgen, Cambridge, UK. MLX01 was
obtained from Michael Leach University of Greenwich, and the evidence of MLX01 in-
hibition of IL1β production in human cell lines is shown in Figure S2A, and in mouse
tissue is shown in Figure S2B. VX765 (S2228) was obtained from Selleckchem (Boston, MA,
USA). VRT043198 (244133-31-1) and Pacritinib (202571) were purchased from Medkoo
(Morrisville, NC, USA). Recombinant Mouse IL1β (575106) was purchased from BioLegend
(San Diego, CA, USA).

2.3. In Vitro Studies

MTT: Cell viability was assessed by MTT according to the manufacturer’s instruction
(M5655-1G, Sigma-Aldrich, St. Louis, MI, USA), and the plate was finally read at 570 nm
by FlexStation3 Benchtop Multi-Mode Microplate Reader (Molecular Devices, San Jose,
CA, USA). Scratch assay: Cell migration was assessed by scratch assay: 100% confluent
monolayers of E0771 or Py8119 cells were treated with 10µg/mL Mitomycin C (M-0503,
Sigma-Aldrich) for 3 hours (Mitomycin C serves to inhibit cell proliferation from eliminating
the impact of cell division on data analysis from scratch assay and transwell assays.) in a 12-
well plate before a scratch was made by a 200µL-tip. Six different fields in each scratch were
photographed by EVOS™ FL Auto 2 Imaging System (Fisher Scientific, Waltham, MA, USA)
at 0 h, 24 h, and 48 h post the scratch and finally, T-scratch software (ETH Zurich, Zürich,
Switzerland) [20] was used to analyse % of open area in the image. Transwell assay: Two
types of transwell inserts were respectively used to assess the migratory and invasive ability
of E0771 and Py8119 cells towards pre-osteoblast, OB1 cells, Costar transwell permeable
Supports 6.5 mm insert with 8um Polycarbonate Membrane (31019046) for migration and
Corning BioCoat Matrigel Invasion insert with 8µm Polycarbonate Membrane (354480) for
invasion. Firstly, pre-osteoblast OB1 cells or HUVECs were seeded at 30,000 cells/well in
a 24-well-plate for 24 h. The next day, a 70% confluent monolayer of E0771/Py8119 cells
was treated with 10µg/mL Mitomycin C (Sigma-Aldrich, M-0503) for 3 hours before cells
were collected and resuspended in 0.1% w/v BSA (A7030, Sigma) RPMI 1640 (FBS free) at
1 × 105 cells/well. A total of 200 µL of this cell suspension was subsequently added into
the transwell insert. This insert was suspended above with OB1 cells following addition of
600 µL, fresh, complete DMEM or with HUVECs in 600 µL endothelial cell media supplied
with these cells. After 24 h post cell seeding, un-invaded cells from the top of the membrane
of the insert were wiped with a cotton bud before the membrane was fixed in 100% ethanol
for 5 min and stained with haematoxylin solution (5 min) and 1% w/v eosin (1 min). The
membrane was removed from the insert and mounted onto a glass slide using the aqueous
mounting medium (S3025, DAKO, Glostrup, Denmark). Finally, the stained membrane
was photographed by Leica microscope with Olympus DP73 colour camera (Tokyo, Japan),
and the number of cells was counted.

2.4. In Vivo Studies

In vivo procedures were conducted in accordance with local guidelines and with UK
Home Office approval under Project License (PPL) 70/8964 or P99922A2E, University of
Sheffield, UK. Mice were maintained on a 12 h light:12 h dark cycle with food and water
provided ad libitum.

Model of metastatic outgrowth following tumour cell disseminated into metastatic
organs (intra-cardiac injection): 2.5 × 104 E0771 luc2 GFP cells were administered via intra-
cardiac injection into 5–6-week C57Bl/6J female mice. Five days post tumour cell injection,
mice were imaged by IVIS and randomised into groups of equal tumour size. At this
point mice received daily intraperitoneal injection of control (5% v/v DMSO/PBS), MLX01
(50 mg/kg), VX765 (50 mg/kg), Anakinra (1 mg/kg), or Pacritinib (50mg/kg) or orally
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gavage of control (5% v/v DMSO/PBS) or MLX01 (100 mg/kg). Model of spontaneous
tumour cells metastasis (intra-ductal injection): 1.25 × 105 E0771 luc2 GFP cells were
engrafted via injection into the 4th mammary ducts of 5–6-week C57Bl/6J female mice
following subcutaneous injection of 0.002 mg Vetergesic. Seven days post tumour cell
injection, when tumour volume reached around 0.027 cm3, mice were randomised into
groups of equal tumour volume, and at this point, mice were given daily intraperitoneal
injections of control (5% v/v DMSO/PBS), MLX01 (50 mg/kg), VX765 (50 mg/kg), Anakinra
(1 mg/kg), respectively. Tumours were measured by digital vernier scale every three days,
and mice were culled once their primary tumour reached 1 cm3.

2.5. In Vivo Imaging

Tumours in soft tissue or hind limbs were measured using bioluminescence-based
in vivo imaging (IVIS Lumina II in Vivo Imaging System (PerkinElmer, Waltham, MA,
USA) and Living Image® 4.5.4 software) 2-, 7-, 15- and 17-days post tumour cell injection,
5 minutes following subcutaneous injection of 6 mg/kg D-Luciferin (Invitrogen, Waltham,
MA, USA). Maximum BLI thresholds were set as 5e5 photons, and minimum BLI thresholds
were modified across experimental models to allow the visualisation of tumour-derived
bioluminescent signals.

2.6. Sample Collection

After dissection and IVIS imaging, half of primary tumours, lungs and both tibias were
fixed in 4% w/v PFA/PBS for 48 hours and stored in 70% v/v ethanol/distilled water for
uCT analysis. The other half of the tumours and lungs and both femurs were snap-frozen
by immersing in liquid nitrogen and then stored at −80 ◦C. Following blood collection,
serum was collected by centrifugation and stored at −80 ◦C. Spleens were stored at −80 ◦C
in 10% v/v DMSO/ FBS for future flow cytometric analysis.

2.7. Microcomputed Tomography Imaging

Microcomputed tomography imaging analyses were carried out via a Skyscan 1172
X-ray–computed µCT scanner (Bruker, Billerica, MA, USA) equipped with the X-ray tube
(voltage, 49 kV; current, 200 mA) and the 0.5 mm aluminium filter. Pixel size was set
to 4.3 µm, and scanning initiated from the top of the proximal tibia as described previ-
ously [21].

2.8. ELISA

Mouse serum TRAP5b was assessed by MouseTRAP™ (TRAcP 5b) ELISA (SB-TR103),
and mouse serum P1NP was assessed by Elabscience P1NP (Procollagen 1 N-Terminal
Propeptide) ELISA kit (E-EL-M0233) in accordance with manufacturer instructions. Mouse
IL1β was assessed by ELISA MAX™ Deluxe Set Mouse IL1β (432604, BioLegend)

2.9. Flow Cytometry

Frozen spleens were quickly defrosted in a 37 ◦C water bath and then washed in
PBS three times to remove DMSO. Deforested spleens were chopped and digested using
Liberase digestion solution (Roche, 0540102001) and then filtered using a 100 µm cell
strainer to single cells in 1% v/v FBS/PBS (FACS buffer). Samples were aliquoted and
incubated with fluorochrome-conjugated antibodies and the viability dye (Table S1) for
45 min on ice. Next, the cell pellet was resuspended with 0.5ml 1% v/v PFA/PBS. Finally,
the cell suspension was transferred to a filtered FACS tube on the ice and analysis was
performed by BD LSR II flow cytometer and FlowJo software v10.8.0 (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA). The gating strategy is shown in Figures S10 and S11.

2.10. Statistical Analysis

Data analysis was performed using GraphPad Prism 9 (GraphPad Software Inc.,
San Diego, CA, USA). Data were analysed using unpaired t-tests for single timepoints and
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two-way ANOVA for time course experiments. All data from in vitro experiments are from
a minimum of three repeats from three biological experiments, and their graphs represent
mean + SD. All in vivo experiments show all individual points, and their graphs represent
mean + SD. Statistical significance was defined as * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

3. Results

3.1. MLX01, VX765, and Anakinra All Inhibit Migration and Invasion of Breast Cancer Cells
In Vitro

MLX01 (small molecule inhibitor of IL1β that reduces secretion but not the transcrip-
tion of IL1β by human cells in vitro (Figure S2A) and in mouse tissue in vivo (Figure S2B–D),
VRT043198/VX765 (Caspase-1 inhibitors), and Pacritinib (IRAK1 inhibitor) are small
molecule inhibitors that block IL-1 signalling by inhibiting IL1β, Caspase-1 and IRAK1, re-
spectively (Figure 1A). We assessed the effects of these inhibitors on parameters associated
with tumour growth and metastasis in mouse mammary cancer cell lines E0771 and Py8119
and compared results with the FDA/NICE approved IL1Ra biologics agent Anakinra which
has been shown to produce promising effects in blocking breast cancer metastasis to bone
in previous studies [2,12,13]. The function of IL-1 signalling on viability and migration and
invasion of breast cancer cells was assessed, in vitro, upon IL1B or IL1R1 overexpressing
(Figure S1) or treatment with anti-IL-1 signalling. Our data showed that increasing IL-1
signalling via genetic overexpression of IL1β or IL1R1 or by adding recombinant IL1β did
not significantly affect the viability of E0771 and Py8119 (Figures 1B,C and S3A). Similarly,
pharmacological inhibition of IL1β secretion with MLX01, or inhibition of Caspase-1 with
25 ng/mL VRT043198, inhibition of IL1R1 with Anakinra had no significant effect on
tumour cell viability (Figures 1C and S3B–D). Interestingly, inhibition of IRAK1 with 250
pg/mL Pacritinib significantly reduced viability of E0771 and Py8119 (p = 0.04, p = 0.0247)
(Figures 1C and S3E). These results demonstrate that alteration of IL-1 by changing IL1β or
inhibiting the IL-1 binding with IL1R1 has no effect on the viability of breast cancer cells
in vitro.

Our previous study showed that tumour-derived IL1β was much more potent at pro-
moting the migration of MDA-MB-231 and MCF7 breast cancer cells compared with IL1β
from the microenvironment [2]. To validate this result in the cell lines used for the current
study, we genetically manipulated E0771 and Py8119 cells to increase the expression of IL1β,
or IL1R1 and used scratch assays to compare their migratory ability with control cells as
well as control cells stimulated with recombinant mouse IL1β (microenvironment derived
IL1β). We found that 5 ng/mL mouse recombinant IL1β did not promote the migration of
breast cancer cells, while genetic overexpression of IL1β increased the migration of E0771
(p = 0.003) and Py8119 cells (p = 0.0776) (Figure 2A). Moreover, genetic overexpression
of IL1R1 had no effect on the migration of either cell line (Figure 2A). Importantly phar-
macological inhibition of IL-1 signalling using 12 ng/mL MLX01 (p = 0.0245, p = 0.0103),
25 ng/mL VRT043198 (p = 0.0028, p = 0.0093) or 0.1 mg/mL Anakinra (p = 0.0040, p = 0.0081)
significantly decreased migration of both E0771 and Py8119 cells (Figure 2B). Since Pacri-
tinib significantly reduced cell viability and detached adherent cells from plates, scratch
assays were not used to assess the effects of migration of E0771 and Py8119 for Pacritinib.

In order to elucidate the effect of IL-1 signalling on breast cancer cell migration and
invasion towards the bone, E0771 and Py8119 cells were seeded into the upper chamber
of a transwell assay in which the lower chamber had been pre-seeded with pre-osteoblast
OB1 cells. The number of tumour cells migrating through pores in the dividing membrane
or invading through a Matrigel-coated membrane was counted after 24 h of co-culture.
Overexpression of IL1β significantly increased E0771 and Py8119 cell migration and inva-
sion towards OB1 cells (migration p = 0.0026, p = 0.0094; invasion p = 0.0007, p = 0.0001,
respectively) (Figure 2C,D), suggesting that tumour derived IL1β enhances the functional
properties of breast cancer cells enabling migration and invasion towards bone. These
enhanced migratory and invasive abilities were significantly reversed by pharmacologi-
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cal inhibition of IL-1 secretion with 12 ng/mL MLX01 (migration p = 0.0858, p = 0.0159;
invasion p = 0.0374, p = 0.0482), 25 ng/mL VRT043198 (migration p = 0.0317, p = 0.0121;
invasion p = 0.0007, p = 0.0232) and 0.1 mg/mL Anakinra (migration p = 0.0165, p = 0.0467;
invasion p = 0.001, p = 0.0088) (Figure 2C,D). However, inhibition of IRAK1 via 250 pg/mL
Pacritinib had no effect on migration or invasion of E0771 IL1β overexpression cells to
bone (Figure S4A,B). Moreover, we also investigated the effect of IL1β on invasive ability
in the presence of human umbilical vein endothelial cells (to represent the metastatic lung
niche, which is comprised of endothelial cells). Interestingly, we found that tumour-derived
IL1β decreased the ability of breast cancer cells to invade HUVEC cells (E0771, 0 = 0.0101;
Py8119, p = 0.0231), which is opposite to the pro-metastatic effects observed toward the
bone metastatic niche. Furthermore, pharmacological inhibition of IL-1 signalling (via
12 ng/mL MLX01: Py8119, p = 0.0003; 25 ng/mL VRT043198: p = 0.0283; and 0.1 mg/mL
Anakinra) increased invasion of breast cancer cells to HUVEC cells (Figure S4C). These
results demonstrate that IL1 signalling in breast cancer cells has different effects on metas-
tasis to different metastatic niches; IL-1 is strongly pro-metastatic towards bone cells but
anti-metastatic towards endothelial cells.

The effects of IL1β overexpression and inhibitors of the IL1β pathway on viability of E0771 

tors), MLX01 (IL1β secretion inhibitor), Anakinra (IL1R antagonist) and
inhibit the IL1β signalling pathway. ( ) Effects of overexpression of IL1β (IL1B+), overexpression 
of IL1R1 (IL1R1+), inhibition of IL1β (12

and recombinant IL1β (5
are from three biological experiments and their graphs represent mean + SD, *

derived IL1β was much more potent at pro-
st cancer cells compared with IL1β 

IL1β, or IL1R1 and used scratch assays t
IL1β

derived IL1β). We found that 5 mouse recombinant IL1β did not promote 
enetic overexpression of IL1β increased the migration 

Figure 1. The effects of IL1β overexpression and inhibitors of the IL1β pathway on viability of E0771

and breast cancer cells in vitro. (A) Cartoon showing where VX765/VRT043198 (Caspase-1 inhibitors),

MLX01 (IL1β secretion inhibitor), Anakinra (IL1R antagonist) and Pacritinib (IRAK1 inhibitor) inhibit

the IL1β signalling pathway. (B,C) Effects of overexpression of IL1β (IL1B+), overexpression of IL1R1

(IL1R1+), inhibition of IL1β (12 ng/mL MLX01), inhibition of Caspase-1 (25 ng/mL VRT043198),

inhibition of IL1R (0.1mg/kg Anakinra) and inhibition of IRAK1 (250 pg/mL Pacritinib) and recombi-

nant IL1β (5 ng/mL) on tumour cell viability, normalised to control. All experiments are from three

biological experiments and their graphs represent mean + SD, * p < 0.05, ** p < 0.01.
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The effects of IL1β overexpression and inhibitors of the IL1β pathway on migration and 
Effects of overexpression of IL1β 

(IL1B+), overexpression of IL1R1 (IL1R1+), inhibition of IL1β (12ng

48 h in culture, Representative images of cells at 48 h are 

effects of alteration of IL1β signalling on migration and invasion towards pre

mean + SD, *

Figure 2. The effects of IL1β overexpression and inhibitors of the IL1β pathway on migration

and invasion of E0771 and Py8119 breast cancer cells in vitro. (A,B) Effects of overexpression of

IL1β (IL1B+), overexpression of IL1R1 (IL1R1+), inhibition of IL1β (12ng/mL MLX01), inhibition

of Caspase-1 (25 ng/mL VRT043198), inhibition of IL1R (0.1 mg/kg Anakinra) on cell migration of

wide type E0771 and Py8119 cells. Data are presented as the percent of scratch closure following 24 h

and 48 h in culture, normalised for the beginning of scratch. Representative images of cells at 48 h

are shown where the yellow and blue lines are scratch edges at 0 h and 48 h, respectively. (C,D) The

effects of alteration of IL1β signalling on migration and invasion towards pre-osteoblast for 24 h (OB1

cells). All experiments are from three biological experiments and their graphs represent mean + SD,

* p < 0.05, ** p < 0.01, *** p < 0.001.
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3.2. MLX01, VX765, and Anakinra Reduce Metastatic Outgrowth of Tumour Cells Disseminated
in the Bone In Vivo

To investigate the effects of the small molecule inhibitors of the IL1β signalling path-
way, MLX01, VX765 and Pacritinib, on disseminated breast cancer metastasis to bone
in vivo, E0771 Luc GFP bone homing cells were injected into the blood circulation of
C57BL/6J mice via intra-cardiac injection, and metastatic outgrowth was compared with
control (PBS treated mice) and mice treated with Anakinra. Three days post-injection of tu-
mour cells, mice were randomised into the following groups: PBS (control), 50 mg/kg/day
MLX01, 50 mg/kg/day VX765, and 1 mg/kg/day Anakinra; all treatments were adminis-
tered by i.p injection for 13 consecutive days (Figure 3A). Firstly, 50 mg/kg/day MLX01,
50 mg/kg/day VX765 and 1 mg/kg/day Anakinra significantly reduced the number of
overt metastasis per mouse (p = 0.009, p < 0.0001, p < 0.0001, respectively) (Figure 3C),
whereas administration of 50 mg/kg Pacritinib had no significant effects (Figure 3J). Five
days after injection of tumour cells, the development of bone metastases in the hind limbs
was reduced upon treatment with MLX01, VX765 and Anakinra (femur/tibia of 6/11
(54.5%) mice in the control group; 1/10 (10%) mice in the MLX01 treatment group; 0/11
(0%) mice in the VX765 treatment group and 0/11 (0%) of mice following treatment with
Anakinra) (Figure 3B,E). Sixteen days post tumour injection, numbers of mice with bone
metastasis increased to 8/11 (72.7%) of mice in the saline group and 5/10 (50%) of mice in
the MLX01 treatment group; however, bone metastases did not develop following adminis-
tration of VX765 (0/11 (0%) of mice), and only 1/11 (9%) mice developed bone metastasis
following Anakinra (Figures 3E and S5A). Because FDA/NICE approved IL1β inhibitors,
Canakinumab and Anakinra, have poor oral bioavailability making administration difficult
for patients (subcutaneous injection), we also assessed the ability of the orally available
IL1β inhibitor, MLX01, to inhibit the metastatic outgrowth of breast tumours following
oral administration (Figure S6A). Because MLX01 reduces IL-1B secretion but not tran-
scription (Figure S2B–D), we used ELISA (Figure S2D) to first confirm that oral gavage
of 100 mg/kg MLX01 reduced IL-1B secretion in mice to the same level as administering
50 mg/kg via i.p injection (Figure S2B,C) Oral gavage of 100mg/kg MLX01 reduced the
number of overt metastases of whole mice (p = 0.0085) and reduced metastatic outgrowth
of E0771 cells in the bone by 50% and 34%, 10 days and 16 days after tumour cell injection,
respectively (Figure S6C,E). Unlike other inhibitors of the IL-1 pathway, inhibition of IRAK1
with Pacritinib had very little effect on bone metastasis, reducing metastatic outgrowth
of disseminated tumour cells in the bone by 12% compared with control, 18 days post
tumour injection (Figures 3L,I and S5C). Interestingly, bioluminescence imaging showed
that when tumours did grow in the bone and multiple organs, their volume was not al-
tered following treatment with any inhibitors tested, suggesting that inhibition of the IL1β
signalling pathway prevents the initial stages of metastatic outgrowth of disseminated
tumour cells in the bone but does not slow down the growth of established tumours in this
site (Figures 3D,F,K,M and S6D,F).

Previously published data have shown that inhibiting IL1β signalling with Canakinumab
increases the growth of soft tissue metastasis [2]. We, therefore, investigated the effects
of small molecule inhibitors of the IL1β signalling pathways on the metastatic outgrowth
of E0771 cells disseminated in soft tissues. When we quantified the number of mice in
which soft tissue metastases developed, we could see that MLX01, VX765 and Anakinra
reduced the percentage of mice with liver metastases by 56%, 60% and 60%, respectively,
and kidney metastases by 52%, 85% and 85%, respectively, compared with control mice
treated with PBS (Figure 3G). MLX01 treatment, however, increased lung metastasis by
61% and the same effect was confirmed in mice which received 100 mg/kg MLX01 by oral
gavage (Figures 3G and S6G). Moreover, although VX765 and Anakinra did not increase
the percentage of mice with lung metastasis, similar to MLX01, in lungs where metastases
did develop, tumour growth was increased. (Figures S5B and S6I). Pacritinib, on the other
hand, exerted no significant effects on soft tissue metastasis (Figures 3N and S5D).
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3.3. MLX01, VX765, and Anakinra Reduce Spontaneous Breast Cancer Metastasis to Bone

Because inhibiting the IL1β signalling pathway with MLX01, VX765 and Anakinra
reduced migration and invasion, in vitro, and metastatic outgrowth of disseminated breast
cancer cells in the bone, in vivo, we investigated whether administrating these treatments
earlier in cancer progression could reduce spontaneous metastasis. For these experiments,
E0771 Luc GFP bone homing cells were orthotopically engrafted in C57BL/6J female
mice. Seven days later, mice were randomised to the following groups: PBS (control),
50 mg/kg/day MLX01, 50 mg/kg/day VX765 or 1 mg/kg/day Anakinra. Mice were
culled on an individual basis once their tumours reached 1000 mm3 and assessed for pri-
mary tumour growth and development of metastasis (Figure 4A). Our data showed that
MLX01 significantly decreased growth of primary tumours compared to saline (p < 0.0001)
resulting in increased survival (p = 0.0199) (Figure 4B,C). However, VX765 and Anakinra
had no effect on E0771 tumour growth in the primary site compared with control (Figure 4B).
All inhibitors tested had a reduced number of mice that developed spontaneous metastasis
to bone: MLX01 reduced bone metastasis by 30%, VX765 reduced bone metastasis by 47%,
and Anakinra reduced bone metastases by 41% compared with control (Figure 4D,E). How-
ever, in tumours that did grow in the bone, tumour volume was not altered (Figure 4D,E).
In addition, MLX01 and Anakinra slightly reduced spontaneous metastasis to the lung
compared with control (by 22% and 18%, respectively) but tumours in the lungs of mice
treated with VX765 (p = 0.0142) and Anakinra (p = 0.0072) had higher luminescence levels
(Figure 4F,G). These results further suggest inhibition of IL-1 reduces spontaneous metas-
tases and metastatic outgrowth in the bone but stimulates the growth of breast cancer cells
once they arrive in the lung.

3.4. Anti-IL-1 Treatment Increased the Trabecular Bone Volume of Mice

IL1β inhibition has previously been shown to inhibit bone turnover, and this is a
possible mechanism by which inhibiting this pathway prevents metastatic outgrowth in the
bone [2,12]. We, therefore, looked at the effects of small molecule inhibitors of IL-1 signalling
on bone by assessment of trabecular bone volume using microcomputed tomography
imaging as well as osteoclast and osteoblast activity by measuring TRAP5b and P1NP,
respectively, in the serum. For mouse models in which E0771 cells had been disseminated
into metastatic organs via intracardiac injection and received 13 days consecutive daily
treatments with MLX01, VX765 or Anakinra, or 15 days consecutive daily treatments with
Pacritinib increased trabecular bone volume (%BV/TV) was observed compared to mice
in the control group (50 mg/kg MLX01 i.p, p = 0.0239; 100 mg/kg MLX01 oral gavage,
p = 0.0197; 50 mg/kg VX765 i.p, p = 0.0268; 1 mg/kg Anakinra i.p, p = 0.0103 and 50 mg/kg
Pacritinib i.p, p = 0.0181) (Figures 5A,B and S8A) (The %BV/TV of tumour or non-tumour
bearing tibias is shown in Figures S7A–D and S8B,C, respectively). Moreover, VX765
treatment also significantly increased trabecular bone volume (%BV/TV) of the tibia in
mice orthotopically engrafted with E0771, compared with control (p = 0.0098) (Figure 5C)
(The %BV/TV of tumour or non-tumour bearing tibias is shown in Figure 5E,F, respectively).
However, significant differences were not found in osteoclast or osteoblast activity in any
treatment group compared with control (Figure 5D,E). This result suggests IL-1 inhibition by
MLX01, VX765, and Anakinra may inhibit tumour-cell-induced osteoclastic bone resorption
as seen at earlier timepoints, as has previously been shown following administration of
Anakinra [12], helping prevent the vicious cycle of bone metastasis [22], and reducing bone
turnover/osteoblast genesis resulting in decreased tumour cell growth in the bone.
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Figure 3. Inhibiting IL-1 signalling with IL1β inhibitor MLX01, Caspase-1 inhibitor VX765 and IL1R

antagonist Anakinra reduced metastatic outgrowth from E0771 cells disseminated in the bone.
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(A) Outline of experimental protocol for administration of PBS (control), MLX01, VX765 and Anakinra

in mice following intra-cardiac injection of E0771. (B) Representative whole body IVIS images of

mice at Day 8 and Day 15 post injection of E0771 cells. (C) Numbers of overt metastases per mouse 8-,

15- and 16-days post injection of E0771 cells following daily administration of PBS (control), MLX01,

VX765 or Anakinra. (D) Total luciferase expression (photons per second (P/S)) of whole mice 8

and 15 days after E0771 cell injection. (E) Numbers of mice that developed bone metastases 8, 15

and 16 days after E0771 cells had been disseminated in the bone following daily administration of

PBS (control) MLX01, VX765 or Anakinra. (F) Size of tumours that grew in the bone as assessed

by photons per second (P/S) in luciferase expressing E0771 tumour cells. (G) Shows effects of PBS

(control), MLX01, VX765 or Anakinra on metastatic outgrowth of tumours following dissemination

into the lungs, kidneys and livers. (H) Protocol outline for administration of Pacritinib in mice after

intra-cardiac injection of E0771. (I) Representative images of whole body IVIS imaging 17 days post

E0771 injection. (J) Numbers of overt metastases per mouse 17 days post injection of E0771 cells

and following daily administration of PBS (control), or Pacritinib. (K) Total luciferase signal from

E0771 tumour cells (photons per second (P/S)) in whole mice 17 days following injection of E0771

cells and administration of PBS (control) or Pacritinib. (L) Numbers of mice that developed bone

metastases 17 days after E0771 cells had been disseminated in the bone following daily administration

of PBS (control) or Pacritinib and size of tumours that grew in the bone as assessed by IVIS imaging

in (M). (N) Shows effects of PBS (control), or Pacritinib on metastatic outgrowth of tumours following

dissemination into the lungs, kidneys and livers. *** p < 0.001, **** p < 0.0001.

3.5. MLX01 Reduced Systemic T Cells Including CD4+ and CD8+ T Cells

Inhibition of IL1β by Canakinumab has previously been shown to adversely affect
immunity in cancer patients [11]. Therefore, we used flow cytometry to analyse systemic
immune cells from mouse spleens to verify whether the compounds tested affected immu-
nity and to assess suitability for future use in clinical trials for patients with breast cancer
bone metastasis (Figure 3A). Compared with control mice, MLX01 treatment decreased
T cells (p = 0.0328), with a trend towards reduced CD4+ (p = 0.0823) and significant reduc-
tions in CD8+ T cells (p = 0.0468) (Figure 6). This result was replicated when mice received
100mg/kg MLX01 orally (p = 0.0051 for T cells; p = 0.0276 or CD4+ T cells; p = 0.0011 for
CD8+ T cells) (Figure S9). In contrast, Anakinra did not alter CD4+ T cells but reduced
CD8+ T cells (p = 0.0395) and monocytes (p = 0.0192), whereas VX765 only reduced numbers
of monocytes (p = 0.0049) (Figure 6). Importantly our data suggest that inhibiting Caspase-1
with VX765 has the most potent anti-cancer effects, inhibiting bone metastasis whilst having
the least detrimental effect on systemic immunity, suggesting that this drug may be the
best option for future development.
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size of tumours in lungs as assessed by IVIS, ex vivo. The graphs represent mean ± SD, *

Figure 4. The effect of inhibiting signalling of the IL-1 pathway on growth of E0771 cells in mammary

glands and spontaneous metastasis to lung and bone (A) Protocol outline for orthotopic injection of

E0771 cells into mammary glands and administration of PBS (control), MLX01, VX765 or Anakinra in

mice. (B) Primary tumour volume following daily administration of PBS (control), MLX01, VX765 or

Anakinra. (C) Survival curve (D) IVIS images of dissected femur/tibia ex vivo following exposure to

D-luciferin for 5 min. (E) Percentage of mice that developed spontaneous bone metastasis and size of

tumours in femurs/tibiae as assessed ex vivo by IVIS. (F) IVIS images of dissected lungs, ex vivo

(G) Percentage of mice that developed spontaneous lung metastasis and size of tumours in lungs as

assessed by IVIS, ex vivo. The graphs represent mean± SD, * p < 0.05, ** p < 0.01, **** p < 0.0001.
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inhibiting IL1β, IL1R1, Caspase

mean + SD, *

Figure 5. Effects of inhibiting IL1β, IL1R1, Caspase-1 and IRAK1 on bone turnover and volume

(A) Bone volume/tissue volume (BV/TV) % of trabecular bone in the mouse tibia following dissem-

ination of E0771 cells in this site and 13 consecutive daily treatments with PBS (control), MLX01,

VX765 or Anakinra (Study Figure 3A) or (B) 15 days 15 consecutive daily treatments with Pacritinib

(Study Figure 3H). (C) Bone volume/tissue volume (BV/TV) % of trabecular bone in mouse tibia

following orthotopic injection of E0771 and consecutive daily treatments with PBS (control), MLX01,

VX765 or Anakinra until primary tumour reached 1000 mm3. (D,E) ELISA analysis of TRAP5b (D) or

P1NP (E) in mouse serum following dissemination of E0771 cells and 13 consecutive daily treatments

with MLX01, VX765 or Anakinra (Study Figure 3A) or Pacritinib (Study Figure 3H). Graphs represent

mean + SD, * p < 0.05, ** p < 0.01.
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10. Data represent mean + SD, *

Figure 6. Effects of MLX01, VX765 and Anakinra on systemic immune cell populations. Immune

cell populations: T cells (CD45+CD3+CD19−); CD4 T cells (CD45+CD3+CD19−CD4+CD8-); CD8 T

cells (CD45+CD3+CD19-CD4-CD8+); B cells (CD45+CD3−CD19+); Natural killer cells (CD45+CD19-

NK1.1+); Neutrophils (CD45+CD11b+Ly6G+); Dendritic cells (CD45+CD11b+CD11c+MHCII+);

Monocytes (CD45+CD11b+Ly6G-Ly6ChighF4/80low) and Macrophage (CD45+CD11b+Ly6G-

Ly6ClowF4/80high); M1 Macrophage (CD45+CD11b+Ly6G-Ly6ClowF4/80highMRC1−); M2

Macrophage (CD45+CD11b+Ly6G-Ly6ClowF4/80highMRC1+) were analysed from dissociated

spleen of C57BL/6 mice bearing E0771 tumours following 13 consecutive daily treatments with

PBS (control), MLX01, VX765 or Anakinra (Study Figure 3A). Cell populations were quantified by

flow cytometry and gating strategy shown in Supplementary Figures S9 and S10. Data represent

mean + SD, * p < 0.05, ** p < 0.01.
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4. Discussion

Our study shows that the small-molecule inhibitor that targets Caspase-1 has promis-
ing anti-tumour effects, inhibiting breast cancer bone metastasis: preventing metastatic
outgrowth in the bone and reducing spontaneous metastasis to this site to the same extent
or better than the IL1R antagonist, Anakinra (Figures 3E and 4E), whilst having less impact
on immunity (Figure 6). Moreover, although the IL1β inhibitor MLX01 only slightly reduces
breast cancer metastasis to the bone, it significantly delays the onset of bone metastasis and
reduces tumour growth at the primary site (Figures 3E, 4E and S6E). In contrast, inhibiting
IRAK1 by Pacritinib had small cytotoxic effects in vitro but did not reduce migration or
invasion and also failed to inhibit the development of bone metastases in vivo (Figure 3L).

The expression of the IL-1-related genes, such as Il1B, CASP1 and IRAK1, have been
identified to be significantly up-regulated in breast cancer compared with normal mam-
mary tissue [23,24]. Meanwhile, high expression of IL1β, IRAK1 and Caspase-1 is closely
correlated with reduced overall survival and distant recurrence of breast cancer [3,23].
Especially, a significant correlation between the expression of IL1β and bone metastasis has
been reported: 37% of patients with IL1β-positive primary tumours developed bone metas-
tasis compared with 5% of patients with IL1β-negative primary tumours [3]. Therefore,
targeting these molecules may provide an effective strategy for treating breast cancer bone
metastasis. Our previous studies have shown that antibody-mediated IL1β inhibition or ge-
netic ablation of IL1β in mice results in significantly reduced bone metastasis but increased
growth of primary breast tumours in xenograft and allograft models, respectively [2,13].
An opposite result was demonstrated by Kiss et al., however, who showed delayed primary
tumour growth in IL1β−/− (C57BL/6J background) mice after orthotopic injection with
E0771 cells [25]. Similarly, we have previously found that inhibiting IL1R1 with Anakinra
reduces subcutaneous tumour growth in BALB/c nude mice, but the same dose did not
reduce primary tumour growth in NOD SCID mice [2,12]. Other groups have found that
knocking out Nlrp3 and Casp1 in mice significantly reduces the growth of primary breast
tumours and lung metastases compared with wild-type mice [26]. In addition, knockdown
of IRAK1 in MDA-MB-231 tumour cells has been shown to reduce primary tumour growth
in mouse mammary fat pads and subsequent lung metastasis in NOD/SCID mice [23].
These studies suggest that although IL1β seems to have contrasting effects on the primary
tumour, possibly dependent on the immune status of the mouse model used and the stage
at which tumour cells are in when denied exposure to IL-1, low activity of IL-1/NFKB is
consistently associated with significantly reduced metastasis, especially to the bone.

There are increasing numbers of studies highlighting that small molecule inhibitors
of IL-1 may be promising options for the treatment of breast cancer bone metastasis. A
small molecule inhibitor of IKK (a downstream target of IL-1) reduced metastases from
disseminated MDA-MB-231 cells in the bone by 58% [27]. Bishop et al. also demonstrated
that an IKKe/TRAF6 (downstream target of IL-1) inhibitor could reduce osteoclastic bone
destruction from 4T1 tumours growing in the bone; however, this treatment did not
significantly reduce the percentage of mice that developed bone metastases [28,29]. Taking
our new data together with these studies and previous studies showing near elimination
of bone metastasis with Canakinumab and Anakinra, inhibiting IL1β or preventing IL1β
binding to its receptor IL1R appears to almost prevent metastatic outgrowth of breast
cancer in the bone [2,9,12,13]. However, inhibiting downstream targets of IL-1 (IRAK1,
TRAF6, IKK) appears to be less effective, only slightly reducing the percentage of mice that
develop the metastatic bone disease but reducing osteoclastic bone destruction. Therefore,
we speculate that inhibiting downstream targets of IL-1 (IRAK1, TRAF6, IKK) has effects on
reducing osteoclastic bone resorption, while IL1β inhibition not only reduces osteoclastic
bone resorption but also blocks breast cancer metastasis to bone. In agreement with this,
we have previously shown that inhibiting IL1β prevents metastatic outgrowth in the bone
via several mechanisms. Firstly, inhibiting IL1β prevents wnt activation of cancer stem cells
in the bone, holding tumour cells in a dormant state in this organ [9] which might explain
why IL1β inhibition is more effective at inhibiting metastatic outgrowth than reducing the
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growth of overt metastases. Secondly, reducing IL1β in the bone inhibits expansion of the
bone metastatic niche (osteoblasts, haematopoietic stem cells and endovascular cells [2]),
which results in tumour cells being held in this site, preventing proliferation into overt
metastases. Our µCT data from the current study show increased bone volume in mice
following administration of MLX01, VX765, Anakinra and Pacritinib, indicating that these
drugs all inhibit bone resorption and osteolysis (Figures 5A,B and S8A). In our current
study, we found that 13–15 consecutive daily treatments of these drugs had no significant
effects on osteoblast or osteoclast activity (Figure 5D,E). A likely reason for this is that
osteoclast/osteoblast activities following intervention with drugs such as Anakinra or
other factors that alter bone turnover, including ovariectomy, are commonly seen within a
few hours/days, and these then normalise over time [13,30]. Therefore, 13–15 days after
commencement of treatment may be too late to see the primary effects on these bone-
resorbing and forming cells; however, the increased bone volume suggests that these IL-1
targeted drugs cause a net reduction in osteolysis, as previously reported for Anakinra [13].

In line with IL1β inhibition holding tumours in a dormant state, we found that
inhibition of IL1 was effective in reducing bone metastasis or delaying the development
of bone metastasis; however, once overt metastases had developed, IL-1 inhibitors were
no longer able to reduce tumour growth (Figures 3F and S6F). IL1β is a pro-inflammatory
cytokine, and inhibiting this molecule has been shown to prevent the infiltration of immune
cells into primary tumours, facilitating their growth [13]. In our models, none of the
inhibitors used increased primary tumour growth; in contrast, MLX01 reduced primary
tumour growth. However, since VX765 and Anakinra both stimulated the growth of
metastatic tumour cells in the lung, we hypothesise that increased tumour growth at this
site may be due to a reduced immune response. Our reasoning for this is that we have
previously demonstrated that IL1β has opposing effects on tumour growth in the bone
compared with soft tissue [13] and that these differences in pro/anti-tumour effects are
driven by differential, site-specific, immunological responses [13]. It has been postulated
that IL1β promotes the recruitment of anti-tumour neutrophils to the lung metastatic
niche, inhibiting metastasis to this organ. Once tumour cells are disseminated in soft
tissues, inhibiting IL1β signalling with Anakinra has been shown to reduce myeloid cell
accumulation in E0771 soft tissue tumours [16]. IL1β has also been shown to promote
infiltration of monocytes and macrophage differentiation in soft tissue tumours [13,31].
In addition, in both melanoma and E0771 breast cancer models, IL1β has been shown to
increase the anti-tumour potential of T helper (Th1) cells, and genetic knockout of IL1β in
mice reduces cytotoxic CD8+ T cells in soft tissue tumours [13,18]. In contrast, IL1β appears
to play a tumour-supporting function in the bone, and it has previously been demonstrated
that IL1β controls myeloid cell number, reduces recruitment of anti-tumour neutrophils to
bone and drives mobilisation of immune cells out of the bone marrow [13]. Whilst there
is increasing evidence suggesting differential roles of IL1β in immune cell regulation of
tumour growth in the bone and soft tissue microenvironments, suitable samples for further
analysis of this hypothesis using the small molecule inhibitors tested in the current study
were not taken.

Previous studies have demonstrated that inhibiting IL1β significantly reduced breast
cancer bone metastasis, but the administration of biological agents such as Canakinumab
has severe adverse effects on the immune system of cancer patients [11]. Therefore, the
primary aim of our study was to identify a suitable small molecule inhibitor of the IL-
1 signalling pathway that would reduce bone metastasis without seriously impacting
immunity. Profiling of immune cells isolated from the spleen demonstrated that similar
to previously tested inhibitors of IL-1, MLX01 reduced systemic immune cells, especially
cytotoxic CD8+T cells. Whilst this may be the reason we saw a trend towards an increased
percentage of mice with lung metastases, additional immune profiling of the lung tissue
would be required to confirm this idea. However, despite reduced systemic immunity,
MLX01 treatment delayed the growth of primary tumours; this may be because IL1β has
been shown to drive both anti-tumour and pro-tumour effects via stimulating infiltration of
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innate anti-tumour immune cells and creating an immuno-suppressive microenvironment
by increasing the infiltration of myeloid-derived suppressor cells (MDSCs), [10,32,33].
Additional experiments would be required to confirm the apparent anti-tumour effects
of this drug; however, its limited anti-tumour capacity and heightened adverse effects on
the immune system suggest that this may not be the optimal treatment to take forward.
In accordance with the published literature, administration of Anakinra suppressed both
cytotoxic T cells and monocytes, potentially explaining why when tumours did grow
following treatment with this drug, they grew significantly larger than tumours treated
with PBS, MLX01 or VX765 [13]. Importantly for our study, the small molecule inhibitor that
was most effective at inhibiting bone metastasis, VX765, had the least effects on systemic
immunity, slightly reducing monocytes, suggesting that this drug may be the best option
for moving forwards into clinical trials for the prevention of future relapse in the bone.

To date, data from this current study and our previous studies [2,13] suggest that in-
hibiting IL-1 signalling is extremely effaceable against bone metastasis, inhibiting metastatic
outgrowth and slowing the development of tumours in the bone; however, the same
treatments appear to have the potential to increase metastatic outgrowth of tumour cells
disseminated in lungs. It must be noted, however, that lung metastasis from mammary
cancer is significantly more prevalent in syngeneic mouse models compared with human
patients; therefore, increased lung metastasis observed in mice may not translate into
humans [34–36]. Despite relatively low lung metastasis from breast cancer in humans, care
must be taken not to stimulate this. In breast cancer patients, tumour cell dissemination
into metastatic organs is believed to be an early event, often occurring before the diagnosis
of the primary disease [37]. Therefore, whilst preventing the outgrowth of tumour cells
disseminated in the bone is desirable, it is important that this is not performed at the
expense of increasing metastatic outgrowth in the lung. Emerging studies suggest that this
problem can be overcome by combining anti-IL-1 treatments with immune stimulatory
chemotherapies and/or immune checkpoint inhibitors [13,31]. The reason for this is that
IL1β is believed to exert its anti-tumour effects in the bone by inhibiting the expansion of
the metastatic niche, bone resorption and the vicious cycle of bone metastasis, whereas
IL1β promotes lung metastasis via reducing anti-tumour immune response [2,3,7,10,13].
Therefore, giving an anti-IL-1 treatment along with an immune stimulatory drug enables
the IL-1 targeted therapy to exert anti-tumour effects in the bone without adversely affect-
ing tumour cells disseminated at other sites. There is emerging evidence that this idea
may be true; previous studies have demonstrated that combining Anakinra and the im-
mune stimulatory chemotherapy, doxorubicin, reduces primary tumour growth and almost
eliminates bone metastasis by exerting opposing effects on immune regulation [13], and a
separate study demonstrated that combining Anakinra with PD-1 inhibitors resulted in sig-
nificant, synergistic, anti-cancer effects in a mouse model of soft tissue tumour growth [31].
Our new data suggest that targeting IL-1 signalling upstream at Caspase-1 with VX765
is even more potent at reducing bone metastasis than Anakinra; we, therefore, suggest
further experiments focused on combining VX765 with immune stimulatory therapies
before considering future clinical trials.

5. Conclusions

In conclusion, our data show that small molecule inhibitors of IL1β and Caspase-
1, MLX01 and VX765, are attractive therapeutic strategies for preventing breast cancer-
induced bone disease. Previous studies have suggested that combining Anakinra with
immune stimulatory chemotherapies such as doxorubicin or PD-1 inhibitors can overcome
the pro-tumorigenic immune effects, significantly increasing efficacy [13,31]. Therefore, we
hypothesise that combining VX765 or MLX01 with immune stimulatory drugs or targeting
these small molecule inhibitors in the bone will optimise their therapeutic effectiveness.



Cancers 2022, 14, 4816 18 of 20

Supplementary Materials: The following supporting information can be downloaded at: https:

//www.mdpi.com/article/10.3390/cancers14194816/s1, Table S1. Antibodies used for lympho-

cyte and myeloid flow cytometry. Supplementary Figure S1: (A) Relative expression of IL1B and

IL1R1 compared with GAPDH and B-actin in E0771 IL1B+, E0771 IL1R1+ and E0771 wild-type

(wt) cell lines measured by Real-time PCR. (B) Relative expression of IL1B and IL1R1 compared

with GAPDH and B-actin in Py8119 IL1B+, Py8119 IL1R1+ and Py8119 wt cell lines measured

by Real-time PCR. (C) IL1β production in E0771 IL1B+, E0771 IL1R1+ and E0771 wild-type (wt)

cell lines and (D) IL1β production in Py8119 IL1B+, Py8119 IL1R1+ and Py8119 wt cell lines after

24 hours LPS pre-treatment. Data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001,

**** p < 0.0001. Supplementary Figure S2: (A) Effect of MLX01 on IL1β production in human periph-

eral blood mononuclear cells (PBMCs) after 24 hours pre-treatment. 5X106 PBMCs were activated

with LPS ((Lipopolysaccharides from Salmonella enterica serotype typhimurium). LPS was added

at a concentration of 0.1 µg/ml, before addition of MLX01. IL1β concentrations (as pmoles/mL)

were measured via cytometric bead array (BD Accuri C6 Plus Flow Cytometer using BD CBA Flex

sets). (B) IL1β concentration in protein lysates from lungs of mice injected with 50mg/kg MLX01

i.p. (From Figure 4A), and it was normalised to total Flux photons/second (Figure 4G). (C) IL1β

concentration in protein lysates from lungs of mice treated with 100 mg/kg MLX01 by oral gavage

(From Figure S6A). (D) Relative expression of IL1B compared with GAPDH in lungs following

administration of PBS and 50mg/kg MLX01 via i.p injection. Data are shown as mean + SD. * p < 0.05,

** p < 0.01. Supplementary Figure S3: The relative viability of E0771 and Py8119 cells exposed to

(A) Recombinant IL1β, (B) IL1β inhibitor MLX01, (C) Caspase-1 inhibitor VRT043198, (D) IL1R

antagonist Anakinra and (E) IRAK1 inhibitor Pacritinib. Data are shown as mean ± SD. * p < 0.05,

** p < 0.01, *** p < 0.001, **** p < 0.0001. Supplementary Figure S4: Inhibition of IRAK1 by Pacritinib

had no significant effect on migration and invasion of E0771 IL1B+ cells towards pre-osteoblast (OB1

cells) data are shown in (A,B). (C) The effects of alteration of IL1β signalling of E0771 and Py8119 on

migration and invasion towards umbilical vein endothelial cells for 24 h (HUVECs cells). Data are

shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001. Supplementary Figure S5: (A) Images of

IVIS imaging of dissected femur/tibia in ex vivo from study Figure 3A. (B) Images of IVIS imaging of

dissected lung in ex vivo from study Figure 3A. (C) Images of IVIS imaging of dissected femur/tibia

in ex vivo from study Supplementary Figure 3H. (D) Images of IVIS imaging of dissected lung in ex

vivo from study Supplementary Figure 3H. Supplementary Figure S6: Administration of 100mg/kg

MLX01 by oral gavage delayed onset of breast cancer bone metastasis. Supplementary Figure S7:

(A,B) BV/TV % of tumour-bearing or non-tumour-bearing tibias in Figure 5A. (C,D) BV/TV % of

tumour-bearing or non-tumour-bearing tibias in Figure 5B. (E,F) BV/TV % of tumour-bearing or non-

tumour-bearing tibias in Figure 5C. The graphs represent mean + SD, * p < 0.05. Supplementary Figure

S8: Effect of administration of MLX01 oral gavage on trabecular bone volume BV/TV % are shown in

(A). and BV/TV % of tumour-bearing or non-tumour-bearing tibias in (B,C). The graphs represent

mean + SD, * p < 0.05. Supplementary Figure S9: Effects of MLX01 on systemic immune cell popula-

tions, the graphs represent mean + SD, * p < 0.05, ** p < 0.01. Supplementary Figure S10: Myeloid cells

gating Neutrophils (CD45+CD11b+Ly6G+) is classified by step 5. Macrophage (CD45+CD11b+Ly6G-

Ly6ClowF4/80high) and Monocytes (CD45+CD11b+Ly6G-Ly6ChighF4/80low) are classified by

step 6. M1 Macrophage (CD45+CD11b+Ly6G-Ly6ClowF4/80highMRC1-) and M2 Macrophage

(CD45+CD11b+Ly6G-Ly6ClowF4/80highMRC1+) are classified by step 7. Dendritic cells (CD45+

CD11b+CD11c+MHCII+) is classified by step 9. Supplementary Figure S11: Lymphocyte cells gating

T cells (CD45+CD3+CD19-) and B cells (CD45+CD3-CD19+) are classified by step 5. CD4 T cells and

CD8 cells are classified by step 6. Natural killer cells (CD45+CD19-NK1.1+) is classified by step 7.
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