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Abstract

Optimality analysis of value-based decisions in binary and multi-alternative choice settings
predicts that reaction times should be sensitive only to differences in stimulus magnitudes,
but not to overall absolute stimulus magnitude. Yet experimental work in the binary case has
shown magnitude sensitive reaction times, and theory shows that this can be explained by
switching from linear to multiplicative time costs, but also by nonlinear subjective utility.
Thus disentangling explanations for observed magnitude sensitive reaction times is difficult.
Here for the first time we extend the theoretical analysis of geometric time-discounting to ter-
nary choices, and present novel experimental evidence for magnitude-sensitivity in such
decisions, in both humans and slime moulds. We consider the optimal policies for all possi-
ble combinations of linear and geometric time costs, and linear and nonlinear utility; interest-
ingly, geometric discounting emerges as the predominant explanation for magnitude
sensitivity.

Author summary

Analysis of decisions based on option value (e.g. which pile of coins would you like?) sug-
gests that the optimal rules correspond to simple mechanisms also known to be optimal
for perceptual decisions (e.g. which light is brighter?) But, crucially, these analyses assume
that the cost of time is linear—when the more usual assumption is made that time dis-
counts multiplicatively (e.g. ‘a bird in the hand is worth two in the bush (and so two in the
hand are worth four in the bush)’) then optimal decision-making looks quite different—in
particular, the theory predicts that decision-making should be sensitive to the absolute
magnitude of the opportunities, such as coin pile sizes, under consideration, in a way that
the optimal perceptual mechanisms are not. As well as the theory, we present novel exper-
imental evidence from human decision-making experiments, and foraging slime mould,
of precisely such magnitude-sensitivity. This is a rare example of theory in behaviour
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making a falsifiable prediction that is confirmed in two, highly divergent, species, one
with a brain and one without.

Introduction

While the normative, optimal policy, approach to understanding decision-making is now well
established for perceptual decisions (e.g. [1]), it has only recently been applied to value-based
decisions [2-4]; such decisions differ from perceptual decisions because decision makers are
rewarded by the value of the selected option, rather than whether or not they selected the best
option (e.g. [3-7]). Recently researchers have analysed multi-alternative value-based decision-
making [4], building on earlier work in optimal decision policies for binary value-based
choices [3]. Through sophisticated analysis based on the standard tool for solving such deci-
sion problems, stochastic dynamic programming [8, 9], the authors also present neurally-plau-
sible decision mechanisms that may implement or approximate the optimal decision policies
[3, 4]. These policies turn out to be described by rather simple and well-known decision mech-
anisms, such as drift-diffusion models with decision thresholds that collapse over time for the
binary case [3], and nonlinear time-varying thresholds that interpolate between best-vs-aver-
age and best-vs-next in the multi-alternative case [4].

Interestingly, the theoretically optimal policy for the binary decision case [3] is inconsistent
with empirical observations of magnitude-sensitive reaction-times ([5, 10-14], but see [15]),
unless assumptions are made that subjective utilities for decision-makers are nonlinear, or
decisions are embedded in a fixed-length time period with known or learnable distributions of
trial option values, so that a variable opportunity cost arises from decision time [3]. Further-
more, even single-trial dynamics have been observed to lead to magnitude sensitive reaction
times [16]. While some descriptive models of decision-making can capture aspects of magni-
tude-sensitivity in the binary case [10, 17, 18], those models have not yet been extended to the
multi-alternative case [5], hence their performance in the multi-alternatives case is unknown.
Here we do not consider which extension of descriptive models could account for magnitude-
sensitivity with multiple alternatives. Instead, we aim to fill two important gaps in the literature
by establishing whether multi-alternative decision-making is magnitude-sensitive and what
optimal policy could give rise to magnitude-sensitive multi-alternative decisions.

Previous analyses made an assumption that appears widespread in psychology and neuro-
science, that decision-makers should optimise their Bayes Risk from such decisions [3, 4]; this
is equivalent to maximising the expected value of decisions in which there is a linear cost for
the time spent deciding [1, 6]. For a lab subject in a pre-defined and known experimental
design this may appear appropriate, for example because there may be a fixed time duration
within which a number of decision trials will occur and the subject can learn the value distri-
bution of the trials (e.g. [1, 6]). However, an alternative and standard formulation of the Bell-
man equation, the central equation in constructing a dynamic program, accounts for the cost
of time by discounting future rewards geometrically, so a reward one time step in the future is
discounted by rate y < 1, two time steps in the future by 7, and so on (see Materials and meth-
ods). This is a standard assumption in behavioural ecology [8, 9], in which discounting the
future means that future rewards are not guaranteed but are uncertain, due to factors such as
interruption, consumption of a food item by a competitor, mortality, and so on. Thus dis-
counting the future represents the inherent uncertainty that animals must make decisions
under in their natural environments, in which their brains evolved. The appropriate discount
is then the probability that future rewards are realised, hence geometric discounting is optimal
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since probabilities multiply. Indeed there is extensive evidence of such reward discounting in
humans and other animals (e.g. [19], although this frequently suggests hyperbolic rather than
geometric discounting, a fact that in itself merits an explanation based on optimality theory
[20]).

Rederiving optimal policies to account for geometric [21] or general multiplicative [12]
costs of time qualitatively changes them in the binary decision case, introducing magnitude-
sensitive reaction times [12, 21]. However, disentangling these from nonlinear subjective util-
ity is challenging, and cannot be excluded as an explanation for previous results [10-15,

22, 23].

Here for the first time we extend the theoretical and experimental study of magnitude-
sensitivity to three-alternative decisions. We first present evidence for magnitude-sensitive
reaction times in three-way equal-alternative decisions. We then present optimal policy
analyses and novel numerical simulations for such ternary decisions, both in human subjects
undertaking a psychophysical task, and unicellular organisms engaged in foraging. Impor-
tantly, for a wide variety of utility functions, strong magnitude-sensitivity is only observed
when there is a multiplicative cost for time, rather than the previously assumed linear time
cost. Thus magnitude-sensitivity is revealed as genuinely diagnostic for multiplicative time
costing, as all other assumptions either do not generate this phenomenon, or can be
discounted.

Results

As we were testing theory developed to explain decision-making by animals with brains, we
conducted psychophysical experiments with human subjects. However, we also conducted for-
aging experiments with a unicellular slime mould; testing theory across multiple species and
behavioural tasks increases confidence when multiple agreements with theory are observed
[11], and slime moulds have become a model system, with multiple experiments seeking to
reproduce behavioural predictions from neuroscience and psychology [24-26].

Multi-alternative decisions in human psychophysical trials are magnitude-
sensitive

Here we provide strong empirical evidence for magnitude sensitivity with multiple alternatives
in humans, using an experimental paradigm similar to the one used to show magnitude sensi-
tivity for two-alternative decision making [10, 11]. Details of the experiment (methods, partici-
pants, etc.) are reported in Materials and Methods. Participants had to choose which of three
above-threshold grey patches was brighter in an online experiment (Fig 7A). Although the
experiment included conditions for which a brighter alternative existed, conditions of interest
were equal alternatives of different magnitude, that is, conditions for which the three patches
had the same brightness that could vary across magnitude conditions. Equal alternatives allow
us to test hypotheses regarding magnitude sensitivity, by keeping differences in evidence con-
stant [11, 16, 23].

As previously done for binary decisions [11, 16], here we focused our analyses exclusively
on equal alternatives. For the analyses, we did not censor any datapoints.

As shown in Fig 1, the data show strong magnitude sensitivity, given that choices for equal
alternatives of higher magnitude conditions (higher brightness on a scale from 0 to 1 in
Python) were made faster.

To assess if reaction times decreased as a function of the mean brightness of the equal alter-
natives, we used a linear mixed model in R. The model was fitted by specifying as fixed effect
(explanatory variable) the brightness of equal alternatives as a continuous predictor. The
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Fig 1. Empirical results from the behavioural online experiment. Decreasing reaction times as a function of the magnitude of the equal alternatives. X-
axis presents mean brightness of equal alternatives (0.3, 0.4, 0.5, 0.6), on a scale of brightness from 0 to 1 in PsychoPy. Y-axis presents mean reaction times,
in seconds. Bars show 95% confidence intervals. Participants experienced equal alternative conditions, interleaved with unequal alternative trials in pseudo-
randomised order. Participants that performed the whole experiment experienced each equal alternative presentation ten times.

https://doi.org/10.1371/journal.pcbi.1010523.9001

participant ID was also added to the model as a factor for random effects. Reaction times sig-
nificantly decreased as a function of the mean brightness of the alternatives (b = -1.95, p <
.001, CI —2.14-1.75). Further details for the mixed-effect regression are presented in the sup-
plementary information (S1 Table).

As the COVID-19 pandemic necessitated an online experiment we could not collect or con-
trol information on a number of possible confounds (viewer position, motivation, room lumi-
nosity, etc.), and there are multiple sources of unaccounted variability in our online
experiment; however there is no a priori reason to expect these to act as consistent confounds
in the magnitude-sensitive reaction times observed. Furthermore, the very large sample size
for our study (N = 117; compared to N = 8 and N = 9 for previous similar investigations [10,
11]) should minimise effects due to randomly-distributed confounds.
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Multi-alternative decisions in foraging trials by unicellular organisms are
magnitude-sensitive

Unicellular organisms have also been suggested to implement optimal decision rules [27],
have been used to test evidence accumulation theory [24, 25], and are describable with dynam-
ical models closely related to neural network models [28]. Here, using slime moulds of the spe-
cies Physarum polycephalum, we also observed strong empirical evidence for magnitude
sensitivity with three alternative foraging sources. Details of the experiment are reported in
Materials and Methods. Slime moulds were confronted with a choice offering three equal food
sources (Fig 7B). We increased the magnitude of the options by increasing the quality of the
food sources. As shown in Fig 2, the latency to reach one of the alternatives depended on the
quality of the food sources; the higher the quality the faster the slime mould. This was con-
firmed by a linear mixed model similar to the one applied to the human data, in which reaction
times significantly decreased as a function of food quality (b = —0.03, p < .001, CI -0.03—0.02;
further details, S2 Table in the Supplementary Information).

20

40 60 80

Stimuli's magnitude (concentration in yolk g.L-1)

Fig 2. Empirical results from the slime mould experiment. Decreasing latencies to reach a food source as a function of the magnitude of the equal
alternatives. X-axis presents the concentration in egg yolk of equal food sources (20, 40, 60, 80 g.L™"). Y-axis presents mean latency to reach a food source,
in minutes. Bars show 95% confidence intervals. 50 slime moulds were tested for each magnitude for a total of 200 slime moulds.

https://doi.org/10.1371/journal.pcbi.1010523.9002
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Optimal policies

Tajima et al. used dynamic programming to derive optimal policies for decision makers receiv-
ing simultaneous evidence streams on the values of two [3] or three [4] different options, where
the reward to the decision-maker is the value of the option selected, discounted by the time
taken to make the selection. In the binary case, the optimal policy is approximated by a drift-
diffusion model with collapsing boundaries [3]; that is, choice dynamics are largely dominated
by value difference, and only under specific constraints is the optimal policy magnitude-sensi-
tive [21]. In the three-alternatives case, the optimal policy is more complex and determined by
nonlinear, time-dependent boundaries—while interested readers should refer to the original
article [4] for details of the optimal policy, below we show that the optimal policy derived
therein for three alternatives is only weakly magnitude-sensitive. For our theoretical analysis we
begin by re-deriving optimal policies for decisions when the change is made from linear costing
of time, or Bayes Risk, to geometric discounting of future reward. Note that geometric dis-
counting of future rewards is similar to, but not the same as, non-linear subjective utility. As
remarked in the introduction above, for binary decisions magnitude-sensitive reaction times
can be explained by optimal decision policies for either multiplicative (e.g. geometric) time dis-
counting [12, 21] or nonlinear subjective utility with linear time costs [3]. In the multi-alterna-
tive case, on the other hand, the picture is more nuanced; moving from linear costing of time
to geometric discounting of future rewards changes complicated time-dependent non-linear
decision thresholds ([4] Fig 7) into either simple linear ones that collapse over time for lower-
value option sets (Fig 3), or nonlinear boundaries that evolve over time similarly to the Bayes
Risk-optimising case for higher-value option sets ([21]; Fig 3). As Tajima et al. note, the simpler
linear decision boundaries implement the ‘best-vs-average’ decision strategy, whereas the more
complex boundaries interpolate between ‘best-vs-average’ and ‘best-vs-next” decision strategies
[4]; interestingly simply moving to nonlinear subjective utility with linear time costs simplifies
the decision strategy to the ‘best-vs-next’ strategy (Fig 3; see [4], Fig 7).

Multi-alternative decisions: Optimal policies are weakly magnitude-
sensitive for nonlinear subjective utility under Bayes Risk-optimisation

Under Bayes Risk-optimisation it is known that, for binary decisions, optimal policies are
magnitude-insensitive when subjective utility is linear, whereas they are magnitude-sensitive
when subjective utility is nonlinear [3, 4].

For ternary decisions, however, even with nonlinear subjective utility, policies exhibit very
weak magnitude-sensitivity early in decisions, becoming magnitude-insensitive as decisions
progress (Fig 3, row ‘linear’). Sensitivity analysis shows that magnitude-insensitivity is a gen-
eral pattern (see next section). An informal understanding of this can be arrived at by appreci-
ating that sigmoidal functions have two extremes of parameterisation (see S1 Fig); in one
extreme they are almost linear, hence will be mostly magnitude insensitive due to the known
result [3]. At the other extreme, the function becomes step-like; in this case options are either
good or bad, and the optimal policy rapidly becomes ‘choose the best’ (Fig 4), since under such
a scenario sampling is of minimal benefit as early information quickly indicates whether an
option is good or bad, and choosing the first option that appears to be good is optimal.

Multi-alternative decisions: Optimal policies become magnitude-sensitive
under geometric discounting

As previously shown [12, 21], assuming geometric temporal discounting, the optimal policy
for binary decisions is magnitude-sensitive. In ternary decisions, geometric discounting has
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Fig 3. Optimal decision boundaries in the space of possible estimates of option values: Linear time costs lead to weakly magnitude-sensitive optimal
policies (top row), while geometric discounting of reward leads to strongly magnitude-sensitive optimal policies (bottom row). In the linear time cost
(Bayes Risk) case nonlinear subjective utility changes complex time and value-dependent decision boundaries in estimate space into a simple mostly
magnitude-insensitive ‘best-vs-next’ strategy (top row; see [4], Fig 6C). For geometric discounting of rewards over time, optimal decision boundaries are
strongly magnitude-sensitive and interpolate between simple ‘best-vs-average” and ‘best-vs-next’ strategies (see [4], Fig 6). Triangles are low dimensional
projections of the 3-dimensional evidence estimate space onto a plane moving along the equal value line, at value v [4]. Dynamic programming parameters
were: prior mean ¥,; = 1.5 and variance o, = 5, waiting time #,, = 1, temporal costs ¢ = 0, y = 0.2, and utility function parameters m = 4, s = 0.25 (for the
linear time cost) and m = 4, s = 3.5 (for the geometric time cost). Time steps chosen to illustrate boundary collapse.

https://doi.org/10.1371/journal.pcbi.1010523.9003

the same effect; regardless of utility function linearity, the optimal policy is magnitude-sensi-
tive (Fig 3, row ‘geometric’).

Numerical simulations

Since noise-processing is fundamental in determining reaction times, we confirmed the results
on magnitude sensitivity from our optimal policy analysis via numerical simulation of Bayes-
optimal evidence-accumulating agents using those policies (see Materials and methods). These
numerical simulations confirmed the qualitative results from the optimal policy analysis; reac-
tion times for ternary decisions under linear time costing are only weakly magnitude sensitive
even for nonlinear subjective utility functions, while under geometric time costing reaction
times become strongly magnitude sensitive for most utility functions examined.

Multi-alternative decisions: Simulated reaction times are weakly
magnitude-sensitive for nonlinear subjective utility under Bayes Risk-
optimisation

Across all nonlinear subjective utility functions considered, linear time costing resulted in
weakly magnitude-sensitive simulated reaction times (Fig 5). This agrees with the weak magni-
tude-sensitivity observed in the optimal policies derived above (Fig 3). Note, however, that this
contrasts with the binary decision case in which optimal policies, and hence reaction times,
become magnitude sensitive under linear time cost when subjective utility is nonlinear [3]. An
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Fig 4. Optimal decision boundaries in the space of possible estimates of option values: Optimal policies for linear time cost (Bayes Risk) rapidly
transition from approximately linear subjective utility, and hence weakly magnitude-sensitive, decision boundaries in estimate space (Fig 3, top row
for s = 0.25; present figure, top row for s = 0.5, to more step-like subjective utility where immediate ‘choose the best’ decision-boundaries are
necessarily magnitude-insensitive (bottom row for s = 0.75, and higher values of s). Triangles are low dimensional projections of the 3-dimensional
evidence estimate space onto a plane moving along the equal value line, at value v [4]. Dynamic programming parameters were: prior mean ¥,; = 1.5 and
variance o, = 5, and utility function parameters m = 4, s € {0.5, 0.75}. Time steps chosen to illustrate boundary collapse.

https://doi.org/10.1371/journal.pcbi.1010523.9004

informal justification for this is given above in analysing the optimal decision boundaries com-
puted via dynamic programming.

Multi-alternative decisions: Simulated reaction times can be magnitude-
sensitive under geometric discounting

In contrast to linear time costing, across all nonlinear subjective utility functions considered,
geometric time costing resulted in strongly magnitude sensitive simulated reaction times (Fig
6 and S2 Fig), with longer reaction times for lower value equal-value option sets; this strategy
was previously hypothesised to be optimal [29]. The strong magnitude-sensitivity in the
numerical simulations corresponds with the strong magnitude-sensitivity observed in the opti-
mal policies derived above (Fig 3). Note that the intervals of slope parameter s over which reac-
tion times vary differ between linear (Fig 5) and geometric (Fig 6) time costing. The slope
parameters used for the simulations interpolate between approximately linear and approxi-
mately piecewise utility functions, as shown in S1 Fig. We report the results for the same inter-
val of slope parameter s as Fig 5 in S2 Fig and for linear utility function in S3 Fig, both of
which also show strong magnitude-sensitivity.

Discussion

In understanding behaviour, which is a product of evolution, searching for optimal algorithms
for typical decision problems can provide great insight. This normative approach can explain
observed behaviours, and predict new behavioural patterns, based on evolutionary advantage.
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Fig 5. Linear time costs lead to weakly magnitude-sensitive simulated reaction times across a range of nonlinear subjective utility
functions for equal value option sets. Simulation parameters were: prior mean X,; = 1.5 and variance ¢} ; = 5, observation noise variance

pii
O'ﬁ_i = 2, temporal cost ¢ =0, waiting time t,, = 1, and simulation timestep dt = 5 x 107>, Lines are the mean reaction time for 10*

simulations, 95% confidence intervals are shown as red shading (mostly invisible because smaller than the linewidth). Y-axis made
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https://doi.org/10.1371/journal.pcbi.1010523.9005

Yet the assumptions underlying such model analyses can prove crucial. Recently it has been
asked what optimal decision algorithms look like for multi-alternative value-based choices, in
which subjects are rewarded not by whether their decision was correct or not, but by the value
to them of the selected option [4]. The resulting algorithms correspond to earlier simple mod-
els for perceptual and value-based decision-making. These findings, however, rest on an
assumption that time is a linear cost for subjects. Here we have shown that deciding human
subjects and foraging unicellular organisms do, however, exhibit marked magnitude sensitivity
in ternary decisions, as previously shown for binary decisions [11, 26]. We have also shown
that optimality theory that discounts future rewards multiplicatively based on time is the fore-
most explanation for such observations of magnitude-sensitivity; nonlinear subjective utility
alone is not sufficient to give rise to strongly magnitude-sensitive decision times when time is
treated as a linear cost.

Behavioural predictions

The Bayes Risk optimal policy is approximated by a neural model that is consistent with obser-
vations of economic irrationality [4], hence it will be important to see if a revised neural model
based on the revised optimal policy still shows such agreement. For example, while in the
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Fig 6. Geometric discounting of reward leads to strongly magnitude-sensitive simulated reaction times across a range of nonlinear
subjective utility functions, with decisions postponed for low equal-value option sets. Simulation parameters were: prior mean ¥, = 1.5
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binary case magnitude-sensitive reaction times can be explained both by nonlinear subjective
utility functions, and by multiplicative discounting rather than Bayes Risk, in the multi-alter-
native case our analysis suggests that the same phenomenon is explained primarily by multipli-

cative discounting of future rewards and not by nonlinear utility.

Optimality criteria

Practitioners of behavioural ecology have established principles to deal with empirically-
observed deviations from the predictions of optimality theory [30]; two of the most useful are
to consider that the optimisation criterion has been misidentified, or the behaviour in question
is not really adaptive. Tajima and colleagues employ an exemplary approach, attempting to
combine the best of the approaches of normative and mechanistic modelling [20]; yet it bears
remembering that subjects may not be trying optimally to solve the simple decision problem
they are presented in the lab, but rather making use of mechanisms that evolved to solve the
problem of living in their natural environment [31]; indeed the experimental data presented
here were produced by subjects who received no reward, yet nevertheless acted as if they were
making an economic, value-based, decision rather than a purely perceptual, accuracy-based

one.
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Materials and methods
Psychophysical experiment

Ethics statement. For this experiment, all procedures were approved by the University of
Sheffield, Department of Computer Science Ethics Committee. Formal consent was not
obtained as all participants were adults and all data were anonymised.

Participants. This experiment was conducted during the COVID-19 pandemic, from
May 13th to June 1st 2020. Given that it was not possible to recruit participants for a laboratory
experiment, we instead recruited them online using Pavlovia [32, 33], an online platform for
psychophysical experiments implemented in PsychoPy.

Running a perceptual experiment online has a number of limitations: first, there is no way
to ensure that participants are focused on the task and minimising distractions—to mitigate
this we kept the task short and participants were instructed to concentrate on it; second, Pavlo-
via (as of March-May 2020) only allows stimuli to be drawn in units relative to window size
(i.e. the window in which the experiment is displayed) or in pixels, hence their size and posi-
tion relative to the fixation cross will vary across devices, depending on specific window sizes.
However, even if the size and location of stimuli could be kept constant across participants,
participants’ distance from the screen cannot be controlled during an online experiment.

Notwithstanding these limitations, recent research has shown that web-based experiments
yield reliable results, comparable to those obtained with lab-based experiments for reaction
time tasks ([34] and references therein). Furthermore, our within-subjects study and analyses
reduce the risk of conclusions driven by between-participant variability [35].

While in previous two-alternative experiments [10, 11] a limited number of participants
(N < 10) performed a large number of trials, for our online experiment we aimed at a large
number of participants performing a limited number of trials. This strategy is beneficial for
online studies since the large number of participants helps ensure that variation in partici-
pants’ motivation or viewing arrangements is averaged out. We therefore recruited 117 partici-
pants via external advertisement on Twitter, and internal email lists at the University of
Sheftield (mean age = 40.4, SD = 11.2774, range 23 -77; 79 females, 37 males, 1 did not indicate
their gender). We requested participants to follow the link to the experiment only if aged 18
years or older. The experiment lasted about 5 minutes and participation was voluntary; partici-
pants did not receive any reward for their participation.

Participants were informed that the task involved 100 trials, and would take about 5 min-
utes to complete. After reading the instructions (see S1 Text), participants were informed that
by continuing they were confirming that they understood the nature of the experiment and
consented to participate. Participants were also informed that they could leave the experiment
at any time by closing the browser. As the experiment was conducted online and anony-
mously, verbal or written consent could not be provided by participants.

Experimental setup. Similarly to previous studies [10, 11], stimuli consisted of three
homogeneous, round, white patches in a triangular arrangement on a grey background, as
depicted in Fig 7. Throughout the task participants were presented with a central fixation cross
that they were requested to fixate on.

On a scale from 0 to 1 in PsychoPy, the patches could have a brightness of 0.3, 0.4, 0.5 or
0.6. There were 4> = 64 possible trial combinations, of which 4 were equal alternatives (i.e.
alternatives having a brightness of [0.3,0.3,0.3], [0.4,0.4,0.4], [0.5,0.5,0.5] or [0.6,0.6,0.6]). We
selected 10 equal trial repeats, and only one trial repeat for all possible unequal alternatives, for
a total of 100 trials per participant. On each frame, a Gaussian random variable with mean 0
and standard deviation of 0.25 x (mean brightness of the alternative) was added separately to
the brightness level of each patch; the signal-to-noise ratio was thus kept constant across equal

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010523  October 3, 2022 11/17


https://doi.org/10.1371/journal.pcbi.1010523

PLOS COMPUTATIONAL BIOLOGY Magnitude-sensitive reaction times and non-linear time cost in multi-alternative decisions

Fig 7. (A) Stimuli example for human psychophysical experiments: Participants were requested to decide as fast and accurately as possible which
of the three stimuli was brighter; they were asked to maintain fixation on the cross at the centre of the screen and minimise distraction for the
short duration of the experiment. Unknown to participants, conditions of interest were conditions for which the stimuli had equal mean
brightness. (B) Photograph showing a slime mould that chose one food alternative among three equal ones. The slime mould was placed in the
centre of a petri dish (60 mm @) filled with agar gel (10 g.L ") at a distance of 2 mm from each food alternative.

https://doi.org/10.1371/journal.pcbi.1010523.g007

alternatives of different magnitude. The order of presentation of the alternatives was pseudo-
randomised across participants and there was no systematic link between patch position and
best option.

Three grey patches were presented simultaneously on the screen and subjects were asked to
decide which of the three was brighter by pressing ‘left’, ‘right” or ‘up’ on a keyboard using their
second, fourth or third right-hand fingers, via a line-drawn diagram of a hand over a keyboard
presented before the experiment began (see S1 Text); specific instructions for left-handed partici-
pants were not provided, and we did not record handedness. The inter-trial interval, during
which participants were presented with only the fixation cross, was selected at random between
0.5 seconds, 1 second or 1.5 seconds for each trial. Subjects were instructed to be as fast and accu-
rate as possible and to maintain their fixation on the cross at the centre of the screen throughout
the experiment. Before the experiment they were presented with 6 training trials (unequal alter-
natives) to familiarise themselves with the task. Participants were not provided with any feedback
after each trial and were not informed about the presence of the equal-alternatives conditions.

Slime mould experiment

Physarum polycephalum, also known as the acellular slime mould, is a giant polynucleated sin-
gle cell organism that inhabits shady, cool, and moist areas. In the wild, P. polycephalum eats
bacteria and dead organic matter. In the presence of chemical stimuli in the environment,
slime moulds show directional movements (i.e. chemotaxis).

Slime moulds of strain LU352 kindly provided by Professor Dr Wolfgang Marwan (Max
Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany) were
used for the experiments. Slime moulds were initiated with a total of 10 sclerotia which are
encysted resting stages. The sclerotia were soaked in water and placed in petri dishes (140 mm
@) on agar gel (1%). Once revived, slime moulds start to explore the agar gel, usually 24h after
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the reactivation of the sclerotia. The slime moulds were then reared for a month on a 1% agar
medium with rolled oat flakes (Quaker Oats Company in Petri dishes (140 mm @). They were
kept in the dark in a thermoregulated chamber at a temperature of 20 degrees Celsius and a
humidity of 80%. The day before the experiment the slime moulds were transferred on a 10%
oat medium (powdered oat in a 1% agar solution) in Petri dishes (diameter 140 mm). The
experiments were carried out in a thermoregulated chamber and pictures were taken with a
Canon 70D digital camera.

Slime moulds were presented with a choice between three equal food sources in an arena
consisting of 60 mm diameter Petri dish filled with plain 1% agar. We punched three holes
(10mm @) in the arena and filled them with a food source (10mm @). We used four different
food patches varying in quality: 2% w/v powdered oat mixed with either 2, 4, 6 or 8% w/v egg
yolk. Once the food sources were set in each hole, we placed a slime mould (10mm @) in the
centre of the arena 2 mm away from each food source. We replicated the experiment 50 times
for each food quality. For each replicate, we measured the time taken by the slime mould to
reach either one of the three food sources.

To assess the difference in the latency to reach the food as a function of the food quality, we
used a linear mixed model (function “Imer”, package “lme4”) in R (RStudio Version 1.2.1335).
The models were fitted by specifying the fixed effects (explanatory variables) and the concen-
tration in yolk (continuous predictor). The sclerotia identity was also added to the model as a
random factor. We transformed the dependent variable using the “bestNormalize” function
(package “bestNormalize”). The outcome of the model is presented in S2 Table.

Optimal policies

Tajima et al. set the general problem of a decision-maker that must integrate evidence simulta-
neously on the value of different competing options, then reach a decision where the reward
for that decision is the true value of the option chosen, discounted by the time taken to reach
that decision [4]. Optimal policy computations were performed in Matlab (Matlab 2020b), and
were adapted from the dynamic program of [4]. Optimal policies were computed for Bayes
Risk and geometric discounting, for linear utility (r := x), and for non-linear utility functions

having the form
2
= -1 1
rem( 1), 1)

where m and s are shape parameters for the logistic function determining the interval of utili-
ties and steepness of the slope respectively, and x is the raw input value. We systematically var-

ied the m and s parameters to test magnitude-sensitivity under Bayes Risk optimisation and
geometric discounting, under a range of utility function shapes ranging from almost linear, to
almost stepwise. Note that a sigmoid curve includes an interval in which subjective utility is an
accelerating function of input value when the latter is negative, and an interval in which itis a
decelerating function when the latter is positive; thus testing for magnitude-sensitivity over the
full interval of raw input values tests a variety of utility function shapes over sub-intervals.

The Bellman equation used in the dynamic programming analysis for the Bayes Risk-opti-
misation case was

V(£ %(t)) = max {max{r,(t, (t))} — pt,, (V( + 01, %(t + 01))) — (¢ + p)ot},  (2)
where V(t,%(¢)) is the value of the state estimates vector X (¢) at time , r,(¢, %(¢)) is similarly the

expected reward from choosing the i-th reward, 6t is the time interval to the next decision point,
c is the linear cost per unit time, p is the reward rate per unit time based on optimal decision-
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making over a sequence of trials, t,, is the inter-trial waiting time, and (. . .} is expectation over
the next time interval (6¢) [4]. For the results presented here we set ¢ = 0, t,, = 1 and found the
optimal p > 0 using the methods of [4]; note, however, that since the prior was not varied this
reward-rate optimisation could not induce magnitude-sensitive reaction times in itself.

For the geometric discounting case the Bellman equation becomes

V(t,2(t)) = max {max,{r,(t, X(t))}, (V(t + ot, X(t + 1))y}, (3)

where 0 < y < 1 is a discount factor for rewards received in future timesteps; this discount fac-
tor is per-unit-time, hence to discount a reward 8t < 1 timesteps in the future the appropriate

LSt _ St
factor is y°* = 7.

Stochastic simulations

Since noise processing is important in determining reaction times, we derived optimal deci-
sion policies as above, then tested them through numerical analysis of stochastic models. To
test for magnitude-sensitive decision-making we examined the case of n = 3 equal-quality
alternatives, in which we varied the magnitude of the (equal) stimuli values. Through these sto-
chastic simulations, we tested the impact of the different temporal discount methods—linear
or geometric—and of different utility functions—linear or nonlinear—on the decision speed
(reaction time RT). The stochastic models simulate the sequential accumulation of evidence
for the three alternatives i € {1, 2, 3} that are used to compute the expected rewards (x,(t)).
The three evidence estimates can be represented, with a little abuse of notation, as a vector x(t)
denoting a point in a cube that represents the estimate space. In that cube, we also include the
decision boundaries computed as above, indicating the separation of the estimate space into
decision regions; in one region continuing to sample is expected to maximise utility, and in
the other region taking a decision for the leading option is expected to be the best action.

In our simulations, each time step of length df the decision-maker accumulates three pieces
of evidence, one for each option. Evidence for an option i is sampled from the normal distribu-
tion X; ~ N (%, dt, o2, dt), where each sample x,; is a piece of momentary evidence at a small
timestep of length dt and with sequential index 7, X, is the true raw value (before any nonlinear
utility transformation) of option i and ¢? is the variance in accumulation of evidence for i [3].

Before observing any evidence, the decision maker has prior mean and variance, x,; and o7,

»
for the distribution of X;. Each new piece of accumulated evidence is used by the decision

maker to update the posterior expected reward as

_ 9 t

_ xp.i O-u.i + Zr:] xt.i

- 2 2 :
., + 0, t

(%:(1)) (4)

Due to the computational and memory cost of determining the optimal policies outlined in
the preceding section, model fitting to empirical data was not practical. Although time units in
the simulations are in arbitrary units they were tuned by hand so that, if interpreted as being
measured in seconds, the intervals of the linear and geometric time cost cases overlapped with
the empirically measured reaction times for the human psychophysics experiment, and with
each other.

Supporting information

S§1 Text. Task instructions for the human psychophysical experiments.
(PDF)
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S1 Table. Mixed-effect regression for reaction times as a function of the brightness of the
equal alternatives in the human study. Participant ID was included as a random factor. The
regression was performed using R (RStudio Version 1.2.1335; function ‘Imer’, package ‘Ime4’).
Given the typical skewness of reaction times, the dependent variable was transformed (i.e. nor-
malized) using the ‘bestNormalize’ function in R. As the brightness of equal alternatives
increased, reaction times significantly decreased.

(PDF)

S2 Table. Mixed-effect regression for reaction times as a function of food quality in the
slime moulds study. Sclerotia identity was included as a random factor. The regression was
performed using R (RStudio Version 1.2.1335; function ‘Imer’, package Ime4’). Given the typi-
cal skewness of reaction times, the dependent variable was transformed (i.e. normalized) using
the ‘bestNormalize’ function in R. As the food quality of equal alternatives increased, reaction
times significantly decreased.

(PDF)

S1 Fig. Shape of the utility functions for different values of s and m of the logistic function
of Eq (1) in the main text. The top panel shows the values used in Fig 5 and SF1; the bottom
panel shows the values used in Fig 6.

(PDF)

S2 Fig. Geometric discounting of reward leads to magnitude-sensitive simulated reaction
times across a range of nonlinear subjective utility functions, with decisions postponed for
low equal-value option sets. Simulation parameters were: prior mean x,; = 1.5 and variance

2 __
Opi =

implicitly zero. and simulation timestep dt = 5 x 107>, Lines are the mean reaction time for

5, observation noise variance o2, = 2, temporal cost y = 0.9. Non-decision time was

104 simulations, 95% confidence intervals are shown as red shading (mostly invisible because
smaller than the linewidth).
(PDF)

S3 Fig. Geometric discounting of reward leads to magnitude-sensitive simulated reaction
times also for linear subjective utility function. Simulation parameters were: prior mean
= 1.5 and variance 0'12”. = b, observation noise variance oi‘i = 2, temporal cost y = 0.4.

X .

P
Non-decision time was implicitly zero. and simulation timestep dt = 5 x 10~. Lines are the
mean reaction time for 104 simulations, 95% confidence intervals are shown as red shading
(mostly invisible because smaller than the linewidth).

(PDF)
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