
This is a repository copy of A transfer learning approach for UAV path design with 
connectivity outage constraint.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/192904/

Version: Accepted Version

Article:

Fontanesi, G., Zhu, A., Arvaneh, M. orcid.org/0000-0002-5124-3497 et al. (1 more author) 
(2023) A transfer learning approach for UAV path design with connectivity outage 
constraint. IEEE Internet of Things Journal, 10 (6). pp. 4998-5012. ISSN 2327-4662 

https://doi.org/10.1109/JIOT.2022.3220981

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXX 2021 1

A Transfer Learning Approach for UAV Path

Design with Connectivity Outage Constraint
Gianluca Fontanesi, Graduate Student Member, IEEE, Anding Zhu, Fellow, IEEE,

Mahnaz Arvaneh, Member, IEEE, and Hamed Ahmadi, Senior Member, IEEE

Abstract—The connectivity-aware path design is crucial in the
effective deployment of autonomous Unmanned Aerial Vehicles
(UAVs). Recently, Reinforcement Learning (RL) algorithms have
become the popular approach to solving this type of complex
problem, but RL algorithms suffer slow convergence. In this
paper, we propose a Transfer Learning (TL) approach, where
we use a teacher policy previously trained in an old domain to
boost the path learning of the agent in the new domain. As the
exploration processes and the training continue, the agent refines
the path design in the new domain based on the subsequent
interactions with the environment. We evaluate our approach
considering an old domain at sub-6 GHz and a new domain at
millimeter Wave (mmWave). The teacher path policy, previously
trained at sub-6 GHz path, is the solution to a connectivity-
aware path problem that we formulate as a constrained Markov
Decision Process (CMDP). We employ a Lyapunov-based model-
free Deep Q-Network (DQN) to solve the path design at sub-
6 GHz that guarantees connectivity constraint satisfaction. We
empirically demonstrate the effectiveness of our approach for
different urban environment scenarios. The results demonstrate
that our proposed approach is capable of reducing the training
time considerably at mmWave.

Index Terms—Cellular networks, deep reinforcement learning,
path design, transfer learning, Unmanned Aerial Vehicle (UAV).

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are expected to be

a promising solution in diverse applications, such as fast

delivery, surveillance and disaster management thanks to their

easy deployment and high mobility [1]. From the standpoint of

wireless communications, on one hand, ground Base Stations

(BSs) can be leveraged to support UAVs as flying User

Equipments (UEs) for remote operations and high data rate

transmissions [2]. On the other hand, cellular networks can

be used to provide a Backhaul (BH), or Fronthaul (FH) link

to UAVs when deployed as wireless BSs or Remote Radio

Heads (RRHs). UAV-BSs/RRHs offer rapid deployment of on-

demand communication in hotspots and provide emergency

service operations [3].

Manuscript received XXX, XX, 2021; revised XXX, XX, 2021.
This work was supported by the Irish Research Council under Grant

GOIPG/2017/1741 and in part by the Science Foundation Ireland under Grant
Number 17/NSFC/4850. (Corresponding author: Gianluca Fontanesi)

G. Fontanesi and A. Zhu are with the School of Electrical and Electronic
Engineering, University College Dublin, Dublin 4, D04 V1W8, Ireland (e-
mail: gianluca.fontanesi@ucdconnect.ie; anding.zhu@ucd.ie).

H. Ahmadi is with the Department of Electronic Engineering, University
of York, Heslington, York YO10 5DD, United Kingdom, and with the School
of Electrical and Electronic Engineering, University College Dublin, Dublin
4, D04 V1W8, Ireland (e-mail: hamed.ahmadi@ucd.ie).

M. Arvaneh is with the Automatic Control and Systems Engineering,
University of Sheffield, UK(e-mail: m.arvaneh@sheffield.ac.uk)

A high quality and reliable ground to air link along the

entire path [4] represents a crucial challenge for the effective

deployment of UAVs in the above scenarios. An efficient

UAV path design shall thus optimize the UAV path to min-

imize the travelling time and comply with the quality-of-

connectivity constraint on the ground to air link. However,

designing a connectivity-aware path is particularly challenging

for two main reasons. First, conventional cellular networks are

equipped with downtilted antennas to serve UEs on the ground.

Consequently, the ground to air link is likely capacity limited

or prone to low connectivity at specific areas or heights [5].

Second, when UAVs are deployed in unseen environments, the

unavailability of knowledge about the environment increases

the complexity of the path design.

A. State of the art

Prior solutions to the UAV path optimization problem usu-

ally use conventional optimization techniques. Works in [6],

[7], [8], [9] discuss graph-search methods, whereas a dynamic

programming approach is used in [10]. These approaches

reformulate the corresponding non-convex path planning opti-

mization problems in a more tractable form that suffers from

poor scalability and is based on simplified assumptions on the

antenna and propagation models.

The above issues can be circumvented by exploiting detailed

information on the propagation channels in a given geographi-

cal area, such as radio maps. The work in [11] utilizes a radio

map of the environment to find the shortest path using graph

algorithms. The radio map is assumed known as a priori. In

[12], the authors first reconstruct the radio map of the area to

estimate the channel parameters. Then, the path is optimized

to maximize the data collected from the ground. Similarly,

in [9], [13], [14], the UAV uses a coverage map that provides

accurate locations of coverage holes in the network to maintain

effective communication with the ground during the flight

while moving from a starting to a final position in the shortest

amount of time. A∗ is thus applied for finding the shortest (or

approximately shortest) path in a much shorter computation

time than canonical Dijkstra’s algorithm, by considering a

smaller search subspace.

The above works show that the availability of radio or

coverage maps makes algorithms like A∗ attractive for UAV

path design problems. However, the assumption of full map

availability is generally impractical since radio and coverage

maps need to be estimated by collecting beforehand many

radio measurements in a specific environment [15]. Notably,
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using a A∗ algorithm for UAV path design would require

the availability of coverage maps for each UAV potential and

allowed height in the area where the UAV is planned to fly.

This is hard and expensive to be reached in practice.

In Reinforcement Learning (RL) algorithms, such as the one

proposed in this paper, prior knowledge of the environment

like radio and coverage maps is not required. RL algorithms

can learn the environment and autonomously determine the

optimal path through UAV-environment interactions and only

with UAV’s measured data, such as the received signal power.

For this reason, applying RL algorithms in the UAV path

design has received increasing interest. In [16], a Q-learning

path algorithm is proposed to design UAV path. A UAV

interacts with the environment collecting positive or negative

feedback. The algorithm considers the continuous and total

outage during the UAV path to prevent the UAV from losing

communication with the ground. However, when the size of the

considered flying environment increases, Q-Table becomes too

large and tabular methods such as Q-learning don’t represent

an efficient solution. It is thus beneficial for UAV path planning

to use Deep Reinforcement Learning (DRL) methods that

combine RL with Deep Neural Network (DNN) to address

more challenging tasks. In [17], the authors study the use of

Deep Q-Network (DQN) to minimize the weighted sum of the

UAV mission completion time and the communication outage

duration. In [18], the connectivity aware path is proposed in a

similar DQN fashion, but it also includes the optimal selection

of the ground BS transmitter.

One major issue of a model-free approach in UAV com-

munication, such as DQN, is the need for a relatively high

number of learning trials to converge. During the initial

training, the algorithm performance is poor and improves

only when enough information about the scenario environment

is collected. However, this lengthy training is equivalent to

thousands of flights where the reliability of the ground to

air link is not guaranteed and it is costly, due to the UAV’s

onboard battery and energy waste. Preliminary works have

investigated methods to improve the learning efficiency. Using

a model-based RL, the work in [17] uses the measurements

collected during the flights in the training to build a radio map

of the environment. The radio map is exploited to generate

simulated UAV trajectories and predict their corresponding

outage duration. In [19], the radio map of the environment

is built in a distributed fashion using Federated Learning (FL)

through the collaboration of multiple UAVs. The joint flight

and connectivity optimization problem is then solved collec-

tively. The work in [18] reuses past successful trajectories to

imitate the same behavior and achieve faster convergence.

B. Contribution

The above mentioned solutions contribute to reducing the

algorithms’ execution time but still fail to generalize when

applied to different unseen scenarios. In fact, these approaches

are tailored for a single environment only or used to build a

radio map of the environment [17-18]. This affects the ability

of the UAV to make good decisions when facing an unseen

environment. As a consequence, the agent would require to

re-run the lengthy training process for any new environment

faced by the UAV.

For these reasons, we believe that, to make DRL based

solutions attractive for UAV connectivity aware path design

in real scenarios, there is a need for a framework that can

significantly improve the performance in unseen environments.

Motivated by this challenge, we address the UAV connectivity

aware path using a Transfer Learning (TL) approach. TL is

the process of utilizing knowledge gained from other tasks, or

prior knowledge, to benefit the target task’s learning process.

The core idea of our paper is to transfer the experience gained

in learning to perform the proposed robust-DDQN path design

in a old domain to help improving learning performance of the

proposed DDQN path design in a new domain. Our method

for transfer learning translates advice, or preferences, from a

teacher path policy learned in an old domain D1 at f1 into

a new domain D2 at f2. Since future wireless networks will

support the sub-6 GHz and mmWave frequency ranges [20],

we believe that a different frequency band represents an inter-

esting and practical use case of unseen environment in UAV

path design. Our approach hinges on a Lyapunov method in the

search for a robust teacher policy that can effectively guarantee

the connectivity constraint satisfaction during training. To test

our TL approach in a challenging scenario, we consider sub-6

GHz and millimeter Wave (mmWave) frequency bands, which

have different propagation characteristics (blockage sensitivity

and scattering loss) and bandwidth availability. While other

papers focused on exploiting the correlation between these two

frequencies [21], we exploit that TL approaches are suitable

for equivalent or different domains [22]. To demonstrate

the generality of our approach we have considered different

blockage scenarios corresponding to the Urban, Dense Urban

and High Rise environments.

To better highlight the contribution of this paper, Table I

presents a comparison of this work with different works in the

literature. A systematic search was implemented to identify the

most important related works in the connectivity aware design.

The research is restricted to journal and conference papers only

and keywords such as UAV, connectivity and disconnectivity

constraint, path and prior knowledge. It can be noted that

the connectivity outage constraint is formulated in different

forms to cater for different UAV application scenarios flexibly.

We propose a framework that can solve the communication-

aware trajectory problem efficiently without the assumptions

of coverage maps while, at the same time, representing a robust

teacher policy to improve the training in new environments

through TL. To the authors’ best knowledge, while TL is

becoming a crucial topic in DRL and various domains [23],

[24], this is one of the first times Teacher Advice TL is

combined with a Lyapunov approach and applied to the UAV

connectivity aware path design. The TL method allows us to

create and incorporate prior knowledge in our DRL solution

without performing expensive measurement campaigns, speed

up the learning process, and optimally solve the optimization

problem.

The contribution of this paper can be listed as follows:

• First, we formulate a 3-D UAV path problem under

ground to air link connectivity outage constraint as Con-
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TABLE I: Comparisons between Related Studies on UAV path Optimization with Connectivity Constraint, where SNR is Signal to Noise
Ratio, PER stands for Priority Experience Replay, and TD is Temporal Difference.

Ref. Connectivity Constraint UAV Role Prior Knowledge Technique

[6] Minimum Target SNR UAV-UE ✗ Dijkstra Algorithm
[7] Backhaul Constraint - no Minimum Rate UAV-BS ✗ Dijkstra Algorithm
[8] Maximum Outage Duration UAV-UE ✗ Graph Theory, Convex Optim.
[9] Minimum Throughput UAV-UE Throughput Map A∗ Algorithm
[10] Maximum Continuous Disconnectivity Time UAV-UE ✗ Dynamic Programming
[11] Minimum Target SNR UAV-UE Radio Map Dijkstra Algorithm
[12] Minimum Target SNR UAV-UE Radio Map Dynamic Programming
[13] Connectivity Outage Ratio and Duration UAV-UE Coverage Maps Graph Search Method
[14] Minimum Target SNR UAV-UE Coverage Map A∗ Algorithm
[15] Minimum Target SNR UAV-UE Radio Map Graph Search Method
[16] Maximum Continuous and Total Disconnectivity Time UAV-UE ✗ Double Q-Learning
[17] Total Disconnectivity Time UAV-UE ✗ Model-based DQN (Dyna)
[18] Maximum Continuous Disconnectivity Time UAV-UE Radio Map DRL
[19] Maximum Continuous Connectivity Outage UAV-UE Radio Map Federated Learning
[23] ✗ UAV-BS Environ. Model DDQN, TL
[25] Minimum Target SNR at UE UAV-BS Coverage Bitmap PER DRL
[26] Disconnection Duration UAV-UE ✗ TD Learning
[27] Connectivity Outage Ratio UAV-UE ✗ Dijkstra with Intersection
[28] Total Connectivity Outage Time UAV-UE ✗ Dijkstra with Intersection
[29] UAV Disconnection Duration UAV-UE ✗ Decentralized DRL
[30] UAV Disconnection Duration UAV-UE ✗ DRL
[31] Minimum Target SNR at UE UAV-BS ✗ Q-Learning
[32] Backhaul Constraint - Minimum Rate UAV-BS Channel Gain Interior Method
[33] Disconnectivity Rate UAV-cargo Connectivity Heatmap Dynamic Programming
[34] Total Radio Failures UAV-UE ✗ DDQN

This Work Outage on Ground to Air Link UAV-UE, UAV-BS Teacher Policy Lyapunov robust-DDQN

strained Markov Decision Process (CMDP).

• Thus, we propose a Lyapunov approach to solve the

CMDP and obtain a strategy that ensures the UAV reaches

the destination while respecting the connectivity outage

constraint at all times. We then develop a robust-Double

Deep Q-Network (DDQN) based algorithm to learn an

optimal policy at f1.

• Utilizing the concepts of teacher advice and TL, we

present a novel algorithm that uses the derived trained

policy as a teacher policy at sub-6 GHz to guide the

exploration process at mmWave and reduce the training

time.

• We first demonstrate the efficiency of the robust-DDQN

comparing its performance to a benchmark conventional

Dueling DDQN. At sub-6 GHz frequency band, we show

that our approach can better explore the environment and

achieve higher mission success.

• Finally, we also evaluate the proposed teacher advice

and TL strategy in terms of the percentage of successful

missions. Results show that using a teacher policy trained

at sub-6 GHz frequency band significantly speeds up the

learning process at mmWave than starting the training

from scratch. Moreover, the robust-DDQN results in a

better teacher policy than the state of the art Dueling

DDQN.

The system model and the problem formulation are pre-

sented in Section II. In Section III, we transform the problem

into a CMDP and propose a robust-DDQN-based trajecotry

design algorithm to play as teacher for TL. The TL approach

is presented in Section IV while the Numerical Results are in

Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set, G, of B cellular BSs providing downlink

wireless service in a geographical area of interest X ∈ R
3.

UAVs can be deployed to reach an area of interest, F ∈ X ,

as UAVs-UE for delivery of supplies, or UAVs as BS or RRH

to provide service to a demand hotspot [7]. We assume that

the path of the UAV starts from a random starting position

qI = [x0, y0, h0] ∈ X, /∈ F , and ends in a final predetermined

position qF = [xF , yF , hF ]
T ∈ F for a duration T . For the

convenience of illustration, we divide the finite UAV mission

completion time T into a sequence of discrete time instances

t1, t2, ...tω such that T = ω∆T and |tn − tn−1| ≤ ∆T . The

UAV path can be thus approximated by the sequence {qn}
ω
n=1

where each step point at instant n is thus described by its

discrete coordinates qn = [xn, yn, hn]. The location and the

transmit power PBS of the ground BSs can be assumed as

known. We also assume that all ground BSs have equal altitude

hBS . Each BS and the UAV can operate at f1 and f2 but we

assume that data transmission occurs in a single frequency

band at a time.

Let bm = [xm, ym, hBS ] the coordinate of the m-th ground

BS in a three-dimensional coordinate system, the distance

between the UAV and the m-th ground BS at step n is given

by:

dm,n = ∥qn − bm∥ , m ∈ G. (1)

Next, we describe the channel model and formulate the

problem.

A. Ground-to-Air Channel Model

We consider wireless ground-to-air channel ground BS-UAV

characterized by deterministic large scale path loss and random

small-scale fading. We consider a generic urban environment

where the ground BS-UAV link might be occasionally blocked
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TABLE II: List of Notations and Symbols Summary
Notation Description Notation Description

X Area of Interest Π Set of markov stationary policies
G The set of GBSs Cπ() Expected cumulative cost function
V max Maximum UAV speed Dπ() Expected cumulative constraint function
N Path duration πB Baseline policy

N Maximum UAV mission duration L Lyapunov function
qI Path starting location Tπ,h Bellman operator
qF Path final location ϵ, ϵ̂ Auxiliary constraint
qn UAV Discrete path step n FL Set of robust policies
bm m-th Ground BS coordinate Lϵ Approximated Lyapunov function
hBS BS height QD(s, a, θ) Constraint value network
dm,n Distance between the mth GBS and the UAV QL(qn, a) Lyapunov value function
L() Path loss model QC(s, a, θ) Cost value network
αL, αNL Path loss exponents for LoS and NLoS QT (qn, a) Stopping time value network
XL, XNL LoS, NLoS intercepts pc, pd Samples priority
ϕ1, ϕ2 Antenna tilt at f1, f2 δ TD-error
PTX Transmit power of ground BS πT Teacher policy

σ2
n Thermal noise power H Prioritized replay memory

h, mv Fading, Nakagami fading parameter B Minibatch
γm,n, γ̄ SINR, SINR threshold Σ, Υ Known, Unknown space
SO Subset of outage Regions D1, D2 Old domain, new domain
F (qn) Radio failure indicator C, Z Size of known space memory, size
dO Connectivity outage constraint Θ, Λ Density threshold, Risk function
dth Max tolerated radio failures π2 Policy in new domain

Initial Position

Final Position

UAV-BS or UAV-UE

Radio

Failure

UAV Movement

xy

Limited Working Time

Fig. 1: UAV is flying in an urban environment where the ground BS-
UAV link might be occasionally blocked by buildings based on the
building distribution and UAV height, leading to radio failures.

by obstacles and buildings based on the building distribution

in X and UAV height. In order to present the results more

generically, the path loss at f1 and f2 between the mth ground

BS and the UAV can be modeled to take into account the Line

of Sight (LoS) and Non-Line of Sight (NLoS) case as for [4]:

L(d) =

{

XLd
−αL
m,n ;

XNLd
−αNL
m,n ;

(2)

where dm,n is the ground BS-UAV distance as for (1), and

parameters αL, αNL and XL, XNL represent, respectively,

the path loss exponent for LoS/NLoS and the path loss

at 1 meter distance. To capture the LoS and NLoS effect

at sub-6 GHz, we model the small scale fading power as

Rician for the LoS and as Rayleigh for the NLoS link [17].

At mmWave, we model the small scale fading power h2
0,i

with i {LoS,NLoS} as a Nakagami-mv fading model [4].

Accordingly, the fading power at mmWave follows a Gamma

distribution with E[h2
0] = 1.

1) Antenna Model: We adopt the three-sectors antenna

model as characterized by 3rd Generation Partnership Project

(3GPP) specification [35]. Similar to [36], we consider that

each sector is separated by 120° and equipped with a vertical

N -element Uniform Linear Array (ULA) tilted with angle ϕ1

at f1 and a Uniform Planar Square Array (UPA) N ×N tilted

with angle ϕ2 at f2. The dB gain experienced by a ray with

elevation and azimuth angle pair θ, ϕ due to the effect of the

element radiation pattern can be expressed as:

A3GPP
E (θ, ϕ) = Gmax −min{−[AE,V (θ) +AE,H(ϕ)], Am}

(3)

where Gmax = 8 dBi is the maximum directional gain of

the antenna element. The 3GPP element radiation pattern of

each single antenna element is composed of horizontal and

vertical radiation patterns AE,H(ϕ) AE,V (θ). Specifically, this

last pattern AE,V (θ) is obtained as

AE,V (θ) = −min

{

12

(

θ − 90◦

θ3dB

)2

, SLAV

}

(4)

where θ3dB = 65◦ is the vertical beamwidth, and SLAV = 30
dB is the side-lobe level limit. Similarly, the horizontal pattern

is computed as

AE,H(ϕ) = −min

{

12

(

ϕ

ϕ3dB

)2

, Am

}

(5)

where ϕ3dB = 65◦ and Am = 30 dB is the

front-back ratio. The relationship between the array

radiation pattern and a single pattern is defined as

AA(θ, ϕ, n) = AE(θ, ϕ) + AF (θ, ϕ, n), where n is the

number of antenna elements and AF (θ, ϕ, n) is the array

factor. AF (θ, ϕ, n) is given in [36] as:

AF (θ, ϕ, n) = 10 log10

[

1 + ρ

(

∣

∣a · wT
∣

∣

)]

(6)

where ρ represents the correlation coefficient set to unity, a

is the amplitude vector and w is the beamforming vector. The

definition of w can be found in [18], [36] and is omitted here.
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As in [18], [36], we consider an equal and fixed amplitude for

the antenna elements. As a consequence, a is set to ( 1√
n
) and

we leave the integration of optimized weights in beamforming

techniques for future investigation.

Finally, we assume the UAV is equipped with a conventional

isotropic antenna of unitary gain in any direction to mantain

low complexity and cost.

For simplicity, but without loss of generality, we focus

on one typical UAV. At any time step during the UAV’s

mission, the UAV associates with one ground BS’s sector

only, following a maximum Signal-to-Noise-plus-Interference

Ratio (SINR) scheme [4]. The maximum instantaneous SINR

received at the omnidirectional UAV from the attached m-th

ground BS can be defined as:

γm,n =
PBSL(dm,n)h

2
0(dm,n)gm∗,j∗

σ2 + It
, (7)

where L() is the path loss, the random variable h accounts

for the fading, and It the interference associated with the non-

attached BSs. The term

gm∗,j∗ = argmax
m∈G,j∈J

gm,j

is the antenna gain from the j-th sector of the m-th ground

BS and j ∈ J = {1, 2, 3} denotes the set of sectors.

For a given SINR threshold γ̄, an outage occurs at step n
if at the UAV the condition γm,n ≤ γ̄ is not satisfied. The

resulting outage probability can be denoted as

Poutage(qn,m) = Pr(γm,n < γ̄), (8)

where Pr is the probability of the event taken with respect of

the randomness of the fading. Note that the value of ∆T can

be considered small enough to satisfy ∆TV << hn, and in the

generic flying step n, the UAV can be considered stationary

[17], [37]. Let us define a radio failure indicator on the ground

to air link as

F (qn) =

{

1, if Poutage(qn,m) ≥ P̄th

0, otherwise.
(9)

Thus, we can introduce SO as the subset of outage regions

where (9) holds true. Then, for an arbitrary outage probability

threshold P̄th and a given path qn with qI /∈ SO, the

connectivity outage constraint dO can be expressed as

dO =

N
∑

n=1

F (qn). (10)

B. Problem Formulation

We would like the UAV to reach the destination in the

shortest possible number of moves, while keeping the outage

events lower than dth. The UAV’s velocity is limited to its

maximum speed. We consider that during its mission, the

UAV moves at constant V = V max. This assumption of

constant maximum speed makes the mathematical modeling

more tractable as the variable speed will have control and/or

aerodynamic related reasons which are out of our control and

scope of work. In addition, using UAV’s maximum speed

allows the UAV to reach the destination in the minimum path

steps. The UAV maximum speed used in this paper to derive

the numerical results is a realistic and aerodynamic supported

maximum speed, used in several related connectivity-aware

path design works [27], [17], [19]. Thus, the mission variable

T can be expressed as T =
∑ω

n=1
∥qn−qn−1∥
VMax

and optimization

problem can be formulated as in (11).

min
ω

ω
∑

n=1

∥qn − qn−1∥ (11a)

s.t. q0 = qI ,qN = qF (11b)

hn > hBS (11c)

∥qn − qn−1∥ ≤ ∆TV max, (11d)

dO ≤ dth, (11e)

ω ≤ N̄ . (11f)

Variable ω represents the mission completion steps. The

constraint (11b) guarantees the initial and final points, (11c)

prevents the collision between the UAV and the ground BSs.

(11d) constraints on the UAV’s maximum speed. The connec-

tivity constraint dO must not exceed a predefined threshold

dth. For this reason, (11e) defines the connectivity outage

duration tolerance. Constant N in (11f) is the upper bound on

the UAV steps to take into account the limited UAV endurance.

In our design, dth is not fixed but can be tuned to suit different

application scenarios. Longer paths may help the UAV avoid

SO areas and satisfy stringent values of dth. In scenarios where

the UAV is deployed for timing intervention a higher dth might

be tolerated to achieve shorter paths. Although UAV-UE and

UAV-BS cases generally have different design problems, the

above connectivity constraint path optimization applies to both

the scenarios from the ground to air link point of view.

The connectivity-aware problem (11) is a non-convex opti-

mization problem that is generally intractable to solve via con-

ventional optimization techniques. The Proof of NP-hardness

of a similar path design problem can be found in [27] and

omitted here. In addition, a closed-form expression of the out-

age probability (8) used to compute (11e) is highly dependent

on the network topology, channel fading and antenna gain.

In our previous work [4], taking into account the channel

characteristics at f1 and f2, we have investigated a stochastic

geometry approach to deduce a tractable form of Poutage.

However, statistical approaches provide useful insights on the

average performance of the network but they don’t capture the

actual complexity of the local environment where the UAVs

are deployed.

RL approaches, that interact iteratively with the environ-

ment, circumvent these issues solving the path optimization

problem using the power measurements at the UAV in a

certain time step. While RL algorithms for the design of

UAV connectivity aware path have been proposed already

in literature (Table I), this paper aims to propose a novel

TL approach to improve the efficiency of DQN for UAV

path design. More specifically, adopting the dual band system

model described in Section II, we focus on two fundamental

problems: (i) how can a robust policy derived at f1 be used

to infer the path at f2, (ii) what is the best algorithm solution

of (11) at f1 to act as teacher for f2, solving (i).
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Next, to determine a set of suitable policies to the connectiv-

ity aware problem, we propose a Lyapunov approach method

to the UAV path design. Finally, based on the Lyapunov

approach, we develop a teacher robust-DDQN algorithm.

III. CREATION OF A ROBUST TEACHER POLICY

The position of UAV at step qn+1 depends on the position

and moving direction chosen by the agent at step qn. Hence,

the UAV’s flight process can be regarded as a discrete-time

CMDP, an extension of the Markov Decision Process (MDP)

framework that suits optimization problems as (11), where

agents optimize one objective while satisfying cost constraints.

Note that we assume the UAV to be controlled by a dedicated

agent and the terms agent and UAV will be used hereafter

interchangeably.

A. Problem Formulation as CMDP

Each CMDP consists of a 7-tuple ⟨S,A,P, c, d, α, dth⟩.
In this work S is the space state consisting of the UAV

positions within the feasible flying region with single state

qn. The agent’s action corresponds to one of the UAV’s flying

directions, that together represent the action space A. The UAV

moves in a custom environment consisting of area X covered

by the dual band network. The immediate cost function is

modeled as c(qn, an) = −1 − ∥qn − qF∥. The first term

penalizes the UAV for each move and accounts for UAV

battery usage. At the same time, the second cost term measures

the relative distance to the destination and encourages the UAV

to complete its mission in the shortest possible number of

moves. We define the immediate constraint cost d(qn) as the

radio failure indicator F (qn) in (9), dth is an upper bound

on the expected cumulative constraint cost. Lastly, variable

α ∈ [0, 1] in ⟨S,A,P, c, d, α, dth⟩ represents the discount

factor.

Under this framework, at any step n, the UAV moves from

qn to qn+1 during step length ∆T at speed V max based

on the action an, selected according the current policy π.

We define a policy π(a |qn) as the condition probability to

take action a given the state qn. After taking action an, the

UAV interacts with the environment receiving the immediate

cost c(qn, an) and constraint cost d(qn). A sequence of

interactions leads to a terminal or goal state, where an episode

ends. For the computation F (qn), note that ∆T usually

contains many channel coherence blocks due to small-scale

fading. As a result, it can be assumed that as long as the

UAV performs signal measurements sufficiently frequently, the

outage probability (8) can be evaluated by its empirical value

P̂outage(qn,m) = 1/J
∑J

j=1
O(qn,m) where J ≫ 1 and

O() is 1 if γm,n ≤ γ̄ and 0 otherwise [17].

To complete the CMDP formulation of (11) we need to

formalize the constraint (11e) that bounds the total frequency

of visiting SO with a predefined threshold dth into a CMDP.

We rewrite (11e) using the immediate constraint notation

d(qn) = 1{qn ∈ SO}, where 1{x} denotes the indicator

function so that its value is 1 if x ∈ SO and 0 otherwise

[38]. Thus constraint (11e) becomes

E[

N
∑

n=1

1{qn ∈ SO} | qI , π] ≤ dth. (12)

Let us now denote Π the set of Markov

stationary policies with policy element π, such that

Π(qn) = {π(·|qn) : S −→ R≥0s :
∑

a π(a|qn) = 1}, ∀qn ∈ S
follows from the stationary property. Given a policy π ∈ Π
that maps states to actions and an initial state qI , we can

define the expected cumulative cost function as

Cπ(qI) = E
[

N
∑

n=1

c(qn, an) | qI , π
]

, (13)

and the robustness constraint function as

Dπ(qI) = E
[

N
∑

n=1

d(qn) | qI , π
]

. (14)

The optimization problem (11) becomes then

π∗ ∈ min
π

E
[

N
∑

n=1

c(qn, an) | qI , π
]

(15a)

s.t.E
[

N
∑

n=1

d(qn) | qI , π
]

≤ dth. (15b)

The goal of the agent is to find the optimal policy π∗ that

minimizes the long term cost while satisfying the connectivity

constraint.

We propose using the Lyapunov function-based method to

derive a robust optimal policy π∗, solution of (15) in domain

D1 at f1. The rationale behind the Lyapunov approach is to

find a set of robust actions that meet the condition (15b) and

guarantee global robustness during training. As a consequence,

it can be considered a suitable candidate as teacher in the TL

process. From here on, for simplicity, we will refer to the

robust policy π1 in domain D1 as teacher policy πT . To the

best of the authors’ knowledge, this is the first time a Lyapunov

approach is used to derive a teacher policy for transfer advice

for the UAV connectivity-aware path problem.

B. Background of the Lyapunov-Based robust Policy

We introduce the notation of Lyapunov function follow-

ing the definition in [38]: Given a baseline policy πB , i.e.

DπB
(qI) ≤ dth, a function L : S −→ R is said to be a

Lyapunov function w.r.t initial state qI and constraint threshold

dth if it satisfies the following conditions:

TπB ,d[L](qn) ≤ L(qn) ∀(qn) ∈ S, (16a)

L(qI) ≤ dth, (16b)

L(qF ) = 0. (16c)

We denote the constraints in (16a) as Lyapunov constraints

and (16b) as robustness condition. Term Tπ,d is the generic
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Bellman operator w.r.t a policy π and constraint cost function

d

Tπ,d[V ](qn) =
∑

a

π(a | qn)
[

d(qn, a) +
∑

q′n∈S
P (q′

n | qn, a)V (q′
n)
]

, (17)

where q′
n is next state qn+1 ∈ S under action a.

Given any arbitrary Lyapunov function L, consider the set

FL(qn) = {π(· | qn) ∈ Π : TπB ,d[L](qn) ≤ L(qn)} ∀qn ∈ S .

Given the contraction property of TπB ,d [39], together with

L(qI) ≤ dth, any policy π in this set satisfies the robustness

conditions and is a feasible solution of (15). This set of robust

policies is defined as the L-induced policy set. Since it is not

guaranteed that the set FL(qn) contains any optimal solution

of (15), the goal of the Lyapunov approach in this paper is to

formulate an appropriate function L, such that FL contains

an optimal policy π∗ to work as πT . Finding an appropriate

Lyapunov function may not be an easy task. [38][Lemma 1]

ensures that without loss of optimality, the Lyapunov function

that satisfies the above criterion can be expressed as

LπB ,ϵ(qn) = E
[

N
∑

n=0

d(qn) + ϵ(qn) | πB ,qn

]

, (18)

in which ϵ(qn) is an auxiliary constraint. Thus, finding L
that satisfies the above condition is equivalent to perform

appropriate cost-shaping with auxiliary ϵ which can be built

using the method proposed in [38]. This method approximates

ϵ to a constant function, which is independent of state and can

be computed more efficiently as

ϵ̂ =
dth −DπB

(qI)

E[T ∗|qI , πB ]
,qn ∈ S, (19)

where E[T ∗ | qI , πB ] is the expected stopping time of the

CMDP. To speed up the computation of the expected stopping

time we replace the denominator of (19) with the upper

bound N , maximum number of allowed steps, leading to

ϵ̂ = 1

N
(dth − DπB

(qI)). Substituting this last equation into

(18), the Lyapunov function becomes

LπB ,ϵ(qn) = E
[

N
∑

n=0

d(qn) + ϵ̂ | πB ,qn

]

, (20)

and the set of robust policies FL(qn) can be written as

FL(qn) = {π(· | qn) ∈ Π : TπB ,d[Lϵ̂](qn) ≤ LπB ,ϵ̂(qn)}.
(21)

The above formulation can be used to propose a robust policy

and value iteration algorithm, in which the goal is to solve the

Linear Programming (LP) problem [38]

π∗(· | qn) ∈ argmin
π∈Π

{

π(· | qn)
TQC(qn, ·) :

(π(· | qn)− πB(· | qn))
TQL(qn, ·) ≤ ϵ̂

}

(22)

where QL(qn, a) = d(qn) + ϵ̂ + α
∑

P (q′
n | qn, a)LπB ,ϵ̂

is the Lyapunov function and

QC(qn, a) = c(qn, a) + α
∑

q′

n
P (q′

n | qn, a)VC and

VC(qn) = TπB,c
[VC ](qn) are the state action value function

and the value function (w.r.t. the cost function c).

Since we assume that the environment in which the UAV

is flying is composed by a large and continuous state space,

solving (22) becomes numerically intractable. To address this

issue, in the next section, we propose a DDQN approach.

C. Lyapunov Approach DDQN for Connectivity-Aware Path

Design

In this section we use the above derived Lyapunov function

to derive an optimal robust policy via DDQN. Using the nota-

tion of action-value function [39], we can write the Lyapunov

state-action value function QL(qn, a) as

QL(qn, a) = QD(qn, a) + ϵ̂QT (qn). (23)

where QD(qn, a) represents the constraint state-action

value function. The stopping time value network QT (qn)
is a function related to the number of remaining

steps and discount factor, and can be computed as

QT (qn) =
∑N+1−m

t=m αt−m, ∀qn ∈ S.

If πB , QD(qn, a) and QT (qn) are known, the auxiliary cost

in (19) can be computed as

ϵ′(qn) = ϵ′ =
dth − πB(· | s0)

TQD(qn, a)

πB(· | s0)TQT (qn)
. (24)

Finding the optimal policy π∗ through (22) and (24) requires

accurate calculation of QD(qn, a), QC(qn, a) and πB . One

traditional way to derive optimal action-value functions is

table-based method, which requires storing and maintaining

a state-action value table, one value for each state-action

pair. However, for the path design under consideration, the

state-action value table would exponentially grow with the

size of the flying area. To overcome this issue, parametric

functions can be trained to approximate the state-action value.

Specifically, we utilize Neural Networks (NNs) to perform

function approximation. Let Q̂D(qn, a; θD), Q̂C(qn, a, θC) be

the parameterized evaluation networks with weights θD and

θC , then (23) becomes

QL(qn, a, θD) = Q̂D(qn, a, θD) + ϵ̂′QT (qn). (25)

where ϵ̂′ is computed as

ϵ̂′(qn) = ϵ̂′ =
dth − πB(· | s0)

T Q̂D(qn, a; θD)

πB(· | s0)TQT (qn)
. (26)

To train the networks Q̂D, Q̂C we minimize squared error of

prioritized Bellman residuals as for a loss function that can be

defined as

Lc(θC) = pc,n
(

ycn − Q̂C(qn, a, θC)
)2
, (27)

and

Ld(θD) = pd,n
(

ydn − Q̂D(qn, a, θD)
)2
, (28)

where pc,n and pd,n are the samples priority. In the above

equations, term ycn is the target cost value, expressed as

ycn = cn:n+N1
+ αN1π(· | q′

n)
T Q̂C(qn+N1

, a∗, θ−C ), (29)

where a∗ is

a∗ = argmax Q̂C(qn+N1
, a′, θC), (30)
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to separate the action selection and the action evaluation as

for double Q-learning technique [40]. Similarly, the target ydn
for the constraint cost can be denoted as

ydn = dn:n+N1
+ αN1π(· | q′

n)
T Q̂D(qn+N1

, a∗, θ−D). (31)

In each iteration the agent takes action an generated by

current baseline policy πB , and perform a DDQN update,

computing the loss to update the weights θC , θD of networks

Q̂D, Q̂C . To derive a reasonable baseline policy πB for the

UAV path design under study we create another DNN. As a

result, the baseline strategy action probability is approximated

by the output of the DNN, namely πB ≈ π̂(· | qn; θπ). We

train the policy network by optimizing a loss function that

consists on the Kullback-Leibler (KL) divergence between the

baseline strategy and the optimal strategy as:

L(θπ) = Eqn
[DKL(π̂(· | qn; θπ) || π

∗(· | qn))]. (32)

Note that in equations (27)-(31), to improve the stability and

convergence of our algorithm, we exploit different techniques.

Unlike the conventional Q-learning where target functions

are produced by using one-step look-ahead, we use n-step

lookaheads, or multi-step learning technique. Specifically, in

the target equation (29), (31) the truncated N1-step cost and

constraint cost from a given state qn are defined as:

cn:n+N1
=

N1−1
∑

i=0

αicn+1+i (33)

dn:n+N1
=

N1−1
∑

i=0

αidn+1+i. (34)

In conventional DRL, after executing the action, the agent

stores the state-action-reward transition into a replay memory.

In a second step, the agent performs the weight updates

selecting a random sample of |B| instances to break the cor-

relation between instances [41]. However, sampling randomly

the mini-batch B may affect the convergence of the training

procedure. For this reason samples can be selected according

to a priority determined by their Temporal Difference (TD) er-

ror, which can be computed as δc = {ycj−Q̂C(qn, a, θC)}
|B|
j=1,

δd = {ydj − Q̂D(qn, a, θD)}
|B|
j=1. In this work, we apply a

replay prioritization scheme that considers that target func-

tions are produced by using a multi-step learning technique.

Samples and TD errors are stored in a sliding window W
for N1 transitions to enable multi-step learning. The sampling

priority pc,n and pd,n in (27), (28) are given by a weighted

sum of two different components as

ηmax
i

δi + (1− η)δ̄ (35)

where in the general δ we omitted the subscript c or d to sim-

plifu the notation. δc is used for the computation of pc,n and

δd for pd,n. The term maxi δi is the max absolute N1-step TD

error δ contained within the |B|-length sequence, η is a tunable

parameter ∈ [0, 1]. The second term is the sequence mean

absolute N1-step TD error. Finally, it can be noted in (29),

(31) that Q̂C(qn+N1
, a∗, θ−C ), Q̂D(qn+N1

, a; θ−D) are target

networks of the evaluation networks. A target network has the
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Fig. 2: The Lyapunov robust-DDQN scheme proposed in this paper
for connectivity-aware path design with Policy, Cost and Constraint
Cost networks.

identical NN structure of the related evaluation network, but its

weights θ−C ,θ−D are updated only each I iterations by copying

the weights from the evaluation. In this way, the correlation

between the target and estimated Q-values is reduced.

The proposed algorithm to derive a robust UAV path via

Lyapunov method is summarized in Fig. 2, while Algorithm

1 presents the pseudocode.

IV. TRANSFER LEARNING VIA TEACHER POLICY

In this section we describe the Teacher Advice algorithm to

provide external knowledge and allow the agent pre-trained in

D1 to quickly adapt to the new environment D2.

Let us assume there exists a policy πT , solution func-

tion of (15) mapping states to actions, in a defined domain

D1 = ⟨S,A,P, C1,D1, α, dth⟩ at f1 to get from a particular

starting point to a goal, given a set of outage states. Let us

now consider a domain D2 at frequency f2 that differs from

domain D1 by the constraint cost distribution: D1, ̸= D2. We

propose to consider D1 as the old domain and D2 as the new

domain.

To reduce the computational burden of the training process

in the new domain, we propose leveraging Transfer Learning

to learn an optimal policy by leveraging exterior information

from D1 as well as internal information from D2. The robust

teacher policy πT supports the exploration process in domain

D2 at frequency f2 in two ways (Fig. 3). In the first step,

we use robust trajectories generated using a pre-trained πT to



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXX 2021 9

ALGORITHM 1: robust DDQN Algorithm for

Connectivity-Aware Path

1 Initialize: maximum number of episodes, the prioritized replay
memory H with capacity N , mini batch size |B|;

2 Initialize: Upper limit of Radio Failures TH1, UAV flight speed ;
for episode = 1,...,Max episode do

3 Initialize a sliding window queue W with capacity N1;
4 Initialize q0 = {qI} ∈ S \ SO , set step k ←− 0;
5 for each step of episode do

6 Select action an according to parameterized network
π̂(· | qn; θπ) ;

7 Agent execute action an, observe {qn+1} and cn,dn;
8 Store experience (qn, an, cn, dn,qn+1, δc, δd) in sliding

window queue W;
9 When reached a number N1 of transitions, store them in

replay memory H and compute (33) and (34);
10 From buffer H sample minibatch B of N1 experience

according to the priority as for (35);
11 Update the DNN of state action cost function QC

performing gradient descent on loss (27) with respect to
θC ;

12 Update the DNN of state action constraint function QD

performing gradient descent on loss (28) with respect to
θD ;

13 Update the priority weights pc,n, pd,n based on TD error;
14 Obtain π∗ by (22);
15 Update π̂(· | qn; θπ) via θπ ←− θπ − α∇θπL(θπ);
16 end

17 Update the target networks after I iterations.
18 Set πT = π∗ and θT = θπ ;
19 end
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Fig. 3: Illustration of our proposed Transfer Learning Algorithm: a
pre-trained policy in domain D1 is used as teacher in domain D2.

provide prior knowledge about the task. To reach this goal,

we utilize the concepts of known and unknown spaces [42] to

cover some regions of the feature space. In a second step, the

agent transfers the pre-trained weights from D1 and starts its

training in the new domain D2. The teacher policy πT is used

to support the exploration process when the agent meets an

unknown state. In new situations, the learning agent evaluates

a state from the perspective of the old domain to reduce the

frequency of risky states. Here it is important to note that the

role of the teacher policy is not to supply the best action but

to advice an action more robust than the one obtained through

random exploration. Fig. 3 summarizes the overall TL process

adopted in this paper. Note that the proposed TL method is

applicable to any DRL algorithm and it is not specific to the

robust-DDQN only.

A. Initial Known Space

The agent, equipped with an empty memory C of size Z,

builds the initially known space by storing new experiences.

Using πT , we run Q < Z iterations with the environment

and collect states, actions taken, reward received (cost and

constraint cost in this case), and if the current state is terminal.

The stored data follows the structure of the experience replay

memory used in conventional DQN. Each memory element

represents a transition the agent has experienced in domain

D1. The resulting data forms the known space. When the agent

enters a new state qn, it computes the euclidean distance to

determine if qn belongs to the known space. Hence, we define

a density threshold Θ and a risk function as [42]

ΛπT (an|qq) =

{

0, if min
1≤q≤Z

dn,q ≤ Θ

1, otherwise.
(36)

where dn,q = ∥qn − qq∥ is the Euclidean distance between

a new state and the states in memory. The parameter Θ
defines the classification region for a new state qn and it is

dependent on the size of the action. In this work, we consider

Θ = 2∆TV max. When the distance of the nearest neighbor to

qn is greater than Θ, the experience is added to the memory.

Thus, the definition of a known state is as following:

Definition 4.1: Given a density threshold Θ, a state qn is

considered known when ΛπT (qn) = 0 and unknown in all

other cases. Formally, Σ ⊆ S is the set of known states, while

Υ ⊆ S is the set of unknown states with Σ ∩Υ = 0.

Using the known space set, we could transfer the learner the

advice to prefer some actions over others in specific regions of

the feature space. However, a direct translation of the action

in the new domain would heavily limit the agent ability in

domain D2. To make our approach robust to imperfections in

the advice or teacher policy, we are interested in providing

the learning agent with the possibility to refine the transferred

knowledge based on its subsequent trajectories in domain D2.

In what follows, we present the algorithm for the training of

the learner agent in domain D2.

B. Training in New Domain

The algorithm to train the learning agent in the new domain

is composed of an initialization step and a reinforcement

learning step. The different steps that can be summarized as

follows:

a. Initialization Step: In this step the hyperparameters, the

density threshold Θ and the initial state qI are initialized.

The algorithm transfers the weights of the teacher DNN

pre-trained in D1 to domain D2, in DNN networks with

identical structure. In addition, to obtain new and improved

ways to complete the task, we add Gaussian noise to the

initial weights such that θπf2
= θπT

+N (0, σ2).
b. Reinforcement Learning Step: In this step, the training

in D2 starts and the algorithm refines the policy to satisfy

the connectivity constraint in domain D2. When the UAV
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ALGORITHM 2: Transfer Learning for Connectivity-

Aware Path Design

1 Given baseline behavior πT and memory C with maximum size Z;
2 Initialize maximum number of episodes, density threshold Θ,

prioritized replay memory H with capacity N , mini batch size |B|;
3 Create Σ collecting Q interactions;
4 Transfer Initial weights from πT ;
5 Set maxTotalRwEpisode = 0;
6 for episode = 1,...,Max episode do

7 Initialize q0 = {qI} /∈ SO , set step k ←− 0;
8 for each step of episode do

9 Compute the closest qq ∈ C to qn using (36);
10 if (qn is known) then

11 Select action using π = π̂(· | qn; θπf2
);

12 Execute lines 8-15 of Algorithm 1;
13 else

14 Choose an action using πT ;
15 Agent execute action an, observe {qn+1} and

cn,dn;
16 Add experience to memory C;
17 end

18 end

19 Remove least frequently used experiences in C;
20 end

21 Update the target networks after I iterations.
22 Set π2 = π∗;
23 end

flies in a new position, if the state is known, qn ∈ Σ,

the agent performs an action an using policy network

π̂(· | qn; θπf2
) and train the networks in domain D2. In

unknown states, instead, the action an is performed using

the teacher policy πT and the experience is added to the

known set in memory Z. As the exploration process and

the training in D2 continue, the knowledge of the agent of

D2 and the accuracy of π2 improve. Hence, the algorithm

utilizes the teacher policy πT only as a backup policy with

to guide the learning away from risky states or, at least,

reduce their frequency.

The pseudo code for the Transfer Learning and Teacher

advice is reported in Algorithm 2.

V. NUMERICAL RESULTS

In this section we present the main numerical results of

our findings. We first describe the radio environment used

for generating the UAV trajectories. Then, we evaluate the

performance of the proposed robust-DDQN algorithm in do-

main D1 at f1. We compare our approach with state of the art

deep RL. Specifically, we implement an unconstrained Dueling

DDQN that has been shown to suit UAV connectivity-aware

path problems [17], [34]. We model the reward function to

minimize the flight time and the number of radio failures

for a fair comparison. Details about the implementation of

the Dueling DDQN benchmark strategy will be presented in

Appendix B. At last, we validate and show the benefit of the

transfer learning approach from D1 at f1 to D2 at f2.

A. Radio Environment

The radio environment where the UAV is flying is composed

of buildings generated based on the International Telecom-

munication Union (ITU) model [43], which involves three

TABLE III: Parameters utilized in the simulation environment
Radio Simulation Parameters

Parameter Description Value

L Area Size 1 [km]
V max UAV Speed 20 [m/s]
hn UAV Height 100 [m]
ϕ1/ ϕ2 Antenna Tilt f1/f2 -10/10◦

Gmax max directional gain antenna
element

8 dBi

σ2 Noise Power sub-6/mmWave -204/-120 [db/Hz]
mv Nakagami Fading param. 3
∆T Time Step Length 0.5 [s]
γ̄ SINR Threshold 0 dB

P̄th Ouatge Threshold 0.9
dth Connectivity Outage Threshold 10%

parameters: i)the ratio of land area covered by buildings to

total land area, ii) the mean number of buildings per unit

area, iii) the height of buildings modeled by a Rayleigh

Probability Density Function (PDF). The above parameters can

be modified as specified in [44] to create Suburban, Urban,

Dense Urban and High Rise Urban environments. We have

considered the last three mentioned environments as they are

the most challenging for connectivity-aware UAV path and to

demonstrate the generality of our approach. Each environment

has a different BS number, BS power and height within a

geographical area of L×L, as for BS density specified in [45].

At frequency f1 = 2 GHz, we consider 8 antenna elements at

the ground BS, while 64 antennas at f2 = 28 GHz [36], as for

the ULA and UPA antenna models described in Section II-A1.

At sub-6 GHz, we adopt the 3GPP Macro Path Loss Model for

Urban scenario [46], that includes modeling for LoS and NLoS

channels. The presence/absence of obstacles is determined in

the simulated environment by checking whether the line BS-

UAV is blocked or not by any building. A ray tracing software

would allow us to include in the propagation calculation the

relative permittivity and conductivity of the surface material,

which is different for any building. However, this information

would limit the algorithm’s training to a specific scenario or

condition. The statistical ITU building model [43] used in our

approach reflects the average characteristics over a large num-

ber of geographic areas of similar type and has been widely

used to characterize urban environments in UAV trajectory

path design [17], [15]. Using data extracted by a simulator

allows us to train the proposed robust-DDQN and transfer

learning method on a broader general scenario, improving the

algorithm’s generalisation. At mmWave we consider the path

loss model in (2) with αL = 2, αNL = 4, XL, XNL = 5e−4.

We have adopted a bandwidth of 10 MHz at sub-6 GHz, 100
MHz at mmWave and a transmit power of 36 dBm at sub-

6 GHz and 30 dBm at mmWave, which are in line with the

specifications envisioned for downlink transmission in Fifth

Generation (5G) mmWave mobile networks. We consider a

UAV speed of 20 m/s [18] and ease of illustration but without

loss of generality, a fixed fly altitude.

The remaining simulation parameters can be found in Table

III.

B. Performance of the robust Teacher Policy

In this section, we show the performance of the robust

Teacher Policy derived using a robust-DDQN approach. Ta-
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TABLE IV: Hyperparameters utilized in the simulation environment
Hyperparameters robust-DDQN

Parameter Description Value

N1 n-STEP 10

N Max Steps 100
α Discount Factor 0.99
|B| Minibatch Size 32
H Replay Memory Size 200000
c Move Penalty 0.5
d Radio Failure Penalty 1
η Priority Sample Weight 0.9 [41]

ble IV shows some hyperparameters used to generate the

results. More details about the implementation of the robust-

DDQN approach can be found in Appendix A. The mission

is considered successful if the UAV reaches the destination

before the constraint threshold is exhausted. The destination

is placed in qF = [700, 800, 100] m and the actions at each

step are left-right-forward-back. To make the path task more

challenging, we consider in Fig. 4 a conservative constraint

threshold dth = 10. Note that the training phase of the robust-

DDQN model is executed for a number of 5000 episodes,

each of which accounts for a maximum of N = 100 steps.

The fairness of the experiment episodes is ensured by running

the trials with a different preset random seed. The mission

success rate is averaged over 500 evaluation episodes with

a random initial starting point. The initial starting point is

chosen from a continuous space in the area L × L. Note

that, to ease the algorithm generalization, the initial position

is not fixed but is chosen randomly in the flying area for each

evaluation episode. We also mention that the final position is

chosen inside a fixed area of side ±∆ = 30 m. Fig. 4 shows

the normalized success rate for the proposed robust-DDQN

compared with a conventional unconstrained Dueling DDQN.

The x-axis shows the number of episodes, while the y-axis

shows the mission success. While both algorithms converge

with good performance, the proposed robust-DDQN algorithm

has a generally higher success rate. In addition Fig. 5a shows

that our Lyapunov-based algorithm can control the radio

failures even when the environment is more challenging. On

the contrary, the unconstrained benchmark DDQN is more apt

to violate the constraint during training.

Fig. 5b shows the reward received by the agent for different

urban environments. The robust-DDQN can adequately learn

the path design task with good return while satisfying the

connectivity requirement. The shaded areas in Fig. 5b rep-

resent the 1-SD confidence intervals over 500 runs. Finally,

Fig. 6 evaluates how the method generalizes to different values

of connectivity outage threshold dth. Conservative thresholds

lead to longer trajectories, while higher dth allow more flexi-

bility and shorter trajectories.

C. Performance of Transfer Learning

In this subsection we investigate the potential of the transfer

learning algorithm in domain D2. Details about the implemen-

tation of the Teacher advice and Transfer Learning algorithm

are in Appendix C. The impact of the transfer learning is

measured considering the asymptotic performance of the agent

at mmWave. The TL algorithm is executed for 5000 trials
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Fig. 4: Results of the robust-DDQN compared with Dueling DDQN
for three urban environment with different building distribution. Term
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Fig. 5: Convergence of the proposed robust DDQN algorithm: (a)
maximum radio failure satisfaction and (b) reward control

and is compared with the algorithm executed without TL. The

mission rate is again averaged over 500 episodes with the same

constraint threshold as the previous section. We investigate

first the case of using a teacher policy pre-trained in sub-

6 GHz via robust-DDQN. The results are shown in Fig. 7.

The curves show the average mission success of over 500

episodes. The transfer learning is here very effective since

the algorithm with TL needs few training trials to reach the

asymptotic performance of the algorithm trained tabula rasa.

In addition, Fig. 8 shows the results of the teacher ad-

vice transfer approach using a Dueling DDQN as a teacher.

Transfer Learning is again very powerful, as the Dueling

DDQN without transfer needs at least 300 episodes to perform

comparably to the algorithm with transfer.

Fig. 9 shows an example of the radio map for the High Rise

environment. Fig. 9 is coloured according to the average SINR.

Lighter colour means a higher SINR and vice versa. Generally,

it is visible a different behaviour between the two bands. At

Sub-6GHz, lower SINR is in interference regions between the

BSs. At mmWave, the lower SINR areas are more irregular

due to the combined effects of the higher BS antenna tilt and

building blockage. In Fig. 9a we plot the radio map at sub-

6 GHz for a UAV height of 100 m together with two paths

that start from two different initial points. The UAV reaches

the destination from two different starting points during the

training in the old domain. Recalling that a radio failure occurs

at average SINR values below the SINR threshold 0 dB, it is
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Fig. 7: robust-DDQN: Average Asymptotic Performance of the Trans-
fer Learning algorithm measured in % of accomplished missions for
different urban environments at mmWave.

possible to see that the UAV adjusts its trajectory to satisfy

the connectivity constraint. In Fig. 9b we plot the radio at

mmWave band for the same UAV height and the returned path.

The UAV is reusing some of the previous knowledge to reach

the destination.

In conclusion, results show that the transfer advice frame-

work proposed in this paper helps a learner agent reduce the

training time in successful missions using both the proposed

robust-DDQN and a conventional Dueling DDQN as a teacher.

Different environments with different levels of complexity in

terms of coverage aware UAV navigation have been tested.

This shows that the proposed TL framework is versatile and

not dependent on the algorithm used to train the teacher policy.

However, it is important to observe that the robust-DDQN,

creating a policy that respects the connectivity constraint

throughout training, results in a better teacher policy.

VI. CONCLUSION

In this paper, we have developed a DDQN Lyapunov based

approach to solve the non-convex UAV connectivity-aware

path design across different simulation environments. We then
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Fig. 8: Dueling DDQN: Average Asymptotic Performance of the
Transfer Learning algorithm measured in % of accomplished missions
for different urban environments at mmWave
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(a) UAV path design example at sub-6 GHz along
with the radio map. The UAV reaches the destination
from two different starting points during the training
in the old domain.
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(b) Returned UAV path design in the new domain at
mmWave along with the radio map.

Fig. 9: An illustrative example of the radio maps in a High Rise
environment for the sub-6 GHz and mmWave and the returned UAV
path. Radio failures occur below the SINR threshold of 0 dB.

proposed a Transfer Learning technique to improve the agent

learning in a new domain at mmWave using the knowledge

gained in a domain D1 at sub-6 GHz. We have evaluated the

efficiency of our TL approach using a Lyapunov based DDQN

teacher policies derived at sub-6 GHz benchmarked with a

Dueling DDQN. Our approach showed the potential of the

proposed TL framework to save many training episodes for

both the teacher policies, resulting in fewer UAV flights. The

learning agent’s convergence using a teacher policy derived

via the Lyapunov based DDQN is faster for all the different
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TABLE V: Networks Structure in robust-DDQN Algorithm
Type Output Size Activation Learning Rate

Reward dim(A) Linear 10−4

Cost dim(A) Linear 10−4

Policy dim(A) Softmax 10−6

urban scenarios under consideration. Future works include the

evaluation of the sensitivity of our algorithm to the advice of

a non-perfectly trained teacher.
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APPENDIX A

ROBUST DDQN IMPLEMENTATION

Table V displays the architecture of the neural networks

used in our robust-DDQN algorithm. Especially, Table V

shows the learning rate values adjusted in the algorithm to

reach convergence. The hyperparameters in Table IV are

selected to both achieve a good trade off between learning per-

formance and model complexity. We implement the proposed

robust-DDQN based on Tensorflow library in Python. The Cost

and Constraint Cost layers are all fully connected and consist

of four hidden layers with ReLU as an activation function. The

layers have respectively 64, 64, 32 and 4 nodes, respectively.

The policy network consists of eight hidden layers, activated

with ReLu and with respectively 512, 256, 128, 128, 64, 64,

32 nodes. Weights of the policy network are initialized using

the inverse distance from the UAV location to the destination,

that is considered known, so that π̂(· | qn; θπ) approximates
1

∥q′−qF ∥ , where q′ is the next state after taking action an. The

policy networks weights are updated each 5 episodes, while

the Cost and Constraint Cost’s ones each 25 episodes. Adam

optimizer [47] is used to apply gradient descent for all the

networks. The learning rate is reported in Table V.

APPENDIX B

DDQN IMPLEMENTATION

The DNN of the DDQN used for benchmark consists in

a Dueling architecture with input layer, four hidden layers,

one output layer, all fully connected feedforward, activated

using Rectified Linear Units (ReLU) and trained with Adam

optimizer to minimize the MSE. The learning rate is kept 0.01.

The number of neurons of the hidden layers are 512, 256,

128 and 128. The dueling architecture represents two separate

estimators, one neuron for the state value function and K for

the action advantages for the K actions. The output of the K+1

neurons represents the aggregated output layer to estimate the

K action values. The replay memory and memory C for the

transfer learning have size 100,000. At mmWave we encourage

exploration through Gaussian noise N (0, 0.1) to the weights

of the network.

APPENDIX C

TEACHER ADVICE AND TRANSFER LEARNING

ALGORITHM IMPLEMENTATION

The set of known cases Σ is created running a number

N = 250 trajectories using the teacher policy πT and collect-

ing Q = 9000 iterations with the environment. The teacher

policy might be derived either via the Lyapunov approach or

the conventional DDQN described in the previous sections.

The memory C has size 200,000. Thus, in a second phase, the

network models trained in D1 are translated into domain D2.

Here, the weights of the networks are perturbed with Gaussian

noise, N (0, 0.1). The training is computed using a prioritized

memory of same size as for V.
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