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ABSTRACT

Modelling energy retrofit adoption in domestic urbanbuilding stocks is vital for policymakers aiming
to reduce emissions. The use of surrogate models to evaluate building performance combined with
optimization procedures can optimize small building stocks but are insufficient at the urban scale.
Recent methods train neural networks using samples of near-optimal solutions further decreasing
the computational cost of optimization. However, these models do not make definitive predictions
of decision makers with given environmental preferences. To rectify this, we extend the method by
assigning a carbon valuation to households to derive their optimal retrofit solutions. By including
the carbon valuation when training the predictive model, we can analyze the impact of households’
changing attitudes to emissions. To demonstrate this method we construct an agent-based model
of Nottingham, finding that simulated government campaigns to boost environmentalism improve
both the number of retrofits performed and the mean emissions reduction of each installation.
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1. Introduction

Domestic dwellings account for over a third of the
national energy demand and approximately a quarter
of total CO2 emissions in the UK, with the majority of
this energy demand being used for electric or gas-based
space heating (Waters 2019; Office For National Statis-
tics 2021). While significant progress has been made in
the design of new buildings for efficient heat genera-
tion and retention, most of the existing stock will still
be occupied by the UK government’s deadline of 2050
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for net zero emissions (The UK government 2008). Meet-
ing this target will require strategies to transform the
existing building stock with Whole House Retrofit Solu-
tions (WHRSs). To analyze the impact of such policies an
increased emphasis should be placed on robust tools for
modelling and optimizing the policy decisions such as tax
rate, public engagement, andmethods of outreach. How-
ever, detailed dynamic analysis of building stock retrofit
adoption is complex, as not only the physical properties
of each dwelling differ, but each household has hetero-
geneous preferences in selecting a WHRS to meet their
objectives.

Discovering near-optimal solutions to fit household
preferences is computationally expensive at the urban
scale. There have recently been some successful attempts
to generate near-optimal sets of WHRSs using Deep Neu-
ral Network (DNN) based Surrogate Optimizers (SOs) (Hey
et al. 2020; Thrampoulidis et al. 2021). These techniques
use adata set ofWHRSsgeneratedusing traditionalmeth-
ods of simulation, surrogatemodelling, and optimization.
These WHRSs are used to train a predictive model of
household retrofit decisions which is then applied to the
remaining buildings in the data set. While all surrogate
models result in some loss of accuracy, they also greatly
cut down the computational effort of finding potential
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retrofits. Existing SOs take a preference-blind approach,
building a front of potential retrofits for selection by a
decision-maker. While this is useful when stakeholder
engagement is possible, it is unsuitable for applications
such as an agent-basedmodel (ABM) in which the prefer-
ence information of agents is available a priori, requiring
a definitive solution for the preferences stated.

When attempting to include households in the build-
ing stockmodelling scope, a formof synthetic population
is required as well as a mechanism for realistic interac-
tion between the physical and social components (Robin-
son 2019). We extend the surrogate optimizationmethod
byproviding amechanism for tailoring these retrofit solu-
tions to a measurable and interpretable metric of envi-
ronmentalism (willingness to pay for carbon mitigation)
among the synthetic population. To create the SO,we use
an establishedmethod of generating optimizations using
a Surrogate Energy Performance Model (SEPM) in con-
junction with a Genetic Algorithm (GA) to produce a data
set of near-optimal WHRSs. The objective function used
in this optimization is designed to include a Household
Carbon Valuation (HCV) expressed in £/tCO2e. This allows
household agents to transparently select the retrofit that
most reflects their personal preference between eco-
nomic and environmental considerations. This permits
the modelling of heterogeneous emission-preferences
among the synthetic agents, better capturing the diverse
attitudes within the target population. When training the
SurrogateOptimizer (SO), this HCV is provided as an input
feature, allowing the SO to generate solutions for individ-
ual HCVs. We demonstrate a potential use of this method
by integrating it with an ABM in which an agent repre-
senting the local government runs campaigns to boost
environmentalism among homeowners. A model of this
scale using a measure of households’ willingness to pay
for carbon mitigation would have been computationally
infeasible using existing methods.

2. Related works

Surrogate Optimization (SO) is a recently developed
method for building stock retrofit modelling. The SO
method requires the simulation of a sample of building
stock for the construction of a Surrogate Energy Perfor-
mance Model (SEPM). The SEPM is used for retrofit opti-
mization of another sample of the stock to create a data
set of retrofit decisions for training the predictive SO.
The SO can then be used for rapid evaluation of build-
ings at significantly reduced computational cost. Follow-
ing is a brief summary of the related works covering the
modelling of building stocks, energy simulation, surro-
gate energy performancemodels, and their optimization.
Then the prior attempts at SO methods are considered

which reduce the computational cost of retrofit evalu-
ation using predictive models, but in which we find a
lack of household preference transparency required for
building stockmodelswith an environmentally conscious
synthetic population. Finally, a review of the works per-
taining to Willingness To Pay (WTP) for carbon emissions
mitigation is presented, demonstrating themeasurability
and interpretability of thismetric,making it well-suited to
stock modelling applications.

2.1. Building stockmodelling

Building stock modelling can be approached from either
a top-downor bottom-upperspective (Kavgic et al. 2010).
Surrogate optimization is a bottom-up approach, as
households are modelled individually with heteroge-
neous characteristics. This allows the analysis of policies
enacted at the local level, which is difficult with top-
down approaches. Broadly speaking, we can consider the
computational cost of analysing a building stock from a
bottom-up perspective as being determined by the size
of the stock, and the level of detail in which each resi-
dence is modelled. Physical methods require the simu-
lation of each building, and so generally scale linearly,
making large stocks less feasible to model, while statis-
tical methods rely on training a model using measured
data (Reinhart and Davila 2019). When these models are
trained using simulated data they are typically referred to
as surrogate models, as the statistical model acts as a sur-
rogate for the physical one. The use of statistical models
greatly increases the scalability of the problem, as they
can be evaluated in a fraction of the computational time
physical models take.

One technique requires simulating a single represen-
tativemember of each building archetype, thenmultiply-
ing this energyusageby the total floor area this archetype
represents in a given stock (Reinhart and Davila 2019).
In the absence of a mapping between each archetype
and each dwelling of that type, there is no direct rep-
resentation of building-specific WHRSs at the scale of
individual buildings. While this method is suitable for
very large stocks, and this level of analysis can give esti-
mates of total energy usage, the missing level of detail
can be restrictive: it prevents us studying the impact that
dynamic installations of retrofits have across the stock.
A review of 29 national housing stock energy models
found that the tools being utilized by researchers have
‘limited scope and simplicity’ (Sousa et al. 2017, 77). Mod-
els were criticized for overwhelming bias towards the
use of monthly or annual energy balance calculations
rather than dynamic simulation, resulting in oversimpli-
fication of physical phenomena. However, this approach
is not suitable for explicitmodelling ofwhole city housing
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stocks, which can be performed with the use of descrip-
tive bottom-up approaches allowed by surrogate opti-
mization. A review of bottom-up energy demand mod-
els by Kavgic et al. (2010) highlighted the importance
of an energy models’ ability to capture socio-technical
behavioural elements as well as explore the impact of
emission reduction strategies and emergent technolo-
gies, demonstrating the importance of developing robust
bottom-upmethodologies in solvingbuilding stockmod-
elling problems.

When considering the optimization of building stocks,
Sola et al. (2018) reviewed the available urban building
stock optimization tools, including their individual draw-
backs and benefits. This is generally done by extrapolat-
ing archetypes to an entire city as a building archetype
is both a significant factor of commonality between
buildings and often widely discernible using public data
sets. A good example of this technique is presented by
Wu et al. (2017), who performed retrofit optimization
using greenhouse gas emissions and annualized costs
as objective functions. They performed the optimiza-
tion technique on representative buildings of a particu-
lar archetype then performed an upscalingmethodology
basedupon the total floor area of that building type in the
community. Another approach to urban building stock
optimization is presented by Brownlee et al. (2020), who
performed a case study by optimizing the distribution
of a limited public investment for reducing a housing
stock’s energy demand. They used a process of sequential
Pareto optimization, in which the whole stock optimiza-
tion problem is encoded into sequential sub-problems,
significantly reducing the search space compared with
the naive approach of solving the solution as a global
problem. While this process provides large computa-
tional improvements, it does require the generation of a
front for each sub-problem which is still computationally
expensive for large stocks.

2.2. Building energy simulation

Physical simulation of building energy involves the con-
struction of a detailed three-dimensional representation
of a target building, which is then simulated under given
environmental and occupational conditions to deter-
mine energy flows. One of the most ubiquitous and
full-featured tools available for building energy simula-
tion is EnergyPlus, simulation software supported by the
United States Department of Energy (Crawley et al. 2000).
EnergyPlus is primarily designed for single building sim-
ulations and is feature-rich, supporting detailed HVAC
modelling, detailed fenestration modelling capabilities,
and a function mock-up interface to allow co-simulation
of building occupant behaviour. EnergyPlus has been

used to calculate energy demand in some building stock
retrofit adoption models but, due to the computational
cost of these calculations, the scope of the retrofit pack-
ages considered was kept limited (Wang et al. 2018).

There are alternative simulation software targeted
specifically at urban simulation. CitySim, for example, cre-
ates three dimensional scenes up to the size of an entire
city (Robinson et al. 2009; Zakhary et al. 2016). Using
urban energy simulation tools is likely to be important
when significant interaction occurs between buildings,
such as shading effects from high-rise architecture. How-
ever, the simultaneous simulation of interacting build-
ings comeswith significant resource costs comparedwith
atomic simulation approaches.

2.3. Surrogatemodelling and optimization

White box simulation, the attempt to capture the under-
lying processes in a high level of detail, can be very com-
putationally expensive in optimization scenarios where
lots of repetitions are required such as bottom-up build-
ing stock analysis. Surrogate modelling, also known as
meta-modelling or response surfacemodelling, is the use
of a faster but less accurate model to replace a slow pro-
cess (Eisenhower et al. 2012). The use of SEPMs to reduce
the computational cost of simulation stages is a com-
mon method in sustainable building design (Evins 2013;
Melo et al. 2014). Any suitable regressionmodelling tech-
nique can be used for surrogate modelling, with both
linear regression (Tian et al. 2015) and ANN-based surro-
gates being popular choices (Melo et al. 2014; Tseranidis,
Brown, and Mueller 2016). The largest scale SEPM we
have seen to date was presented by Edwards et al. (2017)
who trained a Deep Neural Network (DNN) surrogate
using a big data approach, achieving high levels of accu-
racy at hourly precision with errors of less than 5%. This
level of precision is often unnecessary, with total energy
demand calculations sufficient to analyze the impact of
most retrofit installations, which they were able to calcu-
late with errors of just 0.07% at greatly reduced computa-
tional time compared with traditional simulation.

A common use of SEPMs is their integration with
an optimization method (Magnier and Haghighat 2010;
Prada, Gasparella, and Baggio 2018; Waibel et al. 2019;
Sharif and Hammad 2019). Due to the potentially large
number of function calls required for optimization, the
useof a surrogategreatly reduces the computational cost.
Prada, Gasparella, and Baggio (2018) provide an analy-
sis of the performance of different surrogate modelling
techniques in the context of optimization. They used a
Genetic Algorithm (GA) with alternate surrogate models
and compare the results to a brute force optimization
to determine the efficacy of alternative methods. They
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confirmed the practice as an acceptable way of optimiz-
ing, with the majority of Pareto solutions identified by
simulating only 3–8% of the solution space for training.
Sharif and Hammad (2019) consider this method from a
different perspective, performing traditional simulation-
based optimization to obtain a retrofit solution set, then
training a DNN to predict the objective values associated
with this setwithgood rates of accuracy.Whilemore com-
putationally expensive than training a SEPM, this method
allows for more nuanced objective values, such as build-
ing specific lifecycle analysis, which may not be as sim-
ple to model as energy performance. The flexibility of
DNNs, in particular, has made them a popular surrogate
modelling technique for objective value estimation, with
another good example by Ascione et al. who evaluate
cost, energy savings, and thermal discomfort of solutions
using trained DNNs (Ascione et al. 2017). They designed
the system to be generic and applicable to any building
type, although it was not targeted towards whole stock
modelling.

Model-based optimization methods use a similar
approach by attempting to construct a surrogate model
of the fitness landscape during the optimization process
in order to converge more efficiently to the optimum
solution (Costa et al. 2018). These methods have been
proposed as alternatives to more common metaheuris-
tic approaches such as GA optimization, although they
are still less common (Wortmann 2018). While deploying
a similar concept to surrogate optimization, these algo-
rithms are trained in real time to optimize a specific objec-
tive function; in contrast to amodel trained to achieve fast
optimizations on generic buildings from a data set.

2.4. Surrogate optimization in building stocks

There have been some recent attempts at surrogate
retrofit optimizers of the kind we extend in this paper.
A single objective whole city surrogate optimization was
attempted by Hey et al. (2020), who trained a SO on a
sample of buildings in Nottingham city in order to predict
net present value optimized solutions for the remain-
ing stock. A financially viable solution was identified for
16.7% of the whole building stock compared with 19.2%
of the training sample, suggesting 87% of buildings with
a viable solution were identified. Predicted solutions per-
formed 11% worse than the sample solutions, making
the significant computational savings of the approach a
trade off with solution quality. While this paper evaluated
the financial performance of alternative solutions well,
simulated decision makers were not influenced by envi-
ronmental preferences. Instead, only the lifecycle finan-
cial returns of the retrofit investment was considered.
Thrampoulidis et al. (2021) use a hybrid classification and

regression model to predict near-optimal retrofits using
cost and emissions objectives. Their classification model
used preset wall, window, and roof insulation settings
to perform a binary classification, reducing the search
space compared with our proposed method. However,
they focussed on a wider range of energy-supply meth-
ods including renewable sources and energy storage.
Their method generates a fixed-length Pareto front by
first finding a solution which maximizes a single objec-
tive value, then making sequential calls to a model in
which the output of the previous stage is used as input
for the next. This method is efficient for generating a
front of fixed size, but obfuscates the underlying trade off
required tomove from one point on the front to the next.
Their work found surrogate optimization to be a conve-
nient balance between computational cost and accuracy,
as well as potentially more accessible for non-experts to
use due to the diminished data requirements for using
the trainedmodel comparedwith traditional retrofit opti-
mization approaches.

2.5. Willingness to pay for carbonmitigation

In economics, it is common to model the environment
as a public good (Siebert 2007). Voluntary contributions,
the mechanism through which socially responsible con-
sumers interact with public goods, are introduced well
by Brekke, Kverndokk, and Nyborg (2003). While early
experimental data on public good contributions showed
that, particularly in large groups, contributions were low
(Isaac and Walker 1988), there are a range of circum-
stances in which contributions are frequent, such as
under social pressure or with institutional intervention
(Chaudhuri 2011; Zhang, An, and Dong 2021). We can
consider these contributions towards emissions mitiga-
tion in terms of the Willingness To Pay (WTP) for a ton of
emissionsmitigated. A commonmethod of derivingWTP
estimations are discrete choice experiments, in which
participants are offered a range of alternate proposals
with different characteristics from which researchers can
later estimate the significance of each factor. MacKer-
ron et al. (2009) used a discrete choice experiment to
ascertain WTP for emissions offset of passenger’s airline
flights. The derivedWTP per tCO2e ranged from £10.16 to
£38.35 with a mean of £24.26. The most significant fac-
tor in offset decisions was independent certification of
the offset, which nearly doubled the derived WTP. Val-
ues were negatively affected by the price of the offset
and were lower for males. Rotaris, Giansoldati, and Scor-
rano (2020) performed a similar discrete choice experi-
ment to determine the WTP of 1228 Italian airline pas-
sengers, determining a similar carbon value of between
e12 and e38 per tCO2e. Streimikiene et al. (april, 2019)
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Figure 1. High level process flow diagram of method.

perform a review of WTP studies and commented on
the wide range of factors which influence WTP, includ-
ing income, gender, and country of origin while also
noting that ‘pro-environmental lifestyles are related to
higher levels of WTP for energy conservation equipment’
(Streimikiene et al. april, 2019, 1480).

When it comes to contributions in practice, a 2017
industry report on voluntary carbon offsetmarkets shows
an average carbon price of $3/tCO2e, although this varied
significantly depending on the type of mitigation project
and the project location (Ecosystem Marketplace 2017).
The annual quantity of carbon offsetting is also highly
volatile, suggesting an immature market. It is worth not-
ing that real-world carbon offset prices are significantly
lower than reportedWTP fromconsumer studies, possibly
indicating a gap between reported and actual decisions.
Although this could also be explained by the high vari-
ance in offset prices, indicating consumer willingness to
mitigate is much higher than found in industrial settings.

3. Method

A high level view of our proposed method can be seen in
Figure 1. Stages 1–4 implement an established method
of generating Whole House Retrofit Solutions (WHRS) by
training an energy performance model from simulation
data to be used in conjunction with a standard optimiza-
tionmethod. Herewe create Pareto solutions by explicitly
defining a household carbon valuation (HCV) within the
objective function, expressed in £/tCO2e. We use these
HCVs linked WHRSs to train the Surrogate Optimizer (SO)
in stage 5, allowing the use of this tool for analysis (stage
6) of thewider housing stock,whichwe later demonstrate
using an illustrative agent-based model.

3.1. Stage 1: data sources and pre-processing

Building footprints, eave heights, orientations, and loca-
tions were obtained from Ordnance Survey data for

the city of Nottingham (Ordnance Survey 2018). These
were transformed into three-dimensional models using
the footprint and relative height data. Existing build-
ing fabric details were assigned stochastically by dis-
aggregating English housing survey data, and stratified
by building archetype. One thermal zone was modelled
per floor, as this was possible without internal partition
data while still approximating the separate living and
sleeping zones used in models such as BREDEM (Hen-
derson and Hart 2013). Flats and mixed use dwellings
were excluded from the building sample due to insuffi-
cient data available tomodel the necessary internal parti-
tions and communal areas. There are also concerns about
socio-economic differences in retrofitting for communal
and leasehold properties, which may require consensus
or reclamation of funds through service charges which
place them outside of the scope of the retrofit decision
model used here.

3.2. Stage 2: energy demand simulation

3.2.1. Retrofit options

The retrofit options considered are shown in Table 1.
These primarily cover the thickness and material of roof
and wall insulation (internal or external), as well as the
glazing type of windows. Thickness intervals were kept
quite small and the range of thicknesses is large to ensure
the method was robust over large optimization spaces.
The space heatingmethod is also included, although lim-
ited to gas central heating and electric space heating
as they represent the most common heating methods
as well as the widest fuel cost discrepancy. Consider-
ing these heating methods also allows for testing of an
interesting hypothesis: in a scenario with a rapidly decar-
bonizing national grid, a strongly carbon averse and util-
ity maximizing household with a long term perspective
may retrofit electric heating to replacegas central heating
despite significant cost increases. The physical properties
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Table 1. High level description of retrofit options.

Component Gene Name Possible Values

External Wall Insulation Material EWI_mat None (uninsulated), XPS, EPS, PIR
External Wall Insulation Thickness EWI_thick 30–150mm in increments of 5mm
Internal Wall Insulation Material IWI_mat None (uninsulated), XPS, EPS, PIR
External Wall Insulation Thickness IWI_thick 30–150mm in increments of 5mm
Heating Method Heating Electric (Convection), Gas Central Heating
Roof Insulation Material Roof_Mat None (uninsulated), Mineral Wool
Roof Insulation Thickness Roof_thick 50–400mm in increments of 25mm
Glazing Type Glazing Single Glazing, Double Glazing, Triple Glazing

Table 2. Insulation material properties.

Material Name
Thermal

Conductivity (W/mK)
Density
(kg/mˆ3)

Emboddied Emissions
(kgCO2e/mˆ3) Sources

Expanded Polystyrene (EPS) 0.029 29 3.29 Parsons (2005) and Hammond and Jones (2008)
Extruded Polystyrene (XPS) 0.035 24 3.43 Parsons (2005) and Hammond and Jones (2008)
Polyisocyanurate (PIR) 0.025 24 5.40 Parsons (2005) and Boustead (2005)
Mineral Wool 0.040 20 1.12 Parsons (2005) and Hammond and Jones (2008)

and embodied carbonof the insulationmaterials used are
shown in Table 2

3.2.2. Simulation using EnergyPlus

Simulations were performed using EnergyPlus,1 as it
is well established and considered reliable for evaluat-
ing delivered energy demand, and there exist tools to
manipulate the input files programmatically. Simulations
were performed atomically, each considering a potential
state of a single domestic dwelling and thus excluding
any shading effects, deemed reasonable given the low-
rise nature of the data set used (average eave height
5.50m). Party walls of terrace houses are assumed adia-
batic, basedon theprinciple that temperature differences
will be small and unknown when simulating individually.
This also avoids any solar gains incorrectly attributed to
the wall. Weather data was sourced from the met office
weather center, located in Watnell (station id 03354),
approximately 10 kilometres from the center of Notting-
ham (Met Office 2021) and generated using the UKCP09
tool (Eames, Kershaw, and Coley 2011).

To train the surrogate energy model, a broad range
of input and output data was required. Simulations were
performed using EnergyPlus, and so an EnergyPlus Input
Data File (IDF) template was constructed.2 Semantic
attributes were drawn from survey data to generate a set
of input combinations as shown in Figure 2, a process
described in greater detail in Rosser et al. (2019). As such,
the simulation of aggregate energy demand is expected
to be plausible, but building-specific results may not be
(in the absence of building-specific survey data). This is
less likely to be significant in stock analysis as the build-
ings are being sampled so, provided unbiased attribu-
tion errors, the expected error will be minimized. When
energy simulations failed, usually due to an issuewith the

dynamically constructed IDF, error reports are generated
by EnergyPlus. Throughout the development process, all
identified errors generated at this stage were corrected
and the simulations re-run to ensure that no systematic
bias in generated results was carried forward to SEPM
training.

3.3. Stage 3: surrogate energy performancemodel

training

The data flow of our Surrogate Energy Performance
Model (SEPM) training process is shown in Figure 3,
with candidate inputs for the surrogate model matching
the retrofit variables used in the simulation process, as
well as common geometric summary data such as glaz-
ing ratio, wall area, etc. A backwards feature selection
process was performed, with features eliminated from
the model systematically, and the model retrained. A
single-tailed Student’s t-test was performed on the r2

values of a sample of 20 trained models, and features
were eliminated if they had no effect on the model’s
performance.

The model training parameters were tuned using a
grid searchmethod, with 20 repetitions per settings com-
bination, scored using the average r2. The grid settings
can be found in Table 3. The pre-processing methods,
which functioned best during tuning, required contin-
uous variables to be min-max normalized; while cate-
gorical variables such as material genes, were one-hot
encoded (represented by one binary input node per cat-
egory). The loss function, used to evaluate the model
during training,was least squarederrors (L2), as this is pre-
ferred for models not containing a large number of out-
liers. The Rectified Linear Unit (ReLU) activation function
was used on all layers to provide the desired non-linearity



JOURNAL OF BUILDING PERFORMANCE SIMULATION 7

Figure 2. Conceptual data flow of single dwelling simulation during heating demand data generation stage (Stage 2).

in the neural network training. The best performing
network topology comprized three hidden layers of
diminishing size, and training batch sizes of 32 performed
best, although the effect of this hyper-parameter was
negligible.

3.4. Stage 4: optimizationwith genetic algorithm

A Genetic Algorithm (GA) was used to obtain the ini-
tial sample set of near-optimal retrofits, a process out-
lined in Figure 4. The method is population based, with
parent solutions being selected, reproducing with muta-
tion and then reevaluated to create the next genera-
tion. This required the selection of hyper-parameters, but
also scenario settings that remain fixed for the purposes

of optimization and would require re-performing if the
optimization stage changed. These include the discount-
ing rate, the prices (or dynamic price profiles) of labour,
and fuel sources, as well as many more nuanced inputs,
such as grid decarbonization strategies. As shown in
Figure 1, this makes this stage a decision point and one
that may need to be revisited cyclically should any of
these scenario settings needed to be changed. If, for
example, we wanted to consider a new scenario in which
high inflation increases the discount rate, then the objec-
tive values at optimization time will be altered, render-
ing the sample of optimizations generated obsolete. As
such, we will lay out the objective value calculations
and how they were formed before discussing the hyper-
parameters of the GA itself.
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Figure 3. Conceptual data flow of surrogate energy performance model training (Stage 3).

Figure 4. Process flow diagram of generic GA process.

Table 3. Settings grid used for artificial neural network surrogate
model tuning, with selected settings highlighted in bold.

Setting
Energy performance

model
Surrogate

optimization model

Model type Regression Classification (materials)
Regression (thickness)

Preproccessing Normalization,
Logerithic

One hot encoding, Binary
encoding, Label encoding

1/ 16, 32, 64 1/ 16, 32, 64
Hidden Layers 2/ [64, 32], [32, 64] 2/ [64, 32], [32, 64]

3/[64,32, 16], 3/[64,32, 16],
[128, 64, 32], [128, 64, 32],
[32, 64, 128] [32, 64, 128]

Activation Function ReLU ReLU + SoftMax
(classification)

ReLU (regression)
Loss Function L2 loss Cross Entropy (classificlation),

L2 loss (regression)
Batch Size 32, 16, 64 32, 16, 64
Training Function Adam Adam

3.4.1. Objective values

There were two primary objective values considered dur-
ing the scoring stage of the GA. The first objective, Net

Present Value (NPV), represents the value of financial sav-
ings achieved from a WHRS. The second objective, Life-
cycle Carbon Savings (LCS), represents the CO2e saved
by energy demand mitigation, minus the embodied car-
bon cost of the retrofit. Both objectives consider lifetime
values, including transportation, labour, and, where rele-
vant, disposal of the materials used, as seemingly benefi-
cial retrofits can become unfeasible if other lifecycle costs
are considered (Gustafsson and Karlsson 1988).

NPV of savings is defined in Equation (1). This shows
the NPV of a WHRS with an initial cost of C0, a service
period of p, providing an energy bill saving of st , in period
t, and with maintenance costs of mt . st includes savings
from fuel source switching and can be negative if a solu-
tion adopts a more expensive fuel source. The discount
rate of i is applied each year, representing the weight-
ing towards the near future. In all cases, we applied a
discount rate of 0.5%3 A carbon tax at time period t is
shown as gt , applied to the emissions savings at period
t(et). This tax is also applied to the embodied carbon of
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the retrofit solution E0. Where applicable life-cycle main-
tenance costs were rolled into upfront costs with appro-
priate discounting applied. While the assessment of the
benefits of a retrofit assumes it will be operated for its
full lifespan, there is no conceptual reason that a second
retrofit could not be applied during this period, given the
initial installation is a sunk cost. The NPV is expressed in
present value currency terms, which in the case study
considered are pounds sterling (£).

NPV =

t=p∑

t=1

st + gtet − mt

(1 + i)t
− C0 − E0g0 (1)

Equation 1: Net Present Value
LCS is represented by Equation (2). The value of emis-

sions saving, et , will depend mostly upon the energy-
saving properties of the retrofit. It will also be impacted
by the energy carrier, as we model a decarbonizing grid
resulting in decaying emissions contributions from elec-
tric heating methods over time. The lifetime embodied
carbon is represented by E0 and considers the cost of
manufacturing, transporting, and disposing of building
materials used in WHRSs.

The household’s utility for a retrofit solution is shown
in Equation (3), with the household’s carbon valuation
presented as v. Given that v is expressed in £/tCO2e, the
utility can be expressed in present value financial terms,
allowing a direct trade off between NPV and emissions
mitigation. The driver for v, which represents WTP for
carbon mitigation, can be seen as the personal or social
components thatmotivate households to be carbon con-
scious, and can be driven by a combination of altruism,
social pressures, or self-preservation in the face of climate
change.

LCS =

t=p∑

t=1

et − E0 (2)

Equation 2: Lifecycle Carbon Saving (LCS) calculation

U = NPV + vLCS (3)

Equation 3: Utility function used in optimization

vu0 =
−NVP

LCS
(4)

Equation 4: Minimum indifference carbon value
Equation (4) shows the minimum indifference carbon

value. This is the minimum carbon value required for
a household to be indifferent between inaction (their
existing building state) and a given retrofit solution. If a
household’s individual carbon value exceeds this thresh-
old, and the WHRS has a positive LCS, a utility maximiz-
ing household would benefit from adopting the solution.

This value has some useful properties, being both unique
for Pareto solutions and monotonically increasing on a
concave Pareto front.

3.4.2. Embodied carbon

The inclusion of embodied carbon was deemed impor-
tant as low carbon buildings tend to embody a greater
share of whole life-cycle carbon in their construction,
despite lower emissions overall (Su et al. 2020). This is par-
ticularly important when considering retrofits to existing
stock that is not at end of life, as this carbon cost can
be mitigated entirely through inaction. Embodied emis-
sions valueswere taken from the Inventory of Carbon and
Energy databasewhere available, with interpolation used
to obtain missing material thicknesses (Hammond and
Jones 2008).

3.4.3. Grid decarbonization rate

It is the stated policy of the UK government to decar-
bonize the UK power grid by the year 2050 (Parliament
of the United Kingdom 2008). Therefore, when consid-
ering the carbon emissions of power from the grid, a
decay factor was included to ensure the full benefits of
the decarbonized grid are factored in. This also means
that optimizations under these scenarios have an a pri-
ori assumption that the national grid will meet its pol-
icy statements. To calculate the required decarboniza-
tion rate, the formula in Equation (5) is used. Given 2018
carbon levels (c0) of 0.309 kg/kWh (Waters 2020), falling
below 0.001 kg/kWh (ct) by 2050 (t = 32) the required
annual reduction must be 16.4%.4 The decarboniza-
tion rate is highly relevant when considering extremely
carbon-averse households as, when observing a highly
decarbonizing grid, they would be more likely to con-
sider using more expensive electric heating even when
gas central heating is available.

r = 1 −
ct

c0

1
t

(5)

Equation 5: Decarbonization Rate required to achieve
CO2 levels of ct after t years. An inversion of the com-
pound annual-growth rate formula

3.4.4. GA parameter tuning

In order to tune our GA, we performed a parameter grid
experiment with a variety of settings. The list of settings
can be seen in Table 4. The soft elitist setting refers to a
replacement method in which the single best perform-
ing parent is selected, with the rest of the population
replaced by children. This is in contrast to pure elitism in
which the best performing solutions, from both the par-
ent and child population, are selected. In order to test
both the single andmulti-objective performance, a set of
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Table 4. Settings grid used for genetic algorithm parameter-
tuning grid.

Setting Values

Stopping Condition Max Calls
Max Calls 500
Mutation Method Uniform, Random
Mate Selection Method Tournement
Tournemenet Size 2
Recombination Method 2 Point, Uniform
Replacement Method Pure Elitist, Soft Elitist
Mutation Rate 5%, 10%
Objective Function NPV, Mixed, Carbon Savings
Population Size 8, 16, 32

objective functions were tested. The NPV and LCS objec-
tives simulated a single-objective stakeholder wishing to
either maximize their personal financial returns or mini-
mize the life-cycle carbon cost of the building. The mixed
objective simulated a stakeholder placing a value of £50
per tonne of relieved CO2e.

The tuning was performed on a sample of 300 build-
ings selected using latin hypercube sampling across
archetypes, size and initial state, with a grid size of 144
variable combinations. The optimization was replicated
30 times for each building-setting combination for a total
of 1,296,000 optimization runs. The results were analyzed
using the best of the 10 replications, with the least vari-
ant setting being selectedwhere the samemaximumwas
found. Universally the best performing optimizations had
the higher population size of 32 and a higher mutation
rate of 10%. However, mixed and NPV focussed objec-
tives performed better with randomized mutations and
a pure elitism selection method, while carbon focussed
objective functions performed better with randommuta-
tion and soft elitism. As such, during front generation,
GA settings were set in accordance with their objective
function. Recombinationmethod andmutation ratewere
found to be the least significant settings. The results also
found that within 30 replications, most of the settings
(with the exception of the small population sizes) were
able to find a solution close to the maximum, however
worse performing solutions had significant variance.

3.5. Front generation

In order to train the SO, a representative set of House-
hold Carbon Value (HCV) linked Pareto fronts were gen-
erated. Pareto solutions were generated by altering the
HCV provided to the objective function. HCV bounds
were generated by using a NPV and carbon-only objec-
tive to find the extreme points of the front. A grid search
was then performed between these bounds, and a local
search performed around identified solutions. An exam-
ple of the type of front generated by this method is
shown in Figure 5. Solutions canbe seen clustered around

general intervention type combinations, with local non-
dominated alternate solutions resulting from gradual
variation in insulation thickness. Using this front gener-
ation technique, in contrast to a multi-objective genetic
algorithm method, provides a one to one relationship
between theHCVandoptimized solutions for SO training.

3.6. Modelling scenario

Given the large number of inputs that the SO system has
at this point, some structure is required to consider the
parameters that can and can’t be tested at different lev-
els of computational cost. Model training occurs at two
different stages in the process, first the SEPM then the SO
itself. Any parameters set to generate training data, but
not explicitly used in themodel itself, become exogenous
and fixed after the model is trained. This makes the sur-
rogate model parameters very costly to sweep for urban-
scale data sets as they require the retraining of both the
SEPM and the SO for each value of each parameter, or
for the parameter to be integrated into the model, which
could potentially damage the accuracy of the model or
require a significant increase in training set size.

Fortunately, the SO’s parameters are less computa-
tionally expensive to sweep, as the first stage SEPM
inputs can be held fixed. This allows for the reuse of the
trained model. These are also the higher order parame-
ters as instead of pertaining to the minutiae of individual
buildings, the Surrogate Optimizer parameters relate to
the environment in which retrofits are optimized. These
areas, unlike the physical laws that dominate energy per-
formance, are more likely to be economic or social in
nature and can therefore be enshrined into policy.

Examples of interventions that could affect optimiza-
tion parameters include:

(1) A carbon tax
(2) A subsidy on the cost of retrofits
(3) Direct provision of certain retrofit solutions
(4) Funding research and development into improved

retrofit solutions
(5) Fines for poorly performing properties
(6) Restriction of renting or selling poorly performing

properties
(7) National grid decarbonization

All of these proposed scenario spaces relate, with vary-
ing degrees of directness, to the inputs used by the
GA when optimizing retrofits of each building. As such,
they become parameters with which different SOs can be
trained to evaluate the outcomes of such policies or inter-
ventions. There are also examples of non-policy factors
that affect the outcome of the optimization phase:
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Figure 5. Sample of Pareto front generated with genetic algorithm.

(1) The market cost of materials and labour
(2) The market cost of fuel
(3) Changes in technology due to innovation

3.7. Stage 5: training of surrogate optimizer

The SO was trained using the data set of near-optimal
WHRSs found using the SEPM-based optimization stage.
A data flow showing the model features, drawn from
building, household, and solution attributes are shown
in Figure 6. The carbon value of a given household was
paired to a given WHRS for that dwelling, accounting for
the environmental preferences of the household as well
as physical properties.

3.7.1. Model selection

As with the SEPM, the SO was parameter tuned using a
grid search method, the setting combinations for which
can be found in Table 3. The same pre-processing meth-
ods: min-max normalization and one-hot encoding were
found optimal. Initial grid settings reflected the choices
found optimal in related work, adjusted for input param-
eter size, and onlyminor differenceswere selected during
the tuning process (Thrampoulidis et al. 2021). Sample
size selection was kept more conservative than for the
SEPM. Given the relative decline inmarginal performance
found in the model training as sample size increased,
a set of approximately 20,000 total solutions was used,
comprized of 1850 entire sets of non-dominated Pareto
fronts.

3.8. Stage 6: housing stock analysis

Once the SO has been trained, near-optimal retrofits for a
givenHCV can be generated quickly and scored using the
same objective values that were used for training, as laid
out in Figure 7. Static analysis of households using a set
HCV distribution can give a snapshot of how many pos-
itive utility retrofits exist in the chosen stock. The speed
performance benefits of the carbon linked SOmethod are
even more apparent when stochastic and temporal anal-
ysis of the stock is required, such as when coupled with
an agent-based model as described below.

3.9. Agent-basedmodel design

In order to demonstrate the value of exposing HCV as a
model input, we have devised a simple, illustrative ABM
to assess the impact of a local government campaign-
ing for climate awareness on the quantity and quality of
retrofitswithin the city. In themodel, agents are endowed
with a HCV vi ∼ U(0, 40) drawn uniformly between 0 and
50. If influenced by an environmental campaign, which
occurs at a probability p per year, their HCV is increased
by n ∼ U(0, 15). These valuations represent approxima-
tions of the mean and variance of WTP found in carbon
valuation studies (MacKerron et al. 2009; Rotaris, Giansol-
dati, and Scorrano 2020). Each year, agents evaluate their
retrofit options at probability e. The household’s near-
optimal retrofit solutions are generated using the trained
SO and scored as described in Figure 7. Solutions bearing
positive utility are then retrofitted. Themodelling scenar-
ios give the local government two approaches to influ-
ence retrofits: Increasing the intensity of environmental
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Figure 6. Conceptual data flow for training Surrogate Optimizer using solutions from the optimization stage (Stage 5).

campaigning, anddirect outreach to encourage consider-
ationof retrofits amonghouseholds (throughmeans such
as payback finance structures, working with installers,
and contacting households, which are abstracted into
the evaluation rate). The scenarios modelled are shown
in Table 5, and the state diagram representations of the
agents are shown if Figure 8. With a domestic building
stock of 95,500 dwellings, the outreach scenarios require
an average of 47,750 optimizations per 25-year simu-
lated run, representing a large computational cost that
could become prohibitive using traditional optimization
approaches.

4. Results

4.1. Energy simulation results

The purpose of running the EnergyPlus simulations is to
generate a data set for SEPM training. The validity of these
simulations, which is to say the closeness of the outcomes
of the models to the target systems they represent, is
of relatively minor importance for the methodological
study provided the complexity of the simulation system
is present. This is especially true as both the physical sim-
ulation process itself, and the generation of SEPMs from
its results, are well established as valid within the litera-
ture. As such, a simple statistical validation techniquewas
used to ensure that the distribution of simulation results

Table 5. Intervention scenarios for agent based model.

Scenario Evaluation rate (e)
Campaign

penetration rate (p)

Baseline 0.01 0
Small campaign 0.01 0.05
Small campaign with outreach 0.02 0.05
Significant campaign 0.01 0.1
Significant campaign with outreach 0.02 0.1

broadly matched the distribution of heating demand val-
ues found for alternative sources.

The median national space heating energy consump-
tion in the UK was reported at 10,118 kWh per house-
hold in 2019, an equivalent of 107 kWh per m2 (Odysee
Project 2019). These average values are slightly higher
than the simulated, non-retrofitted simulation values of
the urban building stock sample of 10,030.8 kWh per
household and 103.8 kWh per m2. Given the national
figures were generated from a nationwide sampling
methodology, rather than a bottom-up simulation
methodology, this variation in median outcomes of
approximately 1% and 3%per dwelling, and per unit area
energy usage, was deemed to be within an acceptable
margin. The distribution of heating energy demand val-
ues is in line with themost recent whole stock energy dis-
tribution data found, although the data is from an older
2009 survey in which the median energy consumption
was higher (The UK government 2013). The distribution
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Figure 7. Process flow for generating and scoring retrofit solutions using trained surrogate optimizer.

of existing stock annual heating energy demand is shown
in Figure 9.

4.2. Surrogate energy performancemodel results

The final SEPM was trained on a data set of 40,000
valid Whole House Retrofit Solutions (WHRSs), split into
a training, validation, and test set of 70%, 15%, and
15% respectively. To prevent over-fitting, training was
stopped after the validation loss stalled out, with a
threshold of 0.001 over 50 epochs. The building and

retrofit geneswere selected using repeated random sam-
pling. The mean absolute percentage error of the trained
model when applied to the test data was 2.78%, with
an adjusted r2 value of 0.986 and a Mean Absolute Error
(MAE) of 439 kWh per year. Model performance contin-
ued to increase with sample size until the full data set
of 40,000 was used, suggesting performance could be
increased further. However, training was stopped here
as the improvement in MAE per 1000 additional samples
fell below significance at a 1% level. The SEPM training
process is visualized in Figure 10, showing the effect of
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Figure 8. State chart representation of agents.

Figure 9. Distribution of simulated household annual space heating energy demand (kWh) for Nottinghambuilding stock (n = 95,500).

increased sample size as well as training time on model
performance. As shown in Figure 11, the residuals of the
trained SEPM were normally distributed and centered
around 0.

4.3. Generic algorithm results

The established optimization method, a genetic
algorithm with an embedded SEPM, was used to create a
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Figure 10. Performance of surrogate energy performance model during training process.

Figure 11. Surrogate energy performance model residuals are normally distributed and centered around 0.

data set of 1900 household Pareto fronts, with an average
front size of 12.7 solutions for a total of 24,130WHRSs.
These solutions were categorized into three household
scenarios for analysis: those with a HCV of £0/tCO2e (Max
NPV), those greater than £0/tCO2e (Mixed Criteria), and
a LCS maximizing (Max LCS) group. Figure 12 shows the
range of WHRSs generated at this stage, coloured by the
retrofit measures that form them. The most profitable
retrofits involved fuel-type changes from electric space
heating to the cheaper gas source. In contrast, more LCS-
focussed solutions involved the opposite transition, due
to the steep grid decarbonization targets considered in
this scenario. Consideringglazing, LCS-focussed solutions
were divided between remaining double glazed and fit-
ting triple glazed, suggesting that for some properties
the embodied carbon of improved glazing would not be

paid back within the lifecycle of the measure. Similarly,
NPV maximizing solutions rarely included triple glazing
insulation, suggesting this measure is also not financially
viable for most households. Considering wall insulation,
internal solutions formed of EPS with a mean thickness
of 0.042mm were favoured when NPV was a primary
objective, suggesting a greater cost to performance ratio.
WhenLCSwas thehousehold’s priority, however, external
solutions of maximum permitted thickness formed of PIR
dominated, indicating that their performance increases
continued to outpace embodied carbon in the range con-
sidered. The Cumulative Distributions of optimized insu-
lation thickness, broken down by household preference
scenario can be seen in Figure 13, showing that LCS-
focussed objectives resulted in significantly more instal-
lations of maximum thickness. However, nearly half of
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Figure 12. Trade-off solutions discovered using traditional optimization method on 1900 households.
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Figure 13. Cumulative distribution of optimized wall insulation thickness under different household scenarios.

installations were sub-maximal, suggesting the embed-
ded carbon cost of thicker installations was eventually
offset by the falling efficiency at higher thicknesses.

From this sample of 1900 dwellings, 763 (40%) of
dwellings had a positive NPV solution, making the solu-
tion viable even for environmentally indifferent house-
holds. 712 (93%) of these resulted in a positive LCS, mak-
ing them viable independent of household carbon pref-
erences. Where a financially viable retrofit was found, the
average NPV was £4399. In the Max LCS scenario, sav-
ings were positive for all dwellings, indicating embodied
carbon was offset for at least one solution in all house-
hold cases. NPV maximizing solutions were most likely to
contain a single measure, while most Max LCS solutions
involved retrofits across all available measures.

4.4. Surrogate optimizer results

The raw SO results break down into the classification and
regression model components. The classification mod-
els obtained adjusted f1 scores of 0.95, 0.93, 0.94, 0.95,
and 0.79 for IWI material, EWI material, roof material, fuel
source, and glazing respectively. This suggests the classi-
fication components function quite well. The poorer per-
formance of glazing predictions predominately occurred
at near LCS-maximizing solutions, which is unsurpriz-
ing given the traditional optimization phase was also
inconsistent on whether triple glazing was carbon effec-
tive for the lifecycle considered. The material length
genes were trained with regression output nodes (linear)
and obtained mean absolute errors of 4.9mm, 4.3mm,
and 7.6mm for IWI, EWI, and roof insulation thicknesses
respectively, placing themean error within one thickness
gene value of the test data.

We performed a static analysis of the entire building
stock using the same scenario settings aswere used in the
traditional optimization method. In the NPV-maximizing
scenario a positively performing retrofit was found for

35% of dwellings, comparedwith 42% of the traditionally
optimized sample, suggesting 83% of these solutions
were found successfully. ThemeanNPVof these solutions
was £1780 greater, suggesting the 17% of unidentified
solutions were of smaller NPV benefit, with the best per-
forming solutions being identified more easily. The com-
position of solutions remained consistent in the mixed
criteria and LCS-maximizing scenarios. LCS-maximizing
solutions under-performed the carbon reduction of tra-
ditional optimization by only 6%, with most errors found
in glazing classification (which were of minor effect).

Given that simulation time considerations are the pri-
mary benefit of a SO approach, it is worth comparing the
run time between the SO output and the traditional opti-
mization method. The original GA optimization took on
average 25.3 cpu seconds to find a near-optimalWHRS for
a given HCV scenario, making the evaluation of the entire
stock take an estimated 671 cpu hours per HCV consid-
ered. In contrast, generating and scoring solutions for the
entire building stock with the trained SO took 31.2 cpu
seconds, allowing for rapid analysis of different HCVs and
building scenarios without major computational cost. As
with all surrogate modelling techniques, the loss of accu-
racy is traded off for this greater speed performance.

4.5. ABM results

TheABMutilized the ability of a trained SO toquickly eval-
uate the entire building stock of the city of Nottingham.
The ABMwas replicated 100 times per scenario. As shown
in Figure 14, the campaigning to increase HCV of house-
holds increased the LCS of retrofit decisions made over
time. The types of retrofits installed differed in the cam-
paign scenarios, as shown in Figure 15, with increased
campaigning resulting in a preference for more envi-
ronmentally friendly retrofit options. This resulted in an
average LCS of 25.51 tCO2e per retrofit in the significant
campaign scenario, contrasting with 25.21 tCO2e in the
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Figure 14. Lifecycle Carbon emissions savings of simulated retrofit decisions over time.

Figure 15. Average net present value and lifecycle carbon sav-
ings of retrofits in agent-based model under different scenarios.

baseline (p<0.01). This came at the cost of a reduction
in NPV from £7696 to £7429, showing a willingness of
households with higher HCV to trade off financial value
for more environmental retrofits.

In total, a significant campaign reduced net lifecy-
cle emissions by 13.7 ktCO2e without the outreach pro-
gramme, and 16.7 ktCO2e when outreach was included.
The number of positive utility retrofits was also higher
under campaign scenarios, with average increases of
2.9% and 6.3% for small and significant campaigns
respectively. This indicates the installation of marginal
retrofits which would not have been viable for financial
reasons alone. While the effects are small on the house-
hold level (due to the relativelymoderate changes inHCV)
they show that on the urban scale the increased emis-
sions awareness can have significant impacts over a long

period. In this scenario, the evaluation rate of households,
influenced by the outreach campaign, had the most sig-
nificant effect on the total carbon reduction. This sug-
gests that attempts to engage households to trigger a
WHRS evaluation should be a priority ahead of campaign-
ing, to increase their carbon valuation directly. However,
the combined approach yielded the greatest reduction in
total emissions.

5. Discussion

The objective of this research was to extend the recently
developed SO method by adding an input feature based
on the preferences of the decision-maker under consider-
ation. This extension allows for the use of SOs in situations
where preference information is important for definitive
retrofit selection. Whilst this is applied to environmental
preferences in the context of this work, themethod could
be applied to any retrofit outcomes for which willingness
to pay data is available, such asmeasures of thermal com-
fort or degree of disruption caused by the installation.
We demonstrate the utility of the method by first con-
structing the SO, then integrating it into a simple ABM,
in which, in response to simulated environmental cam-
paigns, agents’ environmental preferences changed over
time. This allowed for the assessment of such campaigns
on the building stock which would not be computation-
ally feasible without the developed method. The evalu-
ation of the SO was found to be approximately 100,000
times quicker than using a traditional SEPM-based opti-
mizer. This was of great benefit when running the ABM,
as the 14,250,000 retrofit evaluations required for the sce-
narios would have taken an estimated time of 99,000 cpu
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hours using the GA and SEPM method, compared with
just 1.25 cpu hours using the SO. This increase in compu-
tational feasibility for building stock models with explicit
household carbon valuations was achieved with mini-
mal loss of accuracywhenpredictingnear-optimal retrofit
choices, as demonstrated by the high classification per-
formanceof theSOon the test data. Theworst performing
SO retrofit category was the decision between double
and single glazing, particularly for highly environmentally
conscious agents. This is a reflection of the uncertainty
of this decision under traditional optimization methods,
as the environmental cost is close to the benefit in many
cases, making it a marginal retrofit decision.

Limitations of this proof of principle study include sim-
plifications and assumptions when implementing the SO
method. Fuel sources were limited to electric and gas
central heating and retrofit options excluded generative
methods such as photovoltaic installations. These sim-
plifications were made to reduce the complexity of the
energy simulations due to data constraints, as estima-
tion of factors such as roof tilt would introduce significant
error at the simulation stage. These simplifications mean
that a reduced set of retrofit options are presented to sim-
ulated householders compared with those available at
the point of a real retrofit installation decision. A further
limitation of the research was in the number of objective
values, which were limited to NPV and LCS when in real-
ity retrofit decisionmakers have a larger set of varyingand
contradictory objectives and constraints. This could intro-
duce prediction error in instances where neither financial
or environmental motives are of most significance to a
given household. Increasing the number of objective val-
ues at the SO stage would pose a challenge, although
this could be done by imposing constraints during the
application phase, such as a retrofit trigger model used
as part of the ABMdesign. The study also only considered
heating demand due to the rarity of domestic cooling in
the UK, but the implementation would need adapting to
fit warmer climates at the simulation of energy demand
phase. As a result of this limitation, themethod as applied
in this work is only sound in climates with limited risk
of overheating and would need adapting to account for
domestic cooling demand. Situations where the risk of
both overheating and under-heating are present would
also pose challenges, requiring a thermal comfort consid-
eration beyond heating demand.

Futurework should focuson integrating the trainedSO
into more sophisticated and realistic ABMs. In particular,
this could be integrated with retrofit decision models, as
the SO could generate solutions when a retrofit decision
is likely to be triggered. These solutions would then be
accepted or rejected by the retrofit decisionmodel based
on further household criteria. The method could also be

extended to include a wider range of retrofit alternatives
to allow more sophisticated installations to be consid-
ered, provided the data and computational capacity are
available to perform the required energy evaluations. The
integration of financial constraints into the model train-
ingwould also remove the importanceofpost-processing
solutions to ensure they meet a household’s financial
abilities.

6. Conclusion

In order to reduce the computational cost of domestic
energy retrofit optimization, surrogatemodels have been
used to evaluate the energy performance of buildings.
Recent methods of training neural networks on a sam-
ple of near-optimal retrofit solutions, referred to in this
paper as surrogate optimization, have been used to fur-
ther increase the speed at which a large number of qual-
ity retrofit solutions can be discovered. However, these
predictive models are not capable of making definitive
predictions of the actions that decision makers with spe-
cific environmental preferences would make. This lim-
its their utility in certain applications, such as embed-
ding into agent-based models using dynamic synthetic
populations. In this paper, we presented an extension
to the emerging practice of surrogate optimization to
find whole house retrofit solutions of building stock at
the urban scale, performing the method in a way which
exposes the household carbon valuations of the retrofit
decisionmakers. This value, which represents the willing-
ness to pay per tonne of CO2e emissions mitigated, was
preserved through the optimization process and then
used in conjunction with the other input variables to
train a predictive surrogate optimizer capable of produc-
ing candidate near-optimal solutions. By including the
household carbon valuation when training the predictive
model, we are able to analyze the impact of households’
changing attitudes to carbon mitigation. The exposure
of this input variable allowed us to construct a simple
agent-based model of a local government performing
an environmental awareness campaign, whichwould not
have been possible with prior methods. The effects of the
campaign on households’ carbon valuation affected both
the quality and number of retrofits those households per-
formed when evaluating retrofit decisions using the sur-
rogate optimizer. Future work should focus on reducing
some of the simplifications built into the model at the
simulation phase by expanding the range of retrofits con-
sidered and integrating themethod into a more sophisti-
cated agent-basedmodel to account for decision triggers
and constraints not accounted for in the current model.
This additional level of detail would allow for more con-
fident retrofit adoption predictions concerning policies
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designed to increase environmentalism among house-
holds at the urban scale.

Notes

1. Version 9.0.1
2. in a similar manner to that used by the dynamic housing

stock energy simulation platform EnHub (Sousa et al. 2018)
3. This rate was set to approximate the risk-free rate of

return in the UK. While historically this has been above 2%
(Siegel 1992), recent yields have plateaued to below 1%
(Rachel and Smith 2017).

4. Using a reduction rate formula, a value of 0 would not be
achieved in a finite time period, so 0.001 kg was used as an
approximation
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