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Abstract
Estimating the expectations of functionals applied to sums of random variables (RVs) is a well-known problem encountered in
many challenging applications. Generally, closed-form expressions of these quantities are out of reach. A naive Monte Carlo
simulation is an alternative approach. However, this method requires numerous samples for rare event problems. Therefore,
it is paramount to use variance reduction techniques to develop fast and efficient estimation methods. In this work, we use
importance sampling (IS), known for its efficiency in requiring fewer computations to achieve the same accuracy requirements.
We propose a state-dependent IS scheme based on a stochastic optimal control formulation, where the control is dependent
on state and time. We aim to calculate rare event quantities that could be written as an expectation of a functional of the sums
of independent RVs. The proposed algorithm is generic and can be applied without restrictions on the univariate distributions
of RVs or the functional applied to the sum. We apply this approach to the log-normal distribution to compute the left tail
and cumulative distribution of the ratio of independent RVs. For each case, we numerically demonstrate that the proposed
state-dependent IS algorithm compares favorably to most well-known estimators dealing with similar problems.

Keywords Monte Carlo · Rare event · Importance sampling · Stochastic optimal control

Mathematics Subject Classification 65C05 · 93E20 · 91G60

1 Introduction

1.1 Motivation

In a probabilistic model, rare events are important events
that infrequently happen with very small probabilities. Esti-
mating these probabilities has become a substantial area of
research because of its many applications, such as queuing
systems, insurance risk, financial engineering, and wireless
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communication (Asmussen andGlynn 2007; Juneja and Sha-
habuddin 2006; Glasserman 2004; Ben Rached et al. 2015a).
Typical examples occur in the context of communication
systems, where the rare event could be an event in which
the system fails to operate properly. For illustration, one can
encounter the problem of estimating failure probabilities of
the order of 10−9 for sophisticated networks, such as ultra-
reliable fifth or sixth generation (5G or 6G) systems (Ben
Rached et al. 2020a).

Calculating rare event quantities that could be written as
an expectation of a functional of the sums of independent
RVs is of paramount practical interest in many challenging
applications. For instance, in financial engineering, calcu-
lating the value-at-risk (VaR) requires computing the left
tails of the sums of RVs (i.e., the probability that the sum
is less than a sufficiently small threshold). Another relevant
example is calculating the probability that the signal-to-
interference-plus-noise ratio is less than a given threshold in
communication systems. Under some particular fading envi-
ronments, this probability can be expressed as a cumulative
distribution function (CDF) of the ratio of independent RVs.
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1.2 Literature review

Various researchers have proposed closed-form approxima-
tions of the left and right tails of sums of RVs (López-Salcedo
2009; Xiao et al. 2019; Chatterjee et al. 2018; Beaulieu and
Luan 2020; Zhu et al. 2020; Constantinescu et al. 2016;
Singh 2018). However, these approximation methods are
not generic. Moreover, their accuracy is not always guar-
anteed for all scenarios, as it can degrade for certain system
parameters. The Monte Carlo (MC) method can be used as
a generic tool to cope with these problems. However, it is
well acknowledged that estimating rare event quantities with
the naive MC sampler requires a prohibitively large number
of simulation runs (Kroese et al. 2011). Variance reduction
techniques have been used extensively to improve the com-
putational work of the naive MC method. In this context,
importance sampling (IS) is among the most popular vari-
ance reduction techniques that provide accurate estimates of
rare event probabilities with a reduced number of simulation
runs when appropriately used (Kroese et al. 2011).

Variance reduction techniques have beenwidely discussed
in the literature, and particular focus has been devoted to
proposing algorithms for the efficient simulation of the right
tail of sums of RVs (i.e., the probability that the sum exceeds
a sufficiently large threshold). In particular, for distributions
with light right tails (i.e., decaying at an exponential rate
or faster), under some regularity assumptions, the popu-
lar exponential twisting IS approach (Asmussen and Glynn
2007) satisfies the logarithmic efficiency property, which
is a useful metric used to assess the efficiency of an esti-
mator. In contrast, for heavy-tailed distributions, such as
the case of log normals and Weibulls with shape parame-
ters strictly less than 1, the exponential twisting method is
inapplicable.Therefore, efficient algorithmshavebeendevel-
oped for estimating tail probabilities involving heavy-tailed
RVs. In this context, Asmussen and Binswanger (1997) pro-
vided the first logarithmically efficient estimator for such
probabilities using the conditional MC idea. Other authors
(Asmussen and Kroese 2006) have proposed an estimator
with a bounded relative error under distributions with reg-
ularly varying tails, which was further extended to more
general scenarios (e.g., see Hartinger and Kortschak 2009;
Chan and Kroese 2011; Asmussen and Kortschak 2012,
2015; Ghamami and Ross 2012). In addition to estima-
tors based on the conditional MC, various state-independent
IS techniques have been proposed (Juneja and Shahabud-
din 2002; Juneja 2007; Karthyek Rajhaa and Juneja 2012;
Murthy et al. 2015).

State-independent changes of measure for estimating cer-
tain rare events involving sums of heavy-tailed RVs cannot
achieve logarithmic efficiency (Bassamboo et al. 2007).
Therefore,more complex state-dependent IS algorithms have
been proposed in the literature over the last few years to esti-

mate probabilities for sums of heavy-tailed independent RVs.
Of valuable interest are studies developed in Dupuis et al.
(2007), Dupuis and Wang (2007), Blanchet and Liu (2006,
2008), Blanchet and Li (2011) and Blanchet and Lam (2012).
The researchers inBlanchet andLiu (2006) developed an effi-
cient state-dependent IS estimator with a bounded relative
error under distributions with regularly varying heavy tails.
The estimator can also be adapted to provide strongly effi-
cient algorithms in light-tailed situations.A related approach,
based on the construction of Lyapunov inequalities, has also
been developed (Blanchet and Liu 2008) for constructing
strongly efficient estimators for large deviation probabilities
of regularly varying random walks. These algorithms use
a parametric family of change of measure based on mix-
tures that are appropriately selected using Lyapunov bounds.
Moreover, stochastic control and game theory have been
used to build efficient state-dependent IS schemes to simu-
late rare events (Dupuis and Wang 2004; Dupuis et al. 2005,
2007). For instance, in the heavy-tailed setting, the authors in
Dupuis et al. (2007) constructed dynamic IS estimators with
a nearly asymptotically optimal relative error for indepen-
dent and identically distributed (i.i.d.) nonnegative regularly
varying RVs. They considered a parametric family of change
of measure whose parameters are determined by solving a
deterministic, discrete-time control problem. The closest
work to the proposed approach is inDupuis andWang (2004),
where the authors proposed an approach based on connect-
ing IS with stochastic optimal control (SOC). The scope of
Dupuis and Wang (2004) is limited to the i.i.d. case and dis-
tributions with finite moment generating functions. In this
work, independence is the only assumption we make. The
connection between IS and SOC has been investigated for
other scenarios, such as diffusions (Hartmann et al. 2017),
and for stochastic reaction networks approximated by the
Tau-Leap scheme (Hammouda et al. 2021). The dynamics
in Hammouda et al. (2021) evolve according to discrete-
time discrete-space Markov chains, whereas the dynamics
in this work evolve according to discrete-time continuous-
space Markov chains.

Few researchers have recently addressed the left-tail
region [i.e., the probability that sums of nonnegative RVs fall
below a sufficiently small threshold (Asmussen et al. 2016;
Ben Issaid et al. 2017; Ben Rached et al. 2015b, 2020a, b,
2021)]. For instance, Asmussen et al. (2016) considered the
specific setting of the i.i.d. sum of log-normal RVs. The
approach was based on the exponential twisting technique
and is logarithmically efficient. TheworkofBenRached et al.
(2015b) proposed two unified hazard rate twisting (HRT)-
based approaches that estimate the outage capacity values
for generalized independent fading channels. The first esti-
mator achieves logarithmic efficiency for arbitrary fading
models, whereas the second achieves the bounded relative
error criterion for most well-known fading variates and log-
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arithmic efficiency for the log-normal case. Recently, Ben
Rached et al. (2020a) proposed an IS scheme based on sam-
ple rejection applied to the case of the independent Rayleigh,
correlated Rayleigh, and i.i.d. Rice fading models, showing
that the estimator satisfies the bounded relative error prop-
erty.

1.3 Main contributions

In this paper, we propose a generic state-dependent IS
approach to estimate rare event probabilities that could be
written as an expectation of a functional of the sums of
independent RVs. We adopt a SOC formulation to deter-
mine the optimal IS parameters, minimizing the variance
or, equivalently, the second moment of the estimator within
a preselected class of measures. After formulating the SOC
problem and describing the algorithm used to derive the opti-
mal controls, which are optimal IS parameters, we apply the
proposed algorithm to two examples: the computation of the
left-tail probability in a log-normal setting, and the computa-
tion of the CDF of the ratio of independent log-normal RVs.
The proposed algorithm is generic and not restricted to the
log-normal environment. The algorithm can be applied to
compute the quantity of interest without restrictions on the
distribution of the univariate RVs in the sumor the expression
of the functional applied to the sum. Numerical simulations
demonstrate the superior performance of the proposed esti-
mator in terms of the number of samples and computational
work to meet a given prescribed tolerance (TOL) compared
to the existing state-of-the-art estimators dealingwith similar
problems.

The rest of the paper is organized as follows. Section2
describes the problem setting, presents applications that fall
within the scope of applicability of the proposed approach,
and introduces the concept of IS. Section3 contains the main
work, explaining the state-dependent IS scheme via a novel
SOC formulation, followed by presenting the algorithm. Sec-
tion4 applies the proposed algorithm to two applications in
wireless communications. The proposed algorithm compares
favorably to some well-known estimators dealing with sim-
ilar problems.

2 Problem setting

This section states the objective of the method and enu-
merates some applications that fall within the scope of its
applicability. Next, this section introduces the concept of the
naive MC method. Finally, it presents the IS technique, one
of the most popular variance reduction techniques.

2.1 Objective

We consider X = (X1, X2, . . . , XN )t to be a random vector
comprising independent positive components with proba-
bility density functions (PDFs) fX1(.), fX2(.), . . . , fXN (.)

and a joint PDF f (x) = ∏N
n=1 fXn (xn). In this work,

Xi , i = 1, . . . , N are one-dimensional vectors. However,
this approach is still applicable to the multidimensional case.
We let SN = ∑N

n=1 Xi and g : R+ → R be a given func-
tion. We aim to develop a state-dependent IS algorithm via
a connection to an SOC formulation to estimate rare event
quantities that could be written as follows:

α = E [g (SN )] . (1)

2.2 Applications

2.2.1 Right and left tail

One of the problems that can be written as (1) is calculating
the right-tail probability of sums of RVs (i.e., the probability
that the sum is larger than a sufficiently large threshold),
which arises in many areas of engineering. This probability
can be expressed as

α = P(SN ≥ γth) = E
[
1(SN≥γth)

]
, (2)

corresponding to (1), where g(x) = 1(x≥γth).
As a practical example, the right-tail probability of the sums
of RVs may represent the ruin probability of an insurance
company. In this setting, SN represents the total sum of
claims, and γth is the initial reserve. The claims X1, . . . , XN

can be modeled by heavy-tailed distributions (Asmussen
et al. 2000). In the Cramer–Lundberg model, this probability
can be expressed as (2) (Asmussen and Glynn 2007). More-
over, calculating left-tail probabilities occurs extensively in
many applications. In these cases, the quantity of interest can
be expressed as

α = E
[
1(SN≤γth)

]
, (3)

which is in the form of (1), where g(x) = 1(x≤γth).
One of the most relevant examples is estimating the VaR,
defined as the 1 − α quantile of the loss distribution, for
a sufficiently small value of α. We let a portfolio be based
on N assets with upcoming prices X1 . . . , XN , which can
be modeled using log-normal distributions (Asmussen et al.
2016). TheVaRof SN at the level ofα (VaRα (SN )) is defined
as the value such that the probability of a loss larger than that
value is equal to 1− α (Alemany et al. 2013; Sun and Hong
2009). In other words, VaRα (SN ) = F−1

SN
(α), where FSN (.)

is the CDF of SN .
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Another challenging application is the analysis of wire-
less communication systems. The outage probability (OP),
defined as the probability that the signal-to-noise ratio (SNR)
falls below a given threshold γth (Yilmaz and Alouini 2012),
is equivalent to computing the CDF of sums of the SNRs of
the received signals. Hence, it can be expressed as in (3).

2.2.2 CDF of the ratio of independent RVs

Another performancemetric that can be expressed as in (1) is
the OP in the presence of co-channel interference and noise.
For single-input, single-output (SISO) systems, the OP is
expressed as (Ben Rached et al. 2017)

Pout = P (SINR ≤ γth) = P

(
X0

∑N
n=1 Xn + η

≤ γth

)

, (4)

where X0 denotes the desired user signal power, X1, . . . , XN

represent the received powers of the N interfering signals,
and η indicates the variance of the additive white Gaussian
noise.Weassume that X0, . . . , XN are independent. Through
conditioning on X1, X2, . . . , XN and using the law of total
expectation, we write (4) as

E

[

FX0

(

γth

N∑

n=1

Xn + γthη

)]

, (5)

where FX0(·) is the CDF of the RV X0, corresponding to the
form in (1) with g(x) = FX0(γth(x + η)).

2.3 Importance sampling

The naive MC estimator of the quantity of interest in (1) is

α̂mc = 1

M

M∑

k=1

g
(
S(k)
N

)
, (6)

where M denotes the number of simulation runs, and
{S(k)

N }Mk=1 represents independent realizations of the RV

SN = ∑N
i=1 Xi .

However, the naive MC method is computationally expen-
sive, requiring a substantial number of simulation runs to
meet a given accuracy when considering rare event probabil-
ities. Using appropriate variance reduction techniques, such
as IS, is necessary to overcome the failure of naiveMC simu-
lations and considerably reduce the computational work. The
idea is to perform a change of measure under which the rare
event is generated with a higher probability than under the
original distribution (Kroese et al. 2011). The IS technique
consists of writing α as

α = E f̃

[
g̃ (X)

]
, (7)

where

g̃ (x) = g

(
N∑

n=1

xn

)
f (x)

f̃ (x)
, (8)

and E f̃ [·] denotes the expectation under which the vector X
has the joint PDF f̃ (·). The IS estimator is expressed as

α̂I S = 1

M

M∑

k=1

g̃
(
X(k)

)
, (9)

where {X(k)}Mk=1 represents independent realizations of X
sampled according to f̃ (·). When g(x) > 0, x ∈ R+, the
optimal change of measure minimizing the variance of the
IS estimator is given by

f ∗(x) =
f (x)g

(∑N
n=1 xi

)

α
, x ∈ R

N+ .
(10)

This optimal change of measure yields zero variance; thus,
it is called the zero variance change of measure. However,
using such a change of measure is impractical because it
assumes the knowledge of α, which is the unknown quantity.

3 IS via an SOC formulation

This section explains the SOC formulation and how to
link it to IS to construct the state-dependent IS estimator.
Then, it introduces the HRT family as a change of measure.
Finally, this section describes the steps of the proposed state-
dependent IS algorithm.

3.1 State-dependent IS approach

The ideawe adopt is to link the problemof finding an efficient
change of measure to a SOC problem. To apply SOC to the
current static problem, we embed it with the evolution of a
Markov chain with the following dynamics:

Sn+1 = Sn + Xn+1, n = 0, 1, . . . , N − 1, (11)

where S0 = 0. Instead of sampling Xn+1 according to
fXn+1(·), we perform a change of measure such that, given
Sn, Xn+1 is distributed according to f̃ Xn+1 (·;μn+1(Sn)),
where μn+1 is a function of Sn . With this idea, the new joint
PDF can be written as

f̃ (x) =
N∏

n=1

f̃ Xn (xn;μn (sn−1)) , (12)
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where sn−1 = ∑n−1
i=1 xi . The objective is to determine the

optimal controls μn : R+ → A ⊂ R, n = 1, 2, . . . , N that
minimize the second moment of the IS estimator. Therefore,
assuming that the second moment of the estimator is finite,
we define the cost function forμn+1, . . . , μN ∈ DN−n, n =
0, . . . , N − 1 as

Cn,s (μn+1, . . . , μN )

= E f̃

⎡

⎣(g (SN ))2
N∏

i=n+1

(
fXi (Xi )

f̃ Xi
(
Xi ; μi (Si−1)

)

)2

| Sn = s

⎤

⎦ ,
(13)

where D = {μ : R+ → A} represents the set of admissible
Markov controls. More precisely,

for μ ∈ D, μ : R+ → A.

We also define the value function as follows:

u(n, s) = inf
(μn+1,...,μN )∈DN−n

Cn,s(μn+1, . . . , μN ). (14)

The above SOC formulation is flexible because the RVs
are dependent. The same observation holds for the optimal
change of measure (10). Therefore, if the family of PDFs
f̃ Xn (.;μn) is sufficiently large, we can expect the SOC for-
mulation to deliver an estimator with a performance close to
that of the optimal estimator.

Next, the question is how to solve the minimization
problem and determine the optimal controls μn, n =
1, 2, . . . , N . The idea is to solve it sequentially by going
backward in time. In Proposition 1, we state the dynamic
programming equation solved by the value function u.

Proposition 1 For all n ∈ {0, 1, . . . , N − 1} and s ≥ 0, we
obtain

u(n, s)

= inf
μ∈A

E f̃

⎡

⎣

(
fXn+1 (Xn+1)

f̃ Xn+1 (Xn+1;μ)

)2

u (n + 1, Sn+1) | Sn = s

⎤

⎦ .
(15)

If the minimum is attained, we have

μn+1(s)

= argmin
μ∈A

E f̃

⎡

⎣

(
fXn+1 (Xn+1)

f̃ Xn+1 (Xn+1; μ)

)2

u (n + 1, Sn+1) | Sn = s

⎤

⎦ ,
(16)

where u(N , x) = (g(x))2, Sn+1 = s + Xn+1, and Xn+1 is
distributed according to f̃Xn+1 (·;μn+1(s)).

Proof For simplicity, we assume that the optimal control is
attained:

u(n, s) = min
(μn+1,...,μN )∈DN−n

Cn,s(μn+1, . . . , μN ). (17)

Step 1We letμ∗
n+1, . . . , μ

∗
N be the optimal control minimiz-

ing (17). Then, we obtain

u(n, s) = E f̃

⎡

⎣(g (SN ))2
N∏

i=n+1

(
fXi (Xi )

f̃ Xi
(
Xi ; μ∗

i (Si−1)
)

)2

| Sn = s

⎤

⎦

= E f̃

⎡

⎣E f̃

⎡

⎣(g (SN ))2
N∏

i=n+2

(
fXi (Xi )

f̃ Xi
(
Xi ;μ∗

i (Si−1)
)

)2

×
⎛

⎝
fXn+1

(
Xn+1

)

f̃ Xn+1

(
Xn+1;μ∗

n+1(Sn)
)

⎞

⎠

2

| Sn = s, Xn+1

⎤

⎥
⎦ | Sn = s

⎤

⎥
⎦ .

(18)

Knowing Xn+1 and Sn ,

(
fXn+1 (Xn+1)

f̃ Xn+1

(
Xn+1;μ∗

n+1(Sn)
)

)2

is determin-

istic. Thus, using the Markov property of Sn , we obtain

E f̃

⎡

⎣(g (SN ))2
N∏

i=n+2

(
fXi (Xi )

f̃ Xi
(
Xi ;μ∗

i (Si−1)
)

)2

| Sn = s, Xn+1

⎤

⎦

= Cn+1,Sn+1 (μ
∗
n+2, . . . , μ

∗
N )

≥ u(n + 1, Sn+1).

(19)

Hence, the following inequality holds:

u(n, s) ≥ E f̃

⎡

⎣

(
fXn+1 (Xn+1)

f̃ Xn+1

(
Xn+1;μ∗

n+1(s)
)

)2

u(n + 1, Sn+1) | Sn = s

⎤

⎦

≥ min
μ∈A

E f̃

⎡

⎣

(
fXn+1 (Xn+1)

f̃ Xn+1 (Xn+1;μ)

)2

u (n + 1, Sn+1) | Sn = s

⎤

⎦ .

(20)

Step 2 We choose the control μ+
n+1 to be arbitrary and,

given the value of Sn+1, we select the optimal controls
μ∗
n+2, . . . , μ

∗
N . Then, the following lower bound holds:

u(n, s) ≤ E f̃

⎡

⎣

(
fXn+1 (Xn+1)

f̃ Xn+1

(
Xn+1; μ+

n+1(s)
)

)2

(g (SN ))2

N∏

i=n+2

(
fXi (Xi )

f̃ Xi

(
Xi ; μ∗

i (Si−1)
)

)2

| Sn = s

⎤

⎦

≤ E f̃

⎡

⎣

(
fXn+1 (Xn+1)

f̃ Xn+1

(
Xn+1; μ+

n+1(s)
)

)2

× E f̃

⎡

⎣(g (SN ))2
N∏

i=n+2

(
fXi (Xi )

f̃ Xi

(
Xi ; μ∗

i (Si−1)
)

)2

| Sn = s, Xn+1

]

| Sn = s

]
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= E f̃

⎡

⎣

(
fXn+1 (Xn+1)

f̃ Xn+1

(
Xn+1; μ+

n+1(s)
)

)2

u(n+1, Sn+1) | Sn=s

]

. (21)

Taking the minimum over all controls μ+
n+1(s) yields

u(n, s)≤min
μ∈A

E f̃

⎡

⎣

(
fXn+1 (Xn+1)

f̃ Xn+1 (Xn+1; μ)

)2

×u (n+1, Sn+1) |Sn=s

]

.

(22)

Hence, the proof is concluded using (21) and (22). �	
Remark 1 We can prove the proposition without the assump-
tion that the minimum is attained. For that, we use a
minimizing sequence μi of controls, satisfying

u(n, s) = lim
i→∞Cn,s(μi ). (23)

3.2 Hazard rate twisting family

The choice the family of PDFs f̃ Xn (.;μn) , n = 1, . . . , N
in this work is based on the well-known HRT. The HRT
technique was originally developed to deal with the right
tail of sums of heavy-tailed RVs (Juneja and Shahabuddin
2002; Ben Rached et al. 2018).
We define the hazard rate λXi (·) associated with the RV Xi

as

λXi (x) = fXi (x)

1 − FXi (x)
, x > 0, (24)

where FXi (x) = P(Xi ≤ x) is the CDF of Xi , i = 1, . . . , N .
We also define the hazard function as

�Xi (x) = − log
(
1 − FXi (x)

)
, x > 0. (25)

From (24) and (25), the PDF of Xi can be expressed as

fXi (x) = λXi (x) exp
(−�Xi (x)

)
, x > 0. (26)

The HRT change of measure is obtained by twisting the haz-
ard rate of each component Xi , i = 1, . . . , N by a quantity
μi < 1 as follows:

f̃ Xi (x; μi ) = (1 − μi )λXi (x) exp
(−(1 − μi )�Xi (x)

)

= (1 − μi ) fXi (x) exp
(
μi�Xi (x)

)
, x > 0.

(27)

Moreover, μi should satisfy 0 ≤ μi < 1, i = 1, . . . , N
to efficiently address the estimation of the right tail of the
sum distribution. Consequently, the tail of the resulting dis-
tribution becomesmuch heavier to the right than the original.
However, this feature is unsuitable for dealing with the left
tail. Two approaches were proposed in Ben Rached et al.

(2015b) to adjust the HRT to handle the left-tail region. The
first is based on twisting the RVs −X1, . . . ,−XN instead
of the original variates X1, . . . , XN . The second approach
applies the HRT approach to X1, . . . , XN using a negative
twisting parameter.
Considering the appropriate twisting parameter, we employ
the HRT change of measure given by (27), and the set A in
this case is given by A = (−∞, 1). By doing so, the value
function is given byc

u(n, s)= inf
μ∈A

E f̃

[
exp

(−2μ�Xn+1 (Xn+1)
)

(1−μ)2
u(n+1, Sn+1) | Sn=s

]

.

(28)

3.3 Algorithm

Based on the results stated in the proposition, we propose a
numerical algorithm to approximate the optimal controlsμn ,
wheren = 1, . . . , N .We start by truncating the spaceR+ and
work in the interval [0, S̄], where S̄ is a large number in R+.
There are particular cases that we treat, where S̄ is naturally
chosen. For instance, when estimating P(SN ≤ γth), due
to the nonnegativity of Xi , u(n, s) = 0 for s ≥ γth and
n = 0, . . . , N . In this case, S̄ is set equal to γth. In the general
case, S̄ is selected to be sufficiently large. At each step of the
backward algorithm, we use linear extrapolation to compute
the value function for s > S̄.

We consider a mesh in the one-dimensional s-space: 0 =
s0 < s1, · · · < sK = S̄. The aim is to approximately compute
u (n, sk) for all n = 0, 1, . . . , N−1 and sk, k = 0, 1, . . . , K .
The algorithm is summarized as follows:
Step 1 For each sk in the mesh, we solve the following:

u (N − 1, sk) = min
μ∈A

E f̃

⎡

⎣

(
fXN (XN )

f̃ XN (XN ; μ)

)2

(g (sk + XN ))2

⎤

⎦

= min
μ∈A

∫ +∞

0

(
fXN (t)

)2

f̃ XN (t; μ)
(g (sk + t))2 dt,

(29)

and

μN (sk) = argmin
μ∈A

∫ +∞

0

(
fXN (t)

)2

f̃ XN (t;μ)
(g (sk + t))2 dt . (30)

This step is not expensive because we must compute a one-
dimensional integral for each point in the mesh and perform
an optimization problem for the parameterμ. When the HRT
family is used, the optimization problem becomes equivalent
to determining the root of a nonlinear equation.
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Step 2After obtaining u (N − 1, sk) for all sk in the grid, the
next step again applies the result of the proposition to obtain
an approximation of u(N − 2, sk) and μN−1(sk)

u (N − 2, sk) = min
μ∈A

∫ +∞

0

(
fXN−1 (t)

)2

f̃ XN−1 (t; μ)
u (N − 1, sk + t) dt . (31)

To perform this step, we must know u(N −1, s) for all s that
are not necessarily in the grid. To overcome this problem, we
proceed by interpolating between the points u (N − 1, sk),
where k = 0, 1, . . . , K . As mentioned, linear extrapolation
is employed for s > S̄ when needed.
Step 3After computingμn(sk) for n = 1, 2, . . . , N and all sk
in the grid k = 0, 1, 2, . . . , K , the following step is to solve
for μn, n = 1, 2, . . . , N by going forward in time. More
specifically, we start at S0 = 0 and sample from f̃ X1 (·, μ1)

to obtain S1. Further, μ1(0) was already computed in the
resolution of the backward problem. We compute μ2 as

μ2 (s̃1) = argmin
μ∈A

∫ ∞

0

(
fX2(t)

)2

f̃ X2 (t;μ)
u (2, s̃1 + t) dt . (32)

After computing μ2, we simulate S2 as S2 = s̃1 + X2, with
X2 sampled from f̃ X2 (.;μ2).We continue repeating this pro-
cedure until we reach μN and then sample XN . In the case
of smooth controls, the optimization problem (32) can be
avoided using interpolation between controls, obtained in the
backward step, on the grid, s1, . . . , sK .
Step 4 The forward problem is repeated M times. The pro-
posed IS estimator is given as

α̂IS = 1

M

M∑

k=1

g
(
S(k)
N

) N∏

i=1

fXi

(
X (k)
i

)

f̃ Xi

(
X (k)
i , μi

(
S(k)
i−1

)) . (33)

4 Numerical results

This section presents selected numerical results to illus-
trate the performance of the proposed IS scheme. First, the
methodology adopted to demonstrate the performance of the
proposed approach is discussed. Themotivation for using the
improved version of the proposed method, called the aggre-
gate method, is explained. Then, the proposed algorithm is
applied to estimate the OP at the output of diversity receivers
with and without co-channel interference in the log-normal
environment.

4.1 Methodology

Within the broad applicability of the proposed estimator, we
focused on applying it to calculate the left-tail probability

and the CDF of the ratio of independent RVs. We used the
proposed estimator to estimate the OP at the output of diver-
sity receivers with and without co-channel interference. We
considered the case in which the antennae are sufficiently
spaced to assume that independent RVs can model fading
channels. We considered the log-normal fading environment
that exhibits a good fit for realistic propagation channels. We
demonstrated that the proposed approach achieves a substan-
tial reduction of the variance compared to other well-known
IS algorithms.
In both applications, the objective was to efficiently estimate
the following:

α = E

[

g

(
N∑

i=1

Xi

)]

, (34)

where X1, . . . , XN denote i.i.d. log-normal RVswith param-
eters m and σ 2. The PDF of Xi , i = 1, . . . , N , is expressed
as follows:

fXi (x) = 1

xσ
√
2π

exp

(

− (ln x − m)2

2σ 2

)

, x > 0. (35)

For the second application, we let X0 be a log-normal RV
with parameters m0 and σ 2

0 .
We employed the HRT change of measure in (27) to build

the estimator. Hence, we call this approach the HRT-SOC
IS approach, and the corresponding estimator is denoted by
THRT-SOC which is expressed as follows:

THRT-SOC = g (SN )

N∏

i=1

e−μi (Si−1)�Xi (Xi )

(1 − μi (Si−1))
, (36)

where g(x) = 1(x≤γth) in the first application, and g(x) =
FX0(γth(x + η)) in the second application. In this setting,
each step of the backward algorithm can be expressed, for
k = 0, . . . , K , as

u(n, sk) = min
μ∈(−∞,1)

1

1−μ

∫ +∞

0
u(n+1, sk + t) fXn+1(t)

× e−μ �Xn+1 (t)dt .

(37)

The controls μn(sk) are obtained by solving the following
equation:

1 − μn(sk)

=
∫ +∞
0 u(n − 1, sk + t) fXn−1 (t) e

−μn(sk ) �Xn−1 (t)dt
∫ +∞
0 �Xn−1 (t)u(n − 1, sk + t) fXn−1 (t) e

−μn(sk ) �Xn−1 (t)dt
.
(38)

For the forward step, assuming that the control is smooth
(motivated by numerical observations), we can compute the
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controls by interpolating between the points μn(sk), k =
0, . . . , K .

To sample from the change of measures f̃ Xi (·), i =
1. . . . , N , we used the inverseCDF technique. InBenRached
et al. (2015a), the authors revealed that the inverse CDF of
the HRT of a log-normal RV Xi is given by

F−1
Xi

(y) = exp

(

m + σ	−1
(

1 − (1 − y)
− 1

μi−1

))

, (39)

where μi is the twisting parameter corresponding to Xi and
	(·) is the CDF of the standard normal distribution. This for-
mula can be generalized to other distributions as BenRached
et al. (2015b, eq. (65)).

The relative error serves as a measure of the efficiency of
the estimators. The relative error of the naive MC estima-
tor and the proposed IS estimator are defined respectively
through the central limit theorem (Asmussen and Glynn
2007) as

εMC = C

√
α(1 − α)√

Mα
, εHRT-SOC = C

√
Var [THRT-SOC]√

Mα
, (40)

whereC is the confidence constant equal to 1.96 for the 95%
confidence interval.

We compared the estimator defined in (36) to other exist-
ing estimators when calculating the OP at the output of
diversity receivers with and without co-channel interference.
For instance, using the log-normal settingwith the HRT tech-
nique allows us to compare the estimator with the approach
in Ben Rached et al. (2015a), which used the HRT with-
out SOC (i.e., the control is constant, independent of the
state and time). We denote this method as HRT. In the
numerical experiments, the HRT-SOC technique reduces the
variance substantially compared to other approaches. How-
ever, it requires additional time, called a backward cost, to
determine the optimal controls.
We let MHRT and MHRT-SOC be the number of required sim-
ulation runs for the HRT estimator THRT and the proposed
estimator THRT-SOC, respectively, to ensure a relative error
equal to TOL. The total costs of the HRT-SOC and HRT
approaches are expressed as follows:

WHRT-SOC = N × K × Tb︸ ︷︷ ︸
Backward cost

+ MHRT-SOC × T f
︸ ︷︷ ︸

Forward cost

, (41)

WHRT = MHRT × T f
︸ ︷︷ ︸
Forward cost

, (42)

where Tb is the time required in the backward algorithm to
calculate a single control, and T f represents the cost per
sample in the forward step (approximately the same for
both approaches). Figures2 and 4 illustrate that the vari-
ance reduction compared to the HRT technique increases as

the quantity of interest becomes rarer. Thus, we determine
that MHRT � MHRT-SOC, especially for rare regions. Con-
sequently, we expect that, for the regime of rare events and
a fixed N , the backward time can be neglected compared to
the forward cost of the HRT, which is presented in Fig. 3.

When the backward time dominates the forward time of
the HRT, we propose an improved version of the HRT-SOC
estimator. We call this version the aggregate method (HRT-
SOC-AG), which aims to reduce the backward cost without
considerably affecting the variance reduction.

4.2 Aggregatemethod

The idea for the aggregatemethod is to divide the sum SN into
B blocks and compute the controls for each block rather than
for each Xi , i = 1, . . . , N . Doing so reduces the backward
cost from N × K × Tb to B × K × Tb. In other words, if we
select B blocks, such that B ≤ N , we consider the following
dynamics:

Snm+bm+1 = Snm +
nm+bm+1∑

i=nm+1

Xi , m = 0, 1, . . . , B − 1, (43)

wherenm = ∑m
j=1 b j , andbm, m = 1, 2, . . . , B are chosen

such that nB = ∑B
j=1 b j = N . We adopted the same control

μm(Snm−1) for each Xi from i = nm−1 + 1 to i = nm . Thus,
the B new controls μX

1 , . . . , μX
B are defined such that

μi = μX
m for nm−1 < i ≤ nm, (44)

i = 1, . . . , N , m = 1, . . . , B.

With this proposed approach, we decreased the cost of the
backward step with the price of increasing the variance.
To determine μX

1 , . . . , μX
B , we used the dynamics proposed

in (43) instead of the initial dynamics (11) to define a refor-
mulated dynamic programming equation. We employed the
same steps as those followed in the proof of the proposi-
tion, but instead of conditioning on Xn+1, we conditioned on
Xnm+1, . . . , Xnm+bm . Applying the same control μm+1 for
each Xi , i = nm + 1, . . . , nm + bm , as explained in (44), we
obtain

u(m, sk) = min
μ∈(−∞,1)

∫

[0,+∞[bm
e
−μ

∑nm+bm
j=nm+1 �X j (t j )

(1 − μ)bm

×
nm+bm∏

j=nm+1

fX j (t j )u
(
m+1, sk+tnm+1+· · ·+tnm+bm

)

dtnm+1 . . . dtnm+bm .

(45)

Instead of solving the above equation, we propose minimiz-
ing its approximate upper bound, which becomes clearer in
the next two subsections.
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4.3 OP at the output of diversity receivers in a
log-normal environment without co-channel
interference

The computation of theOP at the output of diversity receivers
is equivalent to evaluating the CDF of the sum of the SNRs.
Therefore, the interest in the first application is in the esti-
mation of the left-tail region of the following form:

P

(
N∑

i=1

Xi ≤ γth

)

. (46)

We compared the approach to the HRT technique (see Ben
Rached et al. 2015a) and the exponential twisting estimator
(see Asmussen et al. 2016). We also used the improved ver-
sion to achieve better results. When applying the aggregate
method, instead of solving (45), we propose to minimize an
approximate upper bound of it. More precisely, for the i.i.d.
log-normal case,

nm+bm∑

j=nm+1

�X j (t j ) ≤ �X

⎛

⎝
nm+bm∑

j=nm+1

t j

⎞

⎠ , t j > 0. (47)

holds asymptotically, i.e. when the sum
∑nm+bm

j=nm+1 t j is suffi-
ciently small, where X has the same distribution as X j , j =
nm + 1, . . . , nm + bm . This result can be proven using the
asymptotic result of the tail of a Normal distribution in
Asmussen et al. (2011). Using the inequality (47), the twist-
ing parameters μX

m+1 are then selected as the argmin of the
following approximated upper bound

u(m, sk) � min
μ∈(−∞,1)

∫

[0,S−sk ]
e−μ �X (y)

(1 − μ)bm
f∑nm+bm

j=nm+1 X j
(y)

× u (nm + bm , sk + y) dy,

(48)

where f∑nm+bm
j=nm+1 X j

(·) is the PDFof∑nm+bm
j=nm+1 X j . Given that

the PDF of sums of i.i.d. log-normal RVs is unknown, we
suggest approximating it using a univariate log-normal PDF
fYm+1(·), whose parameters are computed using moment
matching (see Cobb et al. 2012).

Finally, we obtain

u(m, sk) ≈ min
μ∈(−∞,1)

∫

[0,S−sk ]
e−μ �X (y)

(1 − μ)bm
fYm+1 (y)

× u (nm + bm , sk + y) dy, m = 0, · · · , B − 1.

(49)

Fig. 1 Variance as a function of K with the following parameters:
N = 10, m = 0 dB, σ = 3 dB, TOL = 0.05, and b = 2

Moreover, μX
1 , . . . , μX

B are obtained as follows:

μX
m+1(sk) ≈ argmin

μ∈(−∞,1)

∫

[0,S−sk ]
e−μ �X (y)

(1 − μ)bm
fYm+1 (y)

× u (nm + bm , sk + y) dy, m = 0, . . . , B − 1.

(50)

Figure2 plots the number of samples, required for the various
approaches, to ensure TOL = 5% as a function of γth. The
range of γth ensures a range of probabilities between 2 ×
10−12 and 6 × 10−6. For the aggregate method, we selected
a constant parameter b (i.e., bm = 2 for all m = 1, . . . , B
with B = N

2 ).
The choice of the parameter K = 20 is motivated by Fig. 1,
which plots the variance as a function of K . A larger K
results in a smaller variance. The backward step is costly
when K is large. Further, the variance reduction for K > 20
is minimal compared to the increased cost of solving the
backward problem.

Figure2 indicates that the number of samples required
by naive MC simulations increases faster as the threshold
decreases. In addition, the HRT-SOC approach requires the
smallest number of simulation runs and saves a consider-
able number of samples compared to the HRT approach. For
example, the number of simulations reduces by about 41,775
times for a small threshold (4 dB), corresponding to an OP
value of 2 × 10−12. In contrast, the HRT-SOC-AG requires
an additional number of samples, compared to the HRT-SOC
approach, to reach a 5% relative error, indicating that the vari-
ance has increased as expected. However, we still obtained
better variance reduction compared to the HRT technique.

We further studied the computational work for each
method. Figure3plots the total time required for the exponen-
tial twisting, HRT, HRT-SOC, andHRT-SOC-AG techniques
to ensure a 5% relative error as a function of the threshold.
We also plotted the time required by the HRT-SOC and HRT-
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Fig. 2 Number of required simulation runs for a 5% relative error with
the following parameters: N = 10, K = 20, m = 0 dB, σ = 3 dB,
TOL = 0.05, and b = 2

Fig. 3 CPU time required for a 5% relative error with the following
parameters: N = 10, K = 20, m = 0 dB, σ = 3 dB, TOL = 0.05, and
b = 2

SOC-AG techniques to demonstrate the time required for the
backward step compared to that required for the forward step.

The proposed estimator is the best for computational time
for small thresholds (corresponding to an OP of less than
3.6×10−8).As the event becomes rarer, the time gap between
the proposed approach and other IS techniques increases sig-
nificantly. Additionally, Figs. 2 and 3 reveal that the HRT
approach requires numerous samples to estimate the OP of
the order of 2 × 10−12 with good accuracy. However, for
an OP greater than 3.6 × 10−8, the proposed approach is
more expensive than others due to the additional computa-
tional time for the backward step for each threshold, which
exceeds the time the remaining techniques when the number
of samples is not sufficiently large. Nevertheless, this was
enhanced when we used the improved version. The HRT-
SOC-AG reduces the CPU time by about 1.7 times compared

Fig. 4 Number of required simulation runs for a 5% relative error with
the following parameters: K = 20, γth = 6 dB, m = 0 dB, σ = 3 dB,
and TOL = 0.05

Fig. 5 CPU time required for a 5% relative error with the following
parameters: K = 20, γth = 6 dB, m = 0 dB, σ = 3 dB, and TOL =
0.05

to the HRT-SOC approach for γth ≥ 5 dB. Thus, with this
choice of b, the efficiency of the aggregate method regarding
time reduction exceeds the loss in variance. This choice of
bm,m = 1, . . . , B is not optimal. Despite this, it provides
better results than the HRT-SOC approach.

Another possible experiment is to study the efficiency as
a function of the number N of antennae for a fixed thresh-
old and investigate the number of simulation runs required
for each method and the computational time (Figs. 4 and
5, respectively). The range of the OP is between 10−5 and
2.5×10−12 whenusing a range between nine and 13 antennae
and a fixed threshold γth = 6 dB. For the aggregate method,
we used bm = 2, m = 1, . . . , N

2 for an even-numbered
N and bm = 2,m = 1, . . . , N−3

2 , b N−1
2

= 3 for an odd-
numbered N .
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Figure4 indicates that the HRT-SOC approach is more
efficient and requires fewer simulation runs than theHRT and
the exponential twisting approaches. For N = 13, the pro-
posedmethod requires 7455 times fewer simulation runs than
the HRT technique to meet the same accuracy requirements.
In addition, the variance reduction for the HRT-SOC-AG
technique depends on whether N is odd or even. More-
over, the HRT-SOC-AG method requires more simulation
runs than the HRT-SOC technique to reach a fixed preci-
sion TOL, but it is more efficient in terms of CPU time for
N ≤ 12. When the event becomes rarer (for small γth and
large N ), the improved approach with a fixed choice of b
becomes less efficient in terms of CPU time than the HRT-
SOC approach. In these cases, the number of samples is large
enough that the backward time is neglected. Thus, reduc-
ing the variance rather than the cost of the backward step
is more efficient. These results demonstrate that the choice
of bm, m = 1, . . . , B is crucial and should be adaptively
chosen to provide better results. More precisely, for fixed
parameters γth, TOL and N , the following optimization prob-
lem should be solved:

min
b,M,K

B × K × Tb + MHRT-SOC-AG(b) × T f , (51)

such that

C2 Var [THRT-SOC-AG(b)]

MHRT-SOC-AG(b)α2 ≤ TOL2.

The above optimization problem reveals that an optimal
choice of bm in the case of a very rare event is bm =
1, m = 1, . . . , B, where B = N . However, when the event
becomes less rare, an optimal choice of B is to take a single
block (i.e., b1 = N ). By doing so, the HRT-SOC-AG tech-
nique reduces to the HRT technique because the controls are
state-independent in this case. Future work can be devoted
to solving the previous optimization problem. Using opti-
mal values of bm , we expect the HRT-SOC-AG estimator to
achieve better performance.

4.4 OP in the presence of co-channel interference in
a log-normal environment for SISO systems

We consider a SISO system and recall that the OP in the
presence of co-channel interference and noise is expressed
as follows:

Pout = E

[

FX0

(

γth

(
N∑

n=1

Xn + η

))]

,

where X1, . . . , XN are the interfering power signal and are
assumed to be i.i.d. log-normal RVs with parameters m and
σ 2.

Fig. 6 Motivation for using IS with N = 10, m0 = 10 dB, σ0 = 4 dB,
m = 0 dB, σ = 4 dB, γth = −18 dB, and η = −10 dB

The PDF of
∑N

i=1 Xi is denoted by f∑N
i=1 Xi

(·). To moti-
vate the need for IS to efficiently estimate Pout , Fig. 6 plots
the quantities f∑N

i=1 Xi
, g, and the optimal IS PDF, which is

proportional to g f∑N
i=1 Xi

. The product g f∑N
i=1 Xi

in Fig. 6 is
not normalized (i.e., it is an unnormalized PDF).

Sampling from the original PDF of
∑N

i=1 Xi is not effi-
cient (i.e., when sampling from the original PDF, most
samples fall in the region where g takes almost zero values).
Hence, the computation of Pout behaves like a rare event
problem and can be addressed using the proposed HRT-SOC
technique. The comparison is made concerning the estimator
of Ben Rached et al. (2017), which is based on a covariance
matrix scaling (CS) technique. It transforms the problem of
evaluating the OP to computing the probability that a sum of
correlated log-normal RVs exceeds a certain threshold. The
estimator in Ben Rached et al. (2017) is given by

TCS(Z) = 1(∑N
i=0 exp(Zi )≥1/γth

)L (Z0, . . . , ZN ) , (52)

where Z = (Z0, Z1, . . . , ZN )t ,

Zi =
{
log(Xi ) − log(X0) i = 1, 2, . . . , N

log(η) − log(X0) i = 0
, and

L (Z0, Z1, . . . , ZN ) =
exp

(
− θ

2 (Z − m)t�−1(Z − m)
)

(1 − θ)(N+1)/2
. (53)

The expressions ofm,�, and θ are given in BenRached et al.
(2017, eqs. (6), (7), (19)) respectively.
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We also compared the proposed approach to the exponen-
tially tilted (ET) estimator of Botev and l’Ecuyer (2017). We
also used the HRT-SOC-AG method proposed in the previ-
ous subsection to further improve the computational work
of the HRT-SOC technique. The reformulated dynamic pro-
gramming equation is

u(m, sk) = min
μ∈(−∞,1)

∫

(0,+∞)bm

e
−μ

∑nm+bm
j=nm+1 �X j (t j )

(1 − μ)bm

×
nm+bm∏

j=nm+1

fX j (t j )u

⎛

⎝m + 1, sk +
nm+bm∑

j=nm+1

t j

⎞

⎠

dtnm+1 . . . dtnm+bm .

(54)

Next, using the following inequality, proven in Juneja and
Shahabuddin (2002), which is particularly satisfied in the
case of i.i.d. log-normal RVs and holds for

∑nm+bm
j=nm+1 t j that

are large enough:

nm+bm∑

j=nm+1

�X j (t j ) ≥ �X

⎛

⎝
nm+bm∑

j=nm+1

t j

⎞

⎠ − ε, t j > 0,

for all ε > 0, (55)

we can write

u(m, sk) ≈ min
μ∈(−∞,1)

∫

(0,+∞)

e−μ �X (y)

(1 − μ)bm
fYm+1 (y)

× u (nm + bm , sk + y) dy, m = 0, . . . , B − 1.

(56)

The large value of
∑nm+bm

j=nm+1 t j is motivated by Fig. 6, which
illustrates that the change of measure tends to increase the
value of the sum in the regime of rare events. We studied the
efficiency of the four IS schemes regarding the number of
samples necessary to ensure a fixed accuracy requirement.
To this end, Fig. 7 plots the number of samples to ensure
TOL = 5% as a function of γth. This figure reveals that the
HRT-SOC approach saves numerous samples compared to
other approaches. For instance, the CS technique requires
approximately 2000 times as many simulations as the HRT-
SOC scheme needs. The aggregate method did not affect the
variance reduction.

We further investigated the gain in terms of the required
computational time. Figure8 presents the total CPU time
needed by the four techniques to achieve the fixed accu-
racy TOL. The HRT-SOC approach requires less CPU time
than the ET approach for the range of considered thresh-
olds. In particular, when γth = − 30 dB, it is 13 times
more efficient than the ET scheme. Compared to the CS
approach, the HRT-SOC technique is more efficient when
γth < − 25 dB, corresponding to an OP less than 3 × 10−8.

Fig. 7 Number of required simulation runs with the following param-
eters: N = 10, K = 20, S = 40, TOL = 0.05, η = −10 dB,
m0 = 10 dB, σ0 = 4 dB, m = 0 dB, and σ = 4 dB

Fig. 8 CPU time required for a 5% relative error with the following
parameters: N = 10, K = 20, S = 40, TOL = 0.05, η = −10 dB,
m0 = 10 dB, σ0 = 4 dB, m = 0 dB, and σ = 4 dB

The required computational time for the HRT-SOC tech-
nique is almost the same in the considered threshold range,
whereas the CS and ET approaches require much more time
as the threshold decreases. Moreover, the HRT-SOC-AG
technique requires less time than the HRT-SOC technique
using b = 2 to estimate the quantity of interest α. There-
fore, the improved approach widens the region over which
the proposed approach outperforms the CS approach.

In the last experiment, we studied the influence of varying
the accuracy TOL on the proposed and other IS approaches.
To this end, Figs. 9 and 10 present the number of simulation
runs and CPU time needed when varying TOL for a fixed
γth and N . This choice makes the OP approximately equal
to 10−7.

Figure9 confirms the high gains of the proposed meth-
ods compared to all other IS approaches. Our approaches are

123



Statistics and Computing (2023) 33 :40 Page 13 of 15 40

Fig. 9 Number of required simulation runs with the following param-
eters: N = 10, K = 20, S = 40, γth = −24 dB, η = −10 dB,
m0 = 10 dB, σ0 = 4 dB, m = 0 dB, and σ = 4 dB

Fig. 10 CPU time for a 5% relative errorwith the following parameters:
N = 10, K = 20, S = 40, γth = −24 dB, η = −10 dB, m0 = 10 dB,
σ0 = 4 dB, m = 0 dB, and σ = 4 dB

2000 times (respectively 65 times) more efficient than the CS
(respectively the ET) approaches for all values of TOL. Fur-
thermore, Fig. 10 demonstrates that the required time for the
proposed methods compared to the other algorithms remains
unchanged for the considered range of TOL. Moreover, sim-
ilarly to the previous conclusions, the computational time
required by the proposed algorithm is less than that needed
by the ET algorithm for all TOL. Additionally, the superior
performance of the method compared to the CS approach is
critical for small values of TOL. Finally, the HRT-SOC-AG
method increases the threshold, below which the proposed
method performs better than the CS approach, from 0.045 to
0.058.

5 Conclusions

Summary

We developed a generic state-dependent IS algorithm to effi-
ciently estimate rare event quantities that could be written
as an expectation of a functional of the sums of independent
RVs. These problems have applications in the performance
analysis of wireless communications systems operating over
fading channels. Within a preselected class of a change of
measures, the optimal IS parameters are determined via the
connection to an SOC formulation. The numerical exper-
iments verified the ability of the proposed approach to
accurately and efficiently estimate the quantity of interest
in the rare event regime. The proposed approach yields a
substantial variance reduction compared with other well-
known estimators. Additionally, the estimator requires less
CPU time than the other proposed approaches in rare regions.
We also proposed an aggregate method to improve efficiency
further in terms of computational time.

Possible extensions

For future research, the presentwork can be extended inmany
directions.Onepossible direction is to optimize the aggregate
method by solving the optimization problem (51).
A further interesting extension is to consider multivariate
RVs when estimating the quantity of interest. In this case,
RVs should be mutually independent, but the components
of each RV are not necessarily independent. As the back-
ward cost increases exponentially with the dimensions, we
could employ cheaper approximation methods to calculate
the controls, such as neural networks.
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