
This is a repository copy of Revisiting real wage rigidity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/192856/

Version: Supplemental Material

Article:

Ellington, M., Martin, C. and Wang, B. (2024) Revisiting real wage rigidity. Journal of 
Money, Credit and Banking, 56 (2-3). pp. 613-626. ISSN 0022-2879 

https://doi.org/10.1111/jmcb.13056

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Revisiting Real Wage Rigidity

Online Appendix

Michael Ellington Chris Martin Bingsong Wang

October 21, 2022

1 Data

1954 2019
−5

0

5

%

Productivity, y
t

1954 2019

−1

0

1

%

Vacancies, v
t

1954 2019

−2

0

2

4

%

Unemployment, u
t

1954 2019
−5

0

5

%

Wages, w
t

1954 2019

−5

0

5

10

%

Inflation, πt

Figure 1: US Macroeconomic data from 1954Q3 to 2019Q4
Notes: This figure plots US labour market data from 1954Q3 to 2019Q4. The top left panel plots the
log-levels of productivity, yt; the top right panel plots the vacancy rate, vt; the middle left panel plots the
unemployment rate, ut; the middle right panel plots the log-levels of the real wage, wt; the bottom left panel
plots the annual inflation rate, πt. Grey bars indicate NBER recession dates. All variables have been filtered
using the Hamilton (2018) filter.
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2 Econometric Methodology

Our prior specification involves estimating a Bayesian fixed coefficient VAR (BVAR) model over the

training sample. The priors imposed on this BVAR model combine the traditional Minnesota prior

of Doan et al. (1984) and Litterman (1986) on the coefficient matrices with an inverse-Wishart prior

on the BVAR’s covariance matrix. In our specification, the prior mean on the coefficient matrix

sets all elements equal zero, except those corresponding to the own first lag of each dependent

variable which are set to 0.9. This imposes the prior belief that our variables exhibit persistence

whilst simultaneously ensuring shrinkage of the other VAR coefficients to zero. The prior variance

of the coefficient matrix is set similar to Litterman (1986). Our prior for the BVAR’s covariance

matrix follows an inverse-Wishart distribution with the prior scale matrix and degrees of freedom

set to an N-dimensional identity matrix and 1+N respectively.

We estimate the BVAR using a standard Gibbs sampler. For the sake of brevity, we do not

explicitly outline our algorithm since it is well documented; see e.g. Koop and Korobilis (2010).

Our alternative prior specification essentially replaces the conventional Cogley and Sargent (2005)

prior with the posterior means from the draws of an estimated BVAR over the training sample

θ̄BVAR =
1

M

M
∑

i=1

θi, (1)

V(θ)BVAR =
1

M

M
∑

i=1

V(θi), (2)

Σ̄BVAR =
1

M

M
∑

i=1

Σi (3)

respectively. Here M denotes the number of saved draws from the estimated BVAR which we

set to 20,000. θi and V(θi) denote the ith draw of the coefficient matrix and the variance of the

coefficient matrix respectively. Σi denotes the ith draw of the BVAR’s covariance matrix. From

these estimates, the initial conditions of the time-varying coefficient models, θ0, a0, h0 are Normal

and independent of one another, and the distributions of the hyperparameters. We set

θ0 ∽ N
[

θ̄BVAR, 4 · V(θ)BVAR

]

(4)

for α0, h0, let Σ̄BVAR be the estimated covariance matrix of the residuals from the time–invariant

BVAR. Let C be the lower–triangular Choleski factor such that CC
′

= Σ̄BVAR. The prior for the

stochastic volatilities are

ln h0 ∽ N(lnµ0, 10 × I5) (5)

where µ0 collects the logarithms of the squared elements along the diagonal of C. Each column of

C is divided by the corresponding element on the diagonal; call this matrix C̃. The prior for the
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contemporaneous relations is

α0 ∽ N
[

α̃0, Ṽ (α̃0)
]

(6)

with α̃0 ≡ [α̃0,11, α̃0,21, . . . , α̃0,51]
′

which is a vector collecting all the elements below the diagonal of

C̃−1. Ṽ (α̃0) is diagonal with each element equal to 10 times the absolute value of the corresponding

element of α̃0. This is an arbitrary prior but correctly scales the variance of each element of α0 to

account for their respective magnitudes.

For the time-varying coefficient model assuming Qt = Q, we set Q to follow an inverse Wishart

distribution.

Q ∽ IW (Q−1,T0) (7)

where Q = (1 + dim(θt)) · V(θ̄BVAR) · 3.4 × 10−4. The prior degrees of freedom, (1 + dim(θt)), are

the minimum allowed for the prior to be proper. Our choice of scaling parameter of 3.4 × 10−4

is consistent with Cogley and Sargent (2005). We have also estimated our models using different

priors, we allowed for a more restrictive scaling parameter of 1.0×10−4 and have also set the degrees

of freedom to be the length of the training sample; in our case this is 80. The scaling parameter

essentially sets the amount of drift within the θ matrices.

With regards to the hyperparameters under the assumption Qt = Qt, the diagonal elements

of Qt follow a geometric random walk, let C
V(θ̄BVAR)

be the lower-triangular Choleski factor such

that C
V(θ̄BVAR)

C
′

V(θ̄BVAR)
= 3.4 × 10−4V(θ̄BVAR). We then set

ln q0 ∽ N
[

lnµq0,0, 10 × Idim(θt)

]

(8)

with lnµq0,0 collecting the logarithmic squared diagonal elements of 3.4×10−4θ̄BVAR). The variances

of these stochastic volatility innovations follow an inverse-Gamma distribution for the elements of

Zq,

Zq,i,i ∽ IG(
10−4

2
,

1

2
) (9)

The blocks of S are also assumed to follow inverse–Wishart distributions with prior degrees of

freedom equal to the minimum allowed (i.e. 1 + dim(Si)).

S1 ∽ IW (S−1
1 , 2) (10)

S2 ∽ IW (S−1
2 , 3) (11)

S3 ∽ IW (S−1
3 , 4) (12)

S4 ∽ IW (S−1
4 , 5) (13)

we set S1, S2, S3 in accordance with α̃0 such that S1 = 10−3×|α̃0,21|, S2 = 10−3×diag([|α̃0,31|, |α̃0,32|]
′

), S3 =
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10−3× diag([|α̃0,41|, |α̃0,42|, |α̃0,43|]
′

), S4 = 10−3× diag([|α̃0,51|, |α̃0,52|, |α̃0,53|, |α̃0,54|]
′

). This cal-

ibration is consistent with setting S1, S2, S3, S4 to 10−4 times the corresponding diagonal block

of Ṽ (α̃0). The variances for the stochastic volatility innovations, as in Cogley and Sargent (2005),

follow an inverse–Gamma distribution for the elements of W ,

Wi,i ∽ IG(
10−4

2
,

1

2
) (14)

In order to simulate the posterior distribution of the hyperparameters and states, conditional

on the data, we implement the following MCMC that combines elements from Primiceri (2005) and

Cogley and Sargent (2005).

1) Draw elements of θt Conditional on Y T , αT and HT , the observation equation (1) is linear

with Gaussian innovations with a known covariance matrix. Factoring the density of θt, p(θt)

in the following manner

p(θT |yT , AT , HT , V ) = p(θT |Y T , AT , HT , V )
T −1
∏

t=1

p(θt|θt+1, Y
t, AT , HT , V ) (15)

the Kalman filter recursions pin down the first element on the right hand side of the above

in the following manner: p(θT |Y T , AT , HT , V ) ∽ N(θT , PT ), PT is the precision matrix of

θT from the Kalman filter. The remaining elements in the factorisation are obtained via

backward recursions as in Cogley and Sargent (2005). Since θt is conditionally Normal

θt|t+1 = Pt|tP
−1
t+1|t(θt+1 − θt) (16)

Pt|t+1 = Pt|t − Pt|tP
−1
t+1|tPt|t (17)

which yields, for every t from T − 1 to 1, the remaining elements in the observation equa-

tion (1). More precisely, the backward recursion begins with a draw, θ̃T from N(θT , PT ).

Conditional on θ̃T , the above produces θT −1|T and PT −1|T . This permits drawing θ̃T −1 from

N(θT −1|T , PT −1|T ) until t=1.

2) Drawing elements of αt Conditional on Y T , θT and HT we follow Primiceri (2005) and note

that (1) can be written as

AtỸt ≡ At(Yt −X
′

tθt) = Atǫt ≡ ψt (18)

V ar(ψt) = Ht (19)
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with Ỹt ≡ [Ỹ1,t, Ỹ2,t, Ỹ3,t, Ỹ4,t]
′

and

Ỹ1,t = ψ1,t (20)

Ỹ2,t = −α21,tỸ1,t + ψ2,t (21)

Ỹ3,t = −α31,tỸ1,t − α32,tỸ2,t + ψ3,t (22)

Ỹ4,t = −α41,tỸ1,t − α42,tỸ2,t − α43,tỸ3,t + ψ4,t (23)

These observation equations and the state equation permit drawing the elements of αt equa-

tion by equation using the same algorithm as above; assuming S is block diagonal.

3) Drawing elements of Ht Conditional on Y T , θT and αT , the orthogonal innovations ut,

V ar(ψt) = Ht are observable. Following Jacquier et al. (2002) the stochastic volatilities,

hi,t’s, are sampled element by element; Cogley and Sargent (2005) provide details in Ap-

pendix B.2.5 of their paper.

4) Drawing the hyperparameters Conditional on Y T , θT , Ht and αT , the innovations in θt, αt

and hi,t’s are observable, which allows one to draw the elements of Qt = Q, S1, S2, S3 and

the Wi,i.

Note that for the model allowing for stochastic volatility in the innovation variances of the time-

varying coefficients, Qt being a diagonal matrix, we add an extra block into the MCMC algorithm.

3a) Drawing the elements of Qt Conditional on θt, the innovations κt = θt − θt−1, with Var(κt) =

Qt are observable. Therefore we sample the diagonal elements of Qt applying the Jacquier

et al. (2002) algorithm element by element. Following this, we can then sample the Zq,i,i from

the inverse-Gamma distribution in step 4 of the above algorithm.
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3 Reduced-Form Results

The upper panel of Figure 2 plots the posterior median and 80% highest posterior density intervals

for the logarithmic determinant of the time-varying covariance matrices. The lower panel of Figure

2 plots the stochastic volatilities of each variable. Figure 3) contains the reduced-form correlations

between our variables

6



Figure 2: Total Prediction Variation, ln|Ωt|T |, and Stochastic Volatilities of US Labour
Market Variables from 1964Q3 to 2016Q4
Notes: The upper panel plots the posterior median, and 80% posterior credible intervals of logarithmic
determinant of the time-varying reduced-form covariance matrices, ln|Ωt|T |, from 1964Q3–2016Q4. The
lower panel plots the posterior median, and 80% posterior credible intervals of the reduced-from stochastic
volatility innovations of productivity, yt (top left panel); real wages, wt (top middle panel); the vacancy rate,
vt (top right panel); the unemployment rate, ut (bottom left panel); and inflation, πt (bottom middle panel)
from 1964Q3–2016Q4. Grey bars indicate NBER recession dates.
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Figure 3: Reduced-form correlations from 1964Q3 to 2019Q4
Notes: This figure plots the posterior median, and 80% posterior credible intervals of the reduced-from model
implied correlations of variables within the TVP VAR model from 1962Q1–2019Q4. ρ̂it,jt

denotes the model
implied correlation of variable i and j at time t respectively. yt, wt vt, ut, πt denote productivity, real wages,
the vacancy rate, the unemployment rate, and inflation, respectively. Grey bars indicate NBER recession
dates.
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4 Strategy for Identification of Structural Shocks

In this section we outline our identification strategy, which follows Canova and Paustian (2011)

and Mumtaz and Zanetti (2015). We simulate a theoretical model using a range of alternative

calibrations, based on randomly sampling parameter values within a specified range, constructing

a distribution of impulse responses of our endogenous variables to a variety of shocks. We identify

structural shocks for which the sign of the impulse responses on impact is unambiguous across

this distribution. In this way, we ensure that our identifying sign restrictions are credible, robust

to alternative calibrations of the structural parameters. Our identifying restrictions are based on

a standard New Keynesian DSGE model without capital but with search frictions in the labour

market, similar to Mumtaz and Zanetti (2012) and others.

We summarise the model and structural parameters in the upper panel of Table 1. Equations

(T.1)–(T.6) outline the structure of the labour market. Equation T.1 defines the sum of employment

(N) and unemployment (u) as the labour force, which is normalised to 1. Equation T.2 outlines

employment dynamics and relates employment to hires (h). Equation T.3 defines labour market

tightness (θ) as the ratio of vacancies (v) to unemployment. T.4 contains a standard constant

returns matching function, while T.5 and T.6 define the vacancy filling rate (q) and the job finding

rate (f) respectively. Equation T.7 contains the production function. T.8 defines the marginal cost

of hiring labour. Equation T.9 gives the wage, where we have assumed simple Nash bargaining.

Equation T.10 defines marginal cost, while T.11 relates price to marginal cost. Equation T.12 is

the Euler equation; a summary of these values are in the lower panel of Table 1.

We analyse the impact of four structural shocks. We identify a productivity shock, assuming

At = eǫP

t . We include a demand shock, ǫDt . We also include a shock to worker relative bargaining

power, assuming zt = zeǫz

t , where ǫzt is a bargaining power shock. And there is a shock to the

rate of job destruction, assuming τt = τeǫτ

t , where ǫτt is a job separations shock. We use impulse

response functions to these shocks to impose impact sign restrictions on our structural model.

We specify ranges of values for parameter calibrations and assume that parameters are uni-

formally distributed within this range. We assume that values of α are uniformally distributed

between 0.3−0.7; this is somewhat wider than the range of credible values suggested by Petrongolo

and Pissarides (2001). We also consider a wide range of values for matching efficiency, assuming

that values of m are uniformally distributed between 0.3−1.5. For the rate of job destruction, Hall

and Milgrom (2008) use τ = 0.03, while Pissarides (2009) uses τ = 0.036. These calibrations are

designed for monthly data, whereas we use a quarterly frequency, consistent with our data. We

therefore consider values between 0.087 − 0.104. The value of the opportunity cost of employment

is also contentious; Shimer (2005) assumes b = 0.4, Hall and Milgrom (2008) assume b = 0.71. We

assume that b is uniformally distributed between 0.4 and 0.8. For the bargaining power of workers,

we consider values between z = 0.1, so workers have little power to z = 0.8, where workers are able

to extract most of the surplus from a job match in the form of higher wages. We consider a wide

range of values for the probability that prices are fixed, considering values in the range θπ = 0 to

θπ = 0.9, encompassing the cases where there is little nominal rigidity and where prices are highly

9



Table 1: Contemporaneous Impact of Short-run Shocks on Labour Market Variables
Notes: Panel a) of this table shows the theoretical model that we simulate. Panel b) shows the range of
parameter values from which we sample in our simulations

a) Model Summary

Nt + ut = 1 (T.1)

Nt = (1 − τt)Nt−1 + ht−1 (T.2)

θt =
vt

ut
(T.3)

ht = muα
t v

(1−α)
t (T.4)

qt = mθ−α
t (T.5)

ft = qtθt (T.6)

Yt = AtNt (T.7)

λt =
κ

qt
− βEt

κ(1 − τt+1)

qt+1
(T.8)

wt = (1 − zt)b+ zt(At + κθt) (T.9)

mct =
wt + λt

At
(T.10)

P ∗
t

Pt
=

η

1 − η
(1 − βω)Et

∞
∑

k=0

(βω)kmct+k (T.11)

Y
−η

t = βeǫD

t EtY
−η

t+1

(1 + it)

1 + πt+1
(T.12)

(1 + it) = (1 + πt)
ρπ (T.13)

b) Credible Calibration Ranges

Parameter Interpretation Range

β Discount Factor 0.996
α Elasticity of Matching wrt Unemployment 0.3 − 0.7
m Efficiency of Job Matching 0.3 − 1.5
b Opportunity Cost of Employment 0.4 − 0.8
τ Rate of Job Destruction 0.087 − 0.104
z Worker Relative Bargaining Power 0.1 − 0.8
θp Probability Prices Are Fixed 0.− 0.9
ρπ Monetary Policy Response to Inflation 1.35 − 2.0
η Intertemporal Elasticity of Substitution 1
κ Cost of Vacancy Posting 0.2
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sticky. For the monetary policy response to inflation, we consider values between ρπ = 1.35 and

ρπ = 2.0, encompassing the different estimated values for this parameter in the post-1979 period.

We use η = 1 and set κ = 0.2.

We simulate our model by randomly selecting a set of calibration values from the distributions

we outline above. We calculate the steady-state solution for our model implied by this calibration

and construct impulse responses from a log linear expansion of the model around this steady-state.

We repeat this process 1000 times, building a distribution of impulse responses. These distributions

are shows in Figures 4)-7). We use these to construct the sign restrictions documented in Table 1)

of the main paper. In that table, + indicates that all values for the impulse response on impact

within the credible range were positive, − indicates that all values for the impulse response on

impact within the credible range were negative, and x indicates that the credible range for the

impulse response on impact included zero.

Figure 4: Median and 10%-90% Bounds of Impulse Responses to Productivity Shocks
Notes: This figure plots the distribution of impulse response functions following productivity shocks, based
on 1000 replications of the model outlined in Table 1 and sampling from the distribution of parameter values
outlined in that table.
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Figure 5: Median and 10%-90% Bounds of Impulse Responses to Job Separation Shocks
Notes: This figure plots the distribution of impulse response functions following job separations shocks, based
on 1000 replications of the model outlined in Table 1 and sampling from the distribution of parameter values
outlined in that table.

Figure 6: Median and 10%-90% Bounds of Impulse Responses to Bargaining Power
Shocks
Notes: This figure plots the distribution of impulse response functions following bargaining power shocks,
based on 1000 replications of the model outlined in Table 1 and sampling from the distribution of parameter
values outlined in that table.

12



Figure 7: Median and 10%-90% Bounds of Impulse Responses to Demand Shocks
Notes: This figure plots the distribution of impulse response functions following demand shocks, based on
1000 replications of the model outlined in Table 1 and sampling from the distribution of parameter values
outlined in that table.

5 Robustness Analysis

5.1 An Alternative Productivity Series

To assess the robustness of our main findings, we now replace our original productivity series with

that of Fernald (2014). We re-run our baseline model exactly as before and implement the same

sign restrictions. Figures 8 and 9 report our results analogous to Figures 1 and 2 in the main text.

Overall, it is clear that replacing our original productivity series with that of Fernald (2014)

yields qualitatively similar conclusions to those we report in the main text. Productivity and wage

bargaining shocks account for the majority of wage and unemployment variation with an increasing

relative importance of wage bargaining shocks as we move through our sample. This provides

further evidence supporting Fujita and Ramey (2007), Theodoridis and Zanetti (2020), Drautzburg

et al. (2021) and Ellington et al. (2021). We can also see that while the average semi elasticity

across all shocks remains stable over the sample, the absolute value of the semi-elasticity in response

to productivity shocks has risen.
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Figure 8: Variance Decomposition of Wages and Unemployment using Fernald (2014)
Productivity
Notes: This figure plots the contribution of (i) productivity shocks (red); (ii) wage bargaining power shocks
(brown); (iii) demand shocks (blue) and (iv) job destruction shocks (green) in explaining the 1-period ahead
variation in wages (top panel) and unemployment (lower panel) across our sample.

5.2 An Alternative Identification Strategy

We now focus on an alternative empirical identification strategy. We combine the maximum forecast

error variance procedure of Uhlig (2004) with our sign restrictions that stem from the theoretical

model. This is in a similar vein to Pizzinelli et al. (2020). In doing so, we impose the restriction that

the productivity shock explains the majority of the forecast error variance of labour productivity at

business cycle frequencies (i.e. from horizons 0 to 40)1. To ease computational burden because we

have a TVP VAR model, we compute simple impulse responses and sample every fourth quarter.

Figures 10 and 11 report our results analogous to Figures 1 and 2 in the main text.

Again on the whole, using an alternative identification scheme results in similar conclusions to

our baseline analysis. Productivity and wage bargaining shocks account for the majority of wage

and unemployment variation with an increasing relative importance of wage bargaining shocks as

we move through our sample. However, note that the absolute value of the forecast error variance

1For technical details on this procedure, see Appendix B.2 in Pizzinelli et al. (2020).
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Figure 9: Variation in Estimated Semi-Elasticities Over Time using Fernald (2014)
Productivity
Notes: This figure plots estimated semi-elasticities of real wages with respect to unemployment, calculated
as the ratios of the estimated impulse response functions, using k = 1. The figure plots (i) the estimated
semi-elasticity of wages with respect to unemployment following productivity shocks (red), with associated
credibility bands; (ii) the estimated semi-elasticity of wages with respect to unemployment averaged across
all shocks using forecast error variance decompositions to weight shocks.
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Figure 10: Variance Decomposition of Wages and Unemployment; An Alternative Iden-
tification Scheme
Notes: This figure plots the contribution of (i) productivity shocks (red); (ii) wage bargaining power shocks
(brown); (iii) demand shocks (blue) and (iv) job destruction shocks (green) in explaining the 1-period ahead
variation in wages (top panel) and unemployment (lower panel) across our sample.

shares associated to wage bargaining shocks is slightly lower than our baseline analysis. Turning

to the semi-elasticity plots in Figure 11 it is clear that the absolute value of the semi-elasticity in

response to productivity shocks has risen throughout the sample while the semi-elasticity averaged

over all shocks remains relatively stable.

In general these robustness checks further substantiate our main findings and provides additional

empirical evidence that one cannot attribute unemployment volatility to real wage rigidity.
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Figure 11: Variation in Estimated Semi-Elasticities Over Time; An Alternative Identi-
fication Scheme
Notes: This figure plots estimated semi-elasticities of real wages with respect to unemployment, calculated
as the ratios of the estimated impulse response functions, using k = 1. The figure plots (i) the estimated
semi-elasticity of wages with respect to unemployment following productivity shocks (red), with associated
credibility bands; (ii) the estimated semi-elasticity of wages with respect to unemployment averaged across
all shocks using forecast error variance decompositions to weight shocks.
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6 Alternative Calibrations

In this section we explore the consequences of differing values for wage rigidity for macroeconomic

modelling. We calibrate a workhorse New Keynesian model with matching frictions in two scenarios.

In the first, we calibrate the model in order to match the value for the wage rigidity in response

to productivity shocks that we use in the current literature. In the other, we calibrate in order to

match the smaller value of wage rigidity that we find in this paper.

To do this, we use the model outlined and used to derive credible sign restrictions, in section 4).

We set α = 0.5, m = 1.7, τ = 0.1, θp = 0.5, ρπ = 1.5 and η = 1. We also target an unemployment

rate of 5.2%. Given these, we solve for the values of w, κ and λ that satisfy (T.8)-(T.10) in Table

1) above and calibrate z and b to give the desired value of the semi-elasticty of wages with respect

to unemployment. In secenario 1), we target a semi-elasticity of wages with respect to productivity

shocks of seProd
t+1,t = −0.46, the value obtained by Gertler et al (2020); in scenario 2), we target

seProd
t+1,t = −2.17. For scenario 1), we obtain b = 0.71, and z = 0.085; for scenario 2), we obtain

b = 0.4 and z = 0.88.

Table 2: Simulation Results

Parameter Interpretation Scenario 1 Scenario 2

σu Volatility of Unemployment 0.031 0.01
σw Volatility of the Wage 0.014 0.02
ρw,u Correlation Between Wage and Unemployment −0.987 -0.983
ψw First-Order Autocorrelation of the Wage 0.878 0.878
ψu First-Order Autocorrelation of unemployment 0.935 0.935

Our results are summarised in Table 2). As we might expect, the volatility of unemployment

relative to the volatility of wages is higher with the values of real wage rigidity used in the existing

literature which are reflected in Scenario 1), compared to our estimated lower value for real wage

rigidity, reflected in Scenario 2). Although our simple DSGE model is not designed to replicate the

high value of unemployment volatility that is observed in the data, it is clear that our finding of

a low value for wage rigidity challenges existing models that are able to generate a high value for

unemployment volatility.

To explore this further, we used a calibration similar to that of Hagedorn and Manovskii (2008),

a well-known paper that is able to generate a large volatility of unemployment. In particular, we

set b = 0.955 and z = 0.052. The resultant semi-elasticity of wages with respect to unemployment

is only −0.05, much lower than any estimate in the literature. We also used a calibration similar to

that of Shimer (2005), whose calibration does not generate a large unemployment volatility. In this

case, we set b = 0.4 and z = 0.72; the resultant semi-elasticity is −1.56, which is consistent with

existing evidence, although somewhat lower than our estimate. These experiments highlight how

our results create a challenge to the theoretical literature, since it is not clear whether any existing

model can match the high value of unemployment volatility in the data while also matching the

small value for real wage rigidity that we estimate in this paper.
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