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van der Waals heterostructures based on two-dimensional materials have recently become a very active topic of
research in spintronics, both aiming at a fundamental description of spin dephasing processes in nanostructures
and as a potential element in spin-based information processing schemes. Here, we theoretically investigate the
magnetoconductance of mesoscopic devices built from graphene proximity-coupled to a high spin-orbit coupling
material. Through numerically exact tight-binding simulations, we show that the interfacial breaking of inversion
symmetry generates robust weak antilocalization even when the z → −z symmetric spin-orbit coupling in the
quantum dot dominates over the Bychkov-Rashba interaction. Our findings are interpreted in the light of random
matrix theory, which links the observed behavior of quantum interference corrections to a transition from a
circular-orthogonal to circular-symplectic ensemble.

DOI: 10.1103/PhysRevB.103.L081111

Atomically thin heterostructures of graphene and other
van der Waals crystals are ideally suited for investigations
of relativistic spin-orbit coupling (SOC) phenomena owing
to their hybridized Dirac-like electronic structure and strong
interplay between spin and lattice-pseudospin degrees of free-
dom [1–4]. This thrust of research has been focused on the
demonstration of Z2 topological insulating phases [5–11] and
gate-tunable spin-charge conversion effects in graphene with
proximity-induced SOC [12–18].

Interface-induced SOC in a graphene flake is detectable
by low-field magnetotransport measurements, which pro-
vide a sensitive probe of symmetry-breaking processes
affecting the interference between time-reversed paths of elec-
trons [19–24]. The strength of relativistic SOC effects can
be estimated from the low-field changes in the magnetocon-
ductance generated by the decrease in electron backscattering
probability below its semiclassical value, a phenomenon
known as weak antilocalization (WAL) [25–30]. For stacked
honeycomb layers of graphene and transition metal dichalco-
genides with trigonal prismatic phase coordination (known
as the 1H phase), simple group theory considerations show
that the allowed spin-orbit interactions comprise (spin-flip)
Bychkov-Rashba (BR) interaction in addition to intrinsic-type
(spin-preserving) SOC, which reflects the lowering of the
point group symmetry, e.g., from D6h to C3v in graphene
placed on semiconducting group VI dichalcogenides [31–35].
If the spin-orbit scattering time is short compared with
the phase coherence time τso ≪ τφ , the rotation of the
electron’s spin in the SOC field generates destructive interfer-
ence, and WAL [rather than conventional weak localization
(WL)] is observed. The WAL magnetoconductance peaks
detected in graphene/group-VI dichalcogenide bilayers at
low temperatures of a few kelvins have been attributed to
proximity-induced SOC in the range 1–10 meV [19], i.e.,

several orders of magnitude larger than graphene’s weak
intrinsic SOC (λKM ≈ 42 μeV [10]). Such a remarkable en-
hancement of SOC effects (predicted by density functional
theory calculations in Refs. [31,32]) is consistent with the
strong reduction of spin lifetimes detected in Hanle-type spin
precession measurements in such systems [36–39] and has
enabled the unambiguous detection of inverse spin galvanic
and spin Hall effects in graphene-based heterostructure at
room temperature [12–18].

In this paper, inspired by this success in nanofabrica-
tion and measurement techniques, we investigate quantum
coherent transport in two-dimensional open cavities with
symmetry-breaking SOC. In the envisaged Dirac quan-
tum dot made from a van der Waals metamaterial with
proximity-induced SOC [Fig. 1(a)], scattering by the irreg-
ular boundaries destroys all constants of motion, and the
system is expected to exhibit universal features of quantum

chaos [40–47]. A unique fingerprint of quantum chaos is
the emergence of universal conductance fluctuations (UCFs),
which are insensitive to the system size and only depend
on the symmetries of the random ensembles which describe
the chaotic cavity [48–53]. To date, theoretical studies of
graphene-based billiards have employed Dirac models with
a mass term representing a sublattice-staggered on-site en-
ergy [54–57]. These early studies revealed that graphene
billiards behave essentially as two copies of a “neutrino bil-
liard” mutually coupled through intervalley scattering [54].
If the intervalley scattering time is much shorter than the
Heisenberg time required to resolve individual energy levels,
the coupling between valleys restores time-reversal symme-
try, and the energy-level statistics are expected to follow the
orthogonal symmetry class. Because the amount of valley
mixing in a Dirac system can be adjusted by controlling the
edge type [55], intervalley coupling provides a knob to tune
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FIG. 1. (a) Dirac-Rashba billiard connected to two leads. (b) and
(c) Conductance fluctuation as a function of the number of open
channels for selected values of SOC and magnetic flux. Numerical
data are seen to quickly converge to the predicted values in the dif-
ferent asymptotic limits (see Table I). Here, �0 = h/e is the quantum
of flux. See main text for other simulation parameters.

the symmetry class. Here, we use random matrix theory to
derive a quantitative description of how proximity-induced
SOC affects the statistical behavior of the conductance and
its fluctuations. Our results, which extend previous studies of
graphene-based chaotic billiards without SOC [53–55], are
confirmed by explicit tight-binding simulations.

We consider a quantum dot weakly coupled to two electron
reservoirs via ballistic point contacts, labeled 1 and 2, with
N1 and N2 channels each [Fig. 1(a)]. The quantum dot is
described by the scattering matrix, which for Dirac quasipar-
ticles is a 4N × 4N unitary matrix with N = N1 + N2, written
as

S =
[

r t ′

t r′

]

, (1)

where t (t ′) and r(r′) are submatrices that describe transmis-
sion and reflection of Dirac quasiparticles (with spin σ =↑,↓
and sublattice pseudospin � = A, B) arriving from lead 1
(lead 2). Because of the presence of two distinct spin flavors

at low energies, the S matrix in Eq. (1) is four times as large
as that for conventional semiconductor quantum dots [45,50].
The device conductance at zero temperature is proportional to
the transmission probability from lead 1 to lead 2 according
to the Landauer-Büttiker formula G = e2

h
Tr(tt†). In what fol-

lows, we assume that mean dwell time is much longer than
the time needed for ergodic exploration of the phase space
τd ≫ τerg ∼ L/v, so that the electron motion within the cavity
is chaotic (here, L is the typical cavity lateral dimension, and
v is the Fermi velocity). We also assume that the intervalley
scattering time is short compared with the dwell time (due to
strong intervalley scattering from armchair-type edges [55]),
so that the conductance statistics of the open cavity are gov-
erned by the orthogonal ensemble in the absence of SOC and
magnetic fields. In the universal regime of quantum trans-
port τφ, τso ≫ τerg, random matrix theory can be employed
to calculate the conductance distribution [40]. In terms of the
scattering matrix, the conductance reads as

G = 4e2

h

N1N2

N
− e2

h
Tr[SKS†K], (2)

where Ki,i = N2/N (i = 1, . . . , 4N1), Ki,i = −N1/N (i =
4N1 + 1, . . . , 4N), and Ki j = 0 for i 
= j. In order to find
the average and variance of the conductance, it suffices to
compute the average

〈Si j;αβ (ǫ, �B)S∗
i′ j′;α′β ′ (ǫ, �B)〉 (3)

in the presence of SOC and for arbitrary values of Fermi
energy ǫ and magnetic field �B [45]. (Here, Greek indices
agglutinate spin and pseudospin labels.) In what follows,
we assume symmetric leads (N1 = N2 = N/2). The statisti-
cal properties of the scattering matrix S are calculated from
random unitary matrices within the so-called “stub model”;
see the Supplemental Material (SM) [58]. After a tedious
but straightforward computation, the average and variance
of the dimensionless conductance per sublattice and spin
(g ≡ hG/4e2) can be written as follows:

〈g〉 = N

4
+ 1

8

[

1

1 + ŴB

− 1

1 + ŴB + 2Ŵasy

− 2

1 + ŴB + Ŵasy + Ŵsym

]

, (4)

var[g] = 1

64

1
∑

j=0

[

1

(1 + jŴB )2
+ 1

(1 + jŴB + 2Ŵasy)2

+ 2

(1 + jŴB + Ŵsym + Ŵasy)2

]

, (5)

where ŴX = 2τd/τX with X = {sym, asy,B}, τsym (τasy) is the
spin-orbit scattering time stemming from z → −z symmetric
(asymmetric) SOC [9,27,30,59,60], and τB is the magnetic de-
phasing time [58]. Both the quantum correction to the average
conductance, 〈gqc〉 ≡ 〈g〉 − N/4, and the associated fluctua-
tions, δg = √

var[g], contain crucial information on strength
and symmetry of spin-orbit effects through their dependence
on Ŵsym and Ŵasy. For weak magnetic fields and weak SOC
(i.e., τB, τsym, τasy ≫ τd ), one finds a negative quantum cor-
rection (gqc ≃ −1/4), which corresponds to standard WL.
The behavior is markedly different in billiards where SOC
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TABLE I. Ensemble transitions facilitated by strong SOC in chaotic Dirac-Rashba billiards according to random matrix theory [Eqs. (4)
and (5)]. COE, CUE, and CSE refer to the standard circular ensembles (orthogonal, unitary, and symplectic, respectively). The � (×) symbol
indicates the presence (absence) of a given symmetry. SRS, spin rotational symmetry; TRS, time-reversal symmetry.

Limit TRS SRS Strong SOC Ensemble 〈gqc〉 δg
δgCOE

δg

τB, τsym, τasy ≫ τd (Refs. [53,55]) � � no COE −0.250 0.353 1
τsym, τasy ≫ τd ≫ τB (Refs. [53,55]) × � no CUE 0.000 0.250

√
2

τB, τasy ≫ τd ≫ τsym × × yes CUE 0.000 0.250
√

2
τB ≫ τd ≫ τasy � × yes CSE 0.125 0.176 2
τasy ≫ τd ≫ τB, τsym × × yes 0.000 0.176 2
τd ≫ τB, τasy × × yes 0.000 0.125 2

√
2

acts as a symmetry-breaking perturbation. We find several
regimes, depending on the relative magnitude of spin-orbit
scattering times. If the electron dwell time is much greater
than the spin-flip scattering time, τasy, the spin rotational in-
variance is broken, and the quantum correction to the average
conductance becomes positive; that is, the system exhibits
WAL. Using Eqs. (4) and (5), we easily find gqc ≃ 0.125 and
UCF amplitude δg ≃ 0.176. In contrast, for τasy ≫ τd ≫ τsym,
the quantum correction to the average conductance is strongly
suppressed (〈gqc〉 ≃ 0), and δg ≃ 0.250, which is charac-
teristic of quantum dots with scattering matrix distributed
according to the circular-unitary ensemble [40]. The effective
breaking of time-reversal symmetry in this regime can be un-
derstood from the phenomenology of SOC in honeycomb lay-
ers. The spin-valley coupling (present in materials with bro-
ken sublattice symmetry, such as group-VI dichalcogenides)
acts at low energies as a valley-Zeeman field, thus mimicking
a magnetic field [61]. We compiled our results in Table I.

To validate the random matrix theory predictions, we
perform numerically exact real-space simulations of the mag-
netoconductance of the chaotic system. For simplicity, we
consider a graphene nanostructure proximity coupled to a
high-SOC semiconductor; see Fig. 1(a). The Hamiltonian of
the quantum dot can be expressed as H = Hg + HSO, where
Hg describes the usual nearest-neighbor hopping between
pz orbitals and HSO = Hsym + Hasy captures the proximity-
induced SOC [32,34,62]. (We neglect the intrinsic Kane-Mele
SOC of graphene [10], which is too weak to cause any signifi-
cant perturbation to the quantum dot.) In terms of annihilation
(creation) operators ci,σ (c†

i,σ ) that remove (add) electrons to
site i with spin σ =↑,↓, the terms Hg, Hsym, and Hasy read as

Hg = −
∑

〈i, j〉,σ
t i jc

†
i,σ c j,σ , (6)

Hsym = −
∑

〈〈i, j〉〉,σ

ıλ
i j
sym

3
√

3
c

†
i,σ [sz]σσ c j,σ , (7)

Hasy = −
∑

〈i, j〉,σ,σ ′

2ıλ
i j
asy

3
c

†
i,σ ([s]σσ ′ × r̂i j )zc j,σ ′ , (8)

where the indices i and j run over all lattice sites, 〈· · · 〉
(〈〈· · · 〉〉) denotes a sum over nearest-neighbor (next-nearest-
neighbor) sites, r̂i j is the unit vector along the line segment

connecting sites i and j, and t i j = teıφi j , λ
i j
asy = λBReıφi j , and

λ
i j
sym = λsvδiνi je

ıφi j are Peierls’s substitution modified hop-

ping integrals with phases φi j = (e/h̄)
∫ r j

ri
A · dr. Here, λsv

(λBR) is the spin-valley (BR) coupling strength, and A =
−B⊥ŷ is the magnetic vector potential in the Landau gauge.
Furthermore, the νi j are signs that equal ±1 if the electron
hops clockwise (anticlockwise) to a next-nearest-neighbor site
within a given hexagonal plaquette and δi = ±1 distinguishes
between the sublattices A (B) [9,33].

The billiard is constructed by cutting a half stadium con-
nected to two identical leads out of a graphene sheet [54,55].
To break the left-right symmetry, we cut out circular segments
at the top left and bottom right in a way that the graphene
lattices are terminated abruptly [see Fig. 1(a)]. Before at-
tempting to confirm the predicted statistical behavior of the
conductance, we verify that the simulated dots support the
universal quantum transport regime, τd ≫ τerg. To estimate
the dwell time, we determine the spectrum of closed cavi-
ties with an area A ≈ 1.2 × 103 nm2 (containing around 105

energy levels). The calculated mean level spacing (�) ranges
from 0.2 to 0.4 meV, depending on the specific SOC parameter
values; for additional details, see the SM [58]. This translates
into dwell times (τd ≈ π h̄/N�) on the order of ≈10/N ps.
Meanwhile, the electron transit time in the graphene dot is
simply τerg ≈

√
A/v, where v = 3at/2h̄ ≈ 106 m/s (assum-

ing a typical hopping integral t = 2.8 eV and a lattice constant
a of 0.25 nm). As a result, τd/τerg ≫ 1 is always satisfied for
typical ballistic point contacts with a small number of open
channels N ≈ 1–10.

For our numerical study, we use the recursive Green’s
function formalism [63–65] as implemented in the KWANT

code [66]. From the earlier theoretical analysis, the spin-
orbit effects are expected to influence the statistical behavior
of the conductance whenever the spin-orbit scattering time,
τso = (τ−1

asy + τ−1
sym)−1, is short compared with the cavity dwell

time. The conductance fluctuation δg is shown in Figs. 1(b)
and 1(c) for selected parameters. In the absence of SOC, the
fluctuations are consistent with the circular-orthogonal en-
semble (δg ≃ 0.35) at zero field and with the circular-unitary
ensemble (δg ≃ 0.25) for a magnetic flux � on the order of
the quantum of flux [54]. After the proximity-induced SOC
is turned on, the statistical properties of the quantum dot
are seen to critically depend on the relative magnitude of
the spin-orbit effects in complete accord with our prediction
[Eqs. (4) and (5)]. A transition to the circular-symplectic
ensemble (δg ≃ 0.176) is observed for sufficiently strong BR
coupling in the low-field regime (τd ≫ τB). This behavior is
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FIG. 2. (a)–(c) Average magnetoconductance as a function of
the magnetic flux obtained numerically for selected SOC parame-
ters. Solid lines are fits to Eq. (4) [58]. Data points are calculated
using 20 chaotic samples averaged over the Fermi energy window
[0.45,1.50] eV. Here, �0 = h/e is the quantum of flux.

robust against the presence of symmetric-type SOC as long
as the BR effect remains as a strong perturbation (τasy ≪ τd ).
Moreover, in quantum dots with weak BR effect and strong
spin-valley coupling, time-reversal symmetry is effectively
broken, and as a result, the conductance fluctuation ap-
proaches the circular-unitary ensemble prediction at zero field
(δg ≃ 0.250). Interestingly, the combined effect of a strong
spin-valley coupling and a high magnetic field reduces the
conductance fluctuation down to δg ≃ 0.125, which is lower
than the UCF value in any of the Wigner-Dyson ensembles.
The orthogonal to unitary or symplectic ensemble transitions
facilitated by SOC and the associated statistical properties are
summarized in Table I. It is important to note that due to
the small quantum dot size in the simulations, the ensemble
transitions are observed at rather large SOC values (≈0.1 eV).
On the other hand, the experimentally achievable proximity-
induced SOC energy scales are more modest (in graphene
on a group-VI dichalcogenide monolayer, these range from
0.1 to 10 meV depending on the high-SOC material used and
the quality of the interface [31–34]). Hence the experimental
validation of our findings would require dots of substantially
larger dimensions to ensure τso ≪ τd .

Now we turn to the magnetotransport fingerprints of
proximity-induced SOC. In Fig. 2, we show the calcu-
lated magnetoconductance �G(B⊥) = 〈G(B⊥) − G(0)〉. The
negative signal (WAL) observed in all simulated quantum dots
with sizable BR coupling provides a clear signature of the

orthogonal-to-symplectic ensemble transition. We note that
this is a direct numerical evaluation of conductance WAL
corrections in a chaotic billiard. In accord with the theory
[cf. Eq. (4)], the BR-coupling-induced negative quantum cor-
rection is seen to be robust to the presence of symmetric
SOC [see Figs. 2(b) and 2(c)]. The special role played by the
spin-valley coupling in quantum dots with weak or vanishing
BR effect (τasy ≫ τd ) is also borne out by the simulations.
Indeed, the simulation with λBR = 0 and λsv = 0.6 eV shows
a clear suppression of quantum interference effects due to
spin-valley coupling since, as discussed earlier, the latter acts
on the ballistic electrons as a valley-Zeeman field. The under-
lying spin-orbit scattering times can be estimated by fitting the
numerical data to Eq. (4). We find τso to be on the order of 1 ps,
which puts the simulated devices within the universal regime
where the theory is expected to be accurate; see the SM for
additional details [58]. We note in passing that in the absence
of SOC, the magnetoconductance can be accurately fitted to
the well-known expression �G/(4e2/h) = G(1 + τB

2τd
)−1 [67]

with G = 0.23, in excellent agreement with the random matrix
theory prediction (GRMT = 0.22).

To put our predictions into context, we first note that dif-
fusive WAL behavior in (nonchaotic) graphene devices with
interface-induced SOC is now well established [19–24,27,30].
Transition metal dichalcogenides represent a broad fam-
ily of high-SOC layered materials, which can be used
to fabricate the envisaged chaotic Dirac-Rashba billiard
characterized by competing spin-orbit effects with differ-
ent symmetries. According to our findings, chaotic billiards
built from graphene-based heterostructures can display ro-
bust signatures of WAL in the universal regime of quantum
transport provided that the asymmetric spin-orbit scattering
time is shorter than the dwell time of the cavity. We expect
that such a condition can be achieved by fabricating meso-
scopic quantum dots with linear size approaching the typical
(bulk) mean free paths. Electronic transport measurements
on submicrometer graphene quantum dots have been recently
reported [68–71], which gives us extra confidence that the
predictions in this paper can be put to the test in the near
future.

In summary, we have used random matrix theory to investi-
gate the statistical behavior of the average conductance and its
universal fluctuations in chaotic graphene-based billiards with
proximity-induced SOC. Our study, supported by real-space
quantum transport calculations, shows that the proximity-
induced SOC strongly influences the device conductance in
zero and finite applied magnetic fields. Quantum dots with a
sizable BR effect (i.e., with asymmetric spin-orbit scattering
time shorter than the cavity dwell time) were found to dis-
play robust WAL signals with fluctuations consistent with the
circular-symplectic ensemble.
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APQ-0325-1.05/18 (FACEPE). A.F. gratefully acknowledges
the financial support from the Royal Society through a Royal
Society University Research Fellowship.
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