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Abstract—This paper proposes an edge-assisted crowdsourced
live video transcoding approach where the transcoding capabil-
ities of the edge transcoders are unknown and dynamic. The
resilience and trustworthiness of highly unstable transcoders
in decision making are characterized with mean-variance-based
measures to avoid making highly risky decisions. The risk level
of each device’s situation is assessed and two upper confidence
bounds of the variance of transcoding performance are presented.
Based on the derived bounds and by leveraging the contex-
tual information of devices, two risk-aware contextual learning
schemes are developed to efficiently estimate the transcoding
capabilities of the edge devices. Combining context awareness and
risk sensitivity, a novel transcoding task assignment and viewer
association algorithm is proposed. Simulation results demonstrate
that the proposed algorithm achieves robust task offloading with
superior network utility performance as compared to the linear
upper confidence bound and the risk-aware mean-variance upper
confidence bound-based algorithms. In particular, an epoch-
based task assignment strategy is designed to reduce the task
switching costs incurred in assigning the same transcoding task
to different transcoders over time. This strategy also reduces
the computational time needed. Numerical results confirm that
this strategy achieves up to 86.8% switching costs reduction and
92.3% computational time reduction.

Index Terms—Reinforcement learning, edge computing, task
offloading, risk-awareness, contextual learning

I. INTRODUCTION

The revolution of the mobile Internet driven by the powerful

mobile devices and social networks has greatly enriched the

sources of video platforms. As an outcome of the revolution,

crowdsourced live streaming platforms (CLSP) such as Twitch,

TikTok, and Periscope have emerged as a new type of video

platforms, that not only serve tremendous viewers all over the

world but also receive live videos from various sources in the

crowd [1], allowing a growing number of people to broadcast

their live videos over the Internet.
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However, due to the heterogeneity of broadcasters’ devices,

different quality versions of live videos are created [2]. As

a result, there is a strong need to transcode the original live

videos into several industrial standard representations and to

serve viewers with a set of proper versions of representations.

Providing the adaptive bit rate (ABR) service [3] can bring

massive computational demands due to real-time processing

requirements. For instance, until 2022, there are about 9.2

million broadcasters and 140 million viewers, which are active

on Twitch monthly, and there are an average of more than

100,000 live channels concurrently at any point in time [4].

Therefore, instead of building private data centres to facili-

tate ABR, cloud computing has become a natural solution to

perform transcoding because of its powerful computing ability

and the ‘pay as you go’ feature. Furthermore, the emergence of

cloud computing releases CLSP from building large, expensive

private data centres. In such a system, the CLSP controller

will decide the number of representations that need to be

transcoded for each broadcaster based on parameters such as

viewer capacity, playback delay, bandwidth consumption etc.

The original live videos will be directly transmitted to the

cloud data centre for transcoding. When multiple versions

are generated in the cloud, content delivery networks will

be utilized to deliver proper versions of live videos to the

corresponding viewers.

On the downside, in current CLSPs, the cloud transcoding

is not able to provide the ABR service to most of the

broadcasters. For instance, in Twitch.TV, only the premium

broadcasters have access to the ABR service, and for the rest

of the broadcasters, only the original versions are available for

their viewers [1]. The reason behind is that a general cloud

instance can only deal with at most two transcoding tasks

simultaneously. Therefore, an enormous cost will be incurred

when a large number of original live videos are scheduled for

transcoding. Moreover, in cloud transcoding systems, the cloud

data centre can be far from the viewers or the broadcasters,

which can cause high latency. This problem can be further

magnified considering the fact that most of CLSPs enable an

interactive live chat service which is also latency-sensitive as

compared to the traditional live streaming platforms.

The development of edge computing (also know as fog

computing) has brought a potential transcoding solution for

CLSP. Since edge computing [5] is more suitable for real-time
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processing and low-latency applications, it can be treated as a

viable replacement [6], [7] to address the shortcomings of the

cloud transcoding. Moreover, edge-assisted transcoding can

lead to lower latency and avoid the network traffic traversing

through the core network since different versions of videos

can be created at the network edge.

Edge transcoding systems have been proposed to leverage

the computational resources at the user end [8]–[12]. However,

most of the works relies on solving optimization problems in

the presence of perfect knowledge of the system parameters

and the performance of edge devices. However, acquiring

such knowledge might not be practically feasible in the live

streaming systems. Particularly, existing works do not consider

the risk of assigning a transcoding task to a device with highly

unstable transcoding performance.

This paper proposes a novel concept to quantify the edge

devices’ transcoding capabilities leveraging their contextual

information. This concept considers not only the average per-

formance of the transcoders but also the risk of performance

variations, which account for the design of a joint transcoding

task assignment and viewer association algorithm. To the

best of authors’ knowledge, this paper is the first work to

consider both risk sensitivity and context awareness in an

online task offloading problem. The contributions of this paper

are summarised below:

• The joint transcoding task assignment and viewer asso-

ciation problem is formulated to maximize the long-term

network utility considering the cost and average latency.

• The transcoding capability is proposed to identify proper

transcoders with both high transcoding quality and low

transcoding performance variation. The transcoding qual-

ity is modelled as a linear function of transcoder’s context

information and the performance variation is represented

as the variance of transcoding outcomes.

• To estimate and learn the unknown transcoding capability,

two upper confidence bounds (UCBs) of the transcoding

performance variation are derived. Applying the confi-

dence bounds and by involving a contextual UCB of

the transcoding quality, a risk-aware contextual online

learning scheme is designed to learn the transcoding

capabilities of edge devices. The idea of considering both

the context and risk awareness helps designing efficient

and robust task offloading schemes and reduce the risk

of assigning tasks to devices that cannot ensure stable

performance.

• Based on the learnt transcoding capabilities, a novel

joint transcoding task assignment and viewer association

algorithm is designed. Particularly, an epoch-based strat-

egy is designed to reduce the switching costs of task

assignments.

• Numerical results based on various settings demonstrate

that the proposed algorithm achieves significant network

utility improvement while keeping the switching costs of

transcoding task assignments competitively low.

The remainder of this paper is organised as follows. Section

II discusses the related works. Section III describes the model

of the edge transcoding system. In Section IV, an optimiza-

tion problem is formulated to maximize the overall network

utility. The designed risk-aware contextual learning for edge

transcoding algorithm is described in Section V, followed by

the numerical results in Section VI. The conclusions are drawn

in Section VII.

II. RELATED WORK

In this section, we review the works in both cloud and

edge-based live video transcoding systems and discuss the

challenges in designing the edge-based transcoding schemes.

A. Cloud Transcoding

Due to the powerful computing ability and the ‘pay as

you go’ feature of cloud computing, previous works tended

to implement the transcoding system with the help of the

cloud resources and designed various quality of experience

(QoE) metrics for cloud transcoding systems [13]–[20]. For

instance, [13] designed a cloud-based scheme to transcode

crowdsourced video contents. The QoE is a function of the

bit rate of the received live stream and the broadcaster’s pop-

ularity. [14] proposed a cloud transcoding scheme considering

delay constraints. In this work, the QoE was defined as a non-

decreasing concave function of the received bit rate. In [16], a

new live streaming framework was designed to minimize the

content delivery delay with cloud transcoding. [17] proposed

a cloud transcoding scheme for both delay-tolerant and delay-

sensitive videos with different priorities. In [19], a scheme

was designed to limit the peak power consumption while

maximizing the total processing capacity in a server with

heterogeneous processors using dynamic programming. [20]

designed recurrent network and convolutional network based

approaches to forecast the approximate transcoding resources

which is reserved for transcoding and to maximize the quality

of service (QoS).

B. Edge and Crowdsourced Transcoding

Due to the abundance of concurrent live broadcasters and

the heterogeneity of source contents, a substantial amount of

transcoding tasks are generated which are delay-sensitive and

computationally intense. As a result, even cloud transcoding

cannot meet these requirements with affordable cost [21].

Therefore, edge computing has been considered as a viable

replacement because of its fast processing and quick appli-

cation response time [22]. However, it is highly challenging

to achieve optimal transcoding task assignment and viewer

association due to the massive heterogeneous video contents

and diversified QoE demands [23]. In [24], a collaborative

joint caching and transcoding scheme was proposed to reduce

the backhaul link usage and the viewer perceived delay. In

[9], a reinforcement learning (RL)-based scheme was designed

to solve the edge transcoding decision-making problems. To

better schedule edge transcoding under large state space,

deep RL was used to explicitly accommodate personalized

QoE optimization for CLSP services [20], [23], [25]–[27]. In

addition, [21] combined both the cloud and the edge resources

to collaboratively transcode live videos from multiple broad-

casters.
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Table I: A summary of recent works on edge-assisted task assignment and live video transcoding

Key feature Ref Objectives Technique summary

Context-aware

[27] Task deadline, energy consumption Deep reinforcement learning
[36] System cost, latency, viewer fairness Combinatorial MAB
[34] Platform utility MAB
[31] Transcoder income, overall value of task Genetic algorithm
[37] QoE, energy consumption Deep reinforcement learning
[20] QoS, operation cost Deep learning-based greedy assignment
[26] Network utility Deep reinforcement learning

Risk-aware

[7] Transcoder serving time, switching costs Optimization
[11] Platform utility Complementary geometric programming
[38] Cumulative mean-variance Risk-aware MAB
[39] Operation cost Branch and check

In [6], a case study was presented for Twitch demonstrat-

ing that with the advance of personal computing devices, a

significant fraction of CLSP viewers’ devices potentially have

appropriate computing resources for real-time transcoding. In

addition, the viewers have already expressed the willingness to

support the broadcasters and the CLSPs in terms of donation

and subscription [21]. Thus, the cost by involving them

into transcoding can be much lower as compared to general

edge computing. These studies demonstrate the potential of

incentivizing the viewer devices to do transcoding. However,

since the viewer devices are not professional and can be

highly heterogeneous, their performances may be unknown

and unstable. In [7], the transcoder selection relies on the prior

data collection and analysis, which may become inaccurate

over time. Therefore, optimal online decision-making strate-

gies which can learn devices’ performance and select devices

which are more capable for transcoding are highly desirable.

Such edge-assisted crowdsourced transcoding systems are

similar with the crowdsourcing systems which exploit the

collective intelligence of crowd, provide an effective paradigm

for large-scale data acquisition and distributed computing

[28]–[30]. In the edge-assisted transcoding system, the viewer

devices assigned with transcoding tasks can be treated as the

crowd workers for computing. The crowdsourcing system has

been introduced into many areas such as text translation, con-

sumer research, and hiring workers for software development.

There have been extensive works on task assignment

problems in the crowdsourcing systems [31]. As a classical

decision-making model, multi-armed bandit (MAB) has been

used to model the task assignment problems. For instance

[32] proposed a UCB-based task assignment algorithm with

a limited budget for crowdsensing. [33] modelled the crowd-

sourcing system as an MAB and proposed a bounded ε-

first algorithm to maximize the overall utility of completing

a number of tasks. [34] proposed a budget-limited UCB-

based greedy approach to learn the worker performance of

a crowdsourcing system and to select workers with high

performance to maximize the long-term utility. In [35], a

hierarchical context-aware learning algorithm is proposed to

learn and estimate the worker’s context-specific performance

in mobile crowdsourcing.

We have reviewed some recent papers in Table I on

live video transcoding offloading with edge computing. Most

works either consider the context information of the system

and edge devices when making decisions [31], [36], or directly

formulate the feedback of the decision as a function of context

information. In [38], the risk of performance fluctuation is

considered in the MAB problem. However, this work only

studied a standard MAB that at each time only one arm

will be played and the arm selection is not aware of the

context information of each arm. In addition, there are limited

works studying to consider the risk of decisions which can

lead to high performance fluctuation. However, these works

only consider known problem-specific risk such as the edge

devices’ online stability and the probability of failure [7], [11],

[39]. None of these works directly models feedback of decision

as a function of risk to make the task offloading risk-aware.

Overall, although the task assignment problem in edge-

assisted computing systems has been studied in recent years,

which can be used in edge-assisted crowdsourced transcoding

systems, several technical problems have not yet been ad-

dressed. First, the existing task assignment decision-making

models are not practical enough since the tasks were assumed

to arrive sequentially and the number of tasks need to be

assigned per time slot is fixed. In addition, most of existing

works only focus on identifying the device with the highest

average performance for task offloading. Although some works

considered risk in the edge computing framework, the risk is

not integrated into the feedback of the decision. Moreover,

the switching costs of assigning a task to different edge

devices over time have not been considered yet. In particular,

to the best of our knowledge, there is no work studying to

combine risk and context awareness in the edge-assisted task

assignment problem.

III. SYSTEM MODEL

We consider an edge-assisted CLSP as illustrated in Fig-

ure 1. The raw live videos from the broadcasters are first

uploaded to the regional data centers which are responsible

for video transmission and transcoding task assignment. The

pre-processed videos (e.g. segmented video chunks) with the

original bit rates are then forwarded to edge transcoders and

the transcoded videos will be transmitted to the end viewers.

Table II summarizes the symbols used in this article.

Define a set of broadcasters, i.e., I = {1, 2, · · · , I}. The

bit rate of the original live video of broadcaster i ∈ I in

time slot t is defined as Bt
i . Moreover, consider there are J t

viewers in time slot t and V t
i,j is a binary parameter indicating
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Table II: Symbols and Notations

Symbol Meaning

i or I index (or set) of broadcaster(s)

j or J t index (or set) of viewer(s) in time slot t
y or Y index (or set) of video representation(s)

f or F index (or set) of edge device(s)

Bt
i Bit rate of live video from broadcaster i

by Bit rate of representation y

Iti,y,f,j
Indicator variable of transcoding task
assignment and the viewer association

ωt
f Transcoding capability of device f

cti,j,y
Cost of transcoding a video from broadcaster
i to representation y at edge device f

qti,j,y
QoE of a viewer j watching a transcoded
video from broadcaster i

ξtj Transmission delay

δtj Transcoding delay

Dt
j Overall latency

U t
i Network utility

rtf or Rt Transcoding outcome (set)

γ̃t
f or γt

f (Estimated) Transcoding quality, γt
f = E(rtf )

σf Variance of the transcoding outcome

ρ Risk-tolerance factor

xf Contextual information of edge transcoder f

θ
∗ or θ̃t Unknown (Estimated) context weight vector

(stf )
2 Empirical variance of the transcoding outcome

ζ Threshold factor

whether viewer j ∈ J t = {1, 2, · · · , J t} chooses to watch

broadcaster i’s live stream in time slot t or not. In addition,

denote y ∈ Y = {1, 2, · · · , Y } as a video representation which

is one of Y possible standard quality levels of a transcoded

video and the bit rate of representation y is defined as by .

When an original live video is uploaded by a broadcaster i
to the regional data centers, the scheduler of CLSP will decide

which representation should be transcoded by which edge

device based on viewer requirements, the performance of the

edge devices, and system constraints such as the experienced

delay by users as well as the cost for transcoding. In the

transcoding process, each edge device f ∈ F = {1, 2, · · · , F}
is able to transcode the broadcasters’ live videos into standard

video versions where F represents the set of all available

edge devices. After the transcoding process, all of the standard

transcoded live videos will be transmitted from the edge

devices to the associated viewers. In addition, it is assumed

that a viewer can only watch one transcoded video from a

broadcaster in the same time slot.

To describe the transcoding task assignment and the viewer

association, a binary variables is defined as Iti,y,f,j which

takes 1 when edge device f is selected to transcode the

original video from broadcaster i requested by viewer j into

representation y in time slot t, and 0 otherwise.

A. Cost Model

To incentivize an edge device to participate in transcoding,

we define the cost of transcoding one live video from broad-

caster i to representation y at edge device f , which is paid by

Figure 1: System model of the edge-assisted CLSP

the CLSP for the edge device, as cti,y,f , which is written as

cti,y,f =
∑

j∈J

Iti,y,f,j · Φy · ωt
f , (1)

where Φy is a non-decreasing concave function of representa-

tion y and ωt
f is defined as the transcoding capability of device

f in time slot t.
A higher value of ωt

f means the edge device is more reliable

and it can transcode a live stream with higher quality and

less delay. To encourage edge devices with higher transcoding

capability to join the transcoding candidate pool, cti,y,f is

assumed to be linearly increasing with ωt
f . The transcoding

capability plays an important role which is not only related to

the transcoding quality but also the transcoding performance

uncertainty. In a nut shell, an edge device with relatively

higher average performance and lower performance fluctuation

is more capable for transcoding. The exact definition of

transcoding capability will be presented in Section V.

Based on the definition of cti,y,f , the total cost related to

broadcaster i (denoted by cti) can be defined as

cti =
∑

y∈Y

∑

f∈F

cti,y,f . (2)

B. QoE Model

From the perspective of a viewer, the quality of the received

video, namely, the received bit rate can greatly determine the

viewer’s experience [14]. Therefore, we use the term QoE to

denote how good the received video is. The QoE is determined

by two factors. First, the acceptable quality levels of the

received live videos of different broadcasters vary in terms

of their genres (e.g., card game, pixel art game, first shooter

game, etc). By categorizing the live videos into a set of genres

denoted by G = {1, 2, . . . ,K} and defining gti ∈ G as the

genre of video from broadcaster i in time slot t, we can define

sgt
i

as the suggested basic bit rate, according to the genre of

broadcaster i, for viewer to watch the live video in time slot

t. Second, it is vital to consider the network capacity of each

viewer. Let ut
j be the highest bit rate that viewer j can receive,
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which varies due to the viewer network condition, the QoE

model can be expressed as

qti,j,y = log

(

by
ut
j

+
by
sgt

i

)

, (3)

where by represents the bit rate of representation y. In (3), the

QoE model is a non-decreasing concave function of two ratios.

The first ratio quantifies the effect of the network condition

of viewer j. The higher this ratio is, the better QoE can be

achieved. However, this ratio should not exceed one, and a

constraint is added to the optimization problem; Otherwise, the

viewer capacity is smaller than the bit rate of the transcoded

representation and this transcoded representation cannot be

smoothly played at the viewer end. The second ratio quantifies

how better the received video quality is compared with the

basic genre rate of broadcaster i considering the fact that same

representation from different genres of broadcasters can lead

to different QoE levels.

The QoE of a viewer j watching a transcoded video from

broadcaster i can be calculated as

Qt
i,j =

∑

y∈Y

∑

f∈F

Iti,y,f,jω
t
fq

t
i,j,y. (4)

C. Delay Model

Delay is another performance measure that should be taken

into account for the optimal transcoding task assignment

and viewer association for real-time processing and delay-

sensitive applications in the edge-assisted CLSPs. The latency

experienced by the viewers can be categorized into three types,

i.e., transmission delay, transcoding delay, and playout delay.

The transmission delay is referred to as the round trip time,

including the broadcaster-transcoder delay and the transcoder-

viewer delay. In the traditional cloud transcoding system,

both the broadcasters and the viewers can be far from the

cloud data center, which brings non-negligible latency. The

transcoding delay is the processing delay of transcoding a live

video to a different quality version. Normally, the transcoding

delay can be calculated as the time difference between the

input of original video and the output of the transcoded

representation. The playout delay is determined by the viewer

devices and their decoding time. Thus, it would not affect the

the transcoding task assignment and the viewer association and

hence not involved in this paper.

Let define ξtj and δtj as the transmission delay and the

transcoding delay experienced by viewer j in time slot t,
respectively. The transmission delay can be expressed as

ξtj =
∑

i∈I

∑

y∈Y

∑

f∈F

τ̃ ti,f,jI
t
i,y,f,jV

t
i,j , (5)

where τ̃ ti,f,j denotes the network delay from broadcaster i to

viewer j via edge device f . Next, the transcoding delay can

be represented as

δtj =
∑

i∈I

∑

y∈Y

∑

f∈F

δ̃i,y,fI
t
i,y,f,jV

t
i,j , (6)

where δ̃i,y,f represents the transcoding delay for edge device

f to transcode an original live video with bit rate Bt
i to a

representation with bit rate by . Therefore, the overall latency

in the proposed transcoding system in time slot t experienced

by the viewer j can be represented as

Dt
j = ξtj + δtj . (7)

IV. OPTIMIZATION PROBLEM: EDGE TRANSCODING AND

VIEWER ASSOCIATION

According to the system model formulated in the previous

section, there is a tradeoff between QoE maximization and cost

minimization imposed on CLSP. On one hand, CLSP prefers

to incentivize more edge devices to participate in transcoding

and provide ABR service to more viewers. The more Iti,y,f,j
is set to one (i.e., a larger number of edge devices is selected

for transcoding), the higher QoE can be gained. On the other

hand, this will lead to higher cost based on (1). Therefore, the

binary indicators must be optimized carefully to balance the

tradeoff between the QoS and the cost as two components of

the network utility. To formalize such a tradeoff, we define

the weighted-difference between the QoE and cost (which is

referred to as the network utility) related to a broadcaster as

U t
i =

∑

j∈J t

V t
i,jQ

t
i,j − λ · cti, (8)

where the parameter λ is used to tune the tradeoff between

the two components.

Aiming to jointly optimize the transcoding task assignment

and viewer association by maximizing the total network utility

in each time slot over the whole transcoding system. We

therefore, formulate an optimization problem as

(PPP) max
It
i,y,f,j

T
∑

t=1

∑

i∈I

U t
i , (9a)

s.t. C1 : V t
i,jI

t
i,y,f,jby ≤ min{ut

j , B
t
i} , (9b)

C2 :
∑

y∈Y

∑

f∈F

Iti,y,f,j ≤ 1, ∀i ∈ I, ∀j ∈ J t, (9c)

C3 :
∑

y∈Y

∑

i∈I

∑

j∈J t

Iti,y,f,j ≤M, ∀f ∈ F , (9d)

C4 : Iti,y,f,j ∈ {0, 1}, ∀y ∈ Y, ∀i ∈ I, ∀f ∈ F , ∀j ∈ J t,
(9e)

C5 : Dt
j ≤ Dth, ∀j ∈ J , (9f)

where C1 makes sure the received bit rate is lower than both

the original video bit rate (Bt
i ) and the viewer capacity. C2

ensures that a viewer can only play one representation from

one broadcaster in each time slot. C3 guarantees that each

transcoder can only serve M viewers at most due to the limited

bandwidth resource. C4 guarantees that variable Iti,y,f,j is

binary. C5 ensures that for every viewer, the experienced delay

of each viewer is lower than a predefined threshold Dth.

The formulated problem is a linear integer programming

problem which can be efficiently solved by an optimization

toolbox called Mosek [40]. However, the transcoding capabil-

ities of transcoders are required to solve PPP , that are unknown

in real live streaming systems. Therefore, an online learning

scheme is highly demanded.
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V. RISK-AWARE CONTEXTUAL LEARNING FOR EDGE

TRANSCODING

In light of the proposed system model in Section III, in

this section, a novel risk-aware learning algorithm is designed

to learn the transcoding capabilities (i.e., ωt
f ) online lever-

aging contextual information. Then, a novel transcoding task

assignment and viewer association algorithm is designed to

maximize the network utility of the transcoding system.

A. Risk-aware Contextual MAB

Since the aim of the edge-assisted transcoding system is to

select a number of edge transcoders per time slot to maximize

the cumulative network utility, this problem can be modelled

using a bandit framework, where the arms are the edge devices

and the rewards are the transcoding outcomes of selected edge

devices.

We model the transcoding outcome of a task assigned to

edge device f in time slot t as a random variable, denoted

by rtf , for which the statistical properties are unknown. Sup-

pose γt
f = E[rtf ] represents the expected performance of

transcoding for edge device f , where E[.] is the mathematical

expectation. Define γt
f as ‘transcoding quality’ of device f .

Moreover, σ2
f = Var[rtf ] is the variance of the transcoding

outcome. When the variation of transcoding outcome of a

transcoder (σ2
f ) is large, the transcoder can still perform poorly

even with high transcoding quality. This is unaffordable and

risky.

The risk is defined related to the performance fluctuations

of the transcoder devices. In particular, the high risk represents

the case when the transcoder has a large performance variation

(i.e., transcoding outcomes with high variance). For instance,

choosing a transcoder with high uncertainty can lead to

unacceptable transcoding delay and severely deteriorate the

viewer experience. Besides, choosing a more risky transcoder

can lead to frequent transcoding task switches, which means

the same transcoding task will be assigned to different edge

transcoders and results in high communication overhead and

playback latency. These problems reflect the importance of

considering the performance uncertainty of transcoders.

Such a risk can occur due to the unexpected unavailability

of transcoders. This happens in edge-assisted crowdsourced

live streaming since transcoder devices considered in our

work are assumed to be edge viewers’ devices, which are

not specifically employed for live video transcoding. The

risk can also originate from the unstable computational and

transmission resources of the edge transcoders. Particularly, a

sudden high transmission error or a low transmission rate can

aggravate the riskiness of edge transcoders as well.

Therefore, we model the transcoder selection problem as

a risk-aware MAB for which the objective is to balance the

tradeoff between maximizing the expected value of returned

transcoding outcomes and minimizing the variance of the

transcoding outcomes. In particular, we define the transcoding

capability as the mean-variance measure of each transcoder,

which can be written as

ωt
f = ργt

f − σ2
f . (10)

where ρ > 0 is the risk-tolerance factor introduced to balance

the tradeoff between a high reward and a low risk. This linear

combination of the transcoding quality and the variance of the

transcoding outcome in fact defines the transcoding capability

of edge device f .

To learn the transcoding capabilities of each edge transcoder

online, in the following, we propose an index-based MAB

algorithm by analytically driving the UCB of γt
f and σ2

f .

1) Contextual UCB for transcoding quality: The transcod-

ing quality (γt
f ) of an edge device is dependant on various

factors such as the device computational power, network

conditions, online stability etc. Such factors will form the con-

textual information of a device as a transcoder. For example,

since the viewer devices are not specifically implemented for

video transcoding and can switch offline during transcoding

[6], online stability of a device would affect the transcoding

quality. Besides, the computational power and network condi-

tion of an edge device can also affect the transcoding outcome

by incurring varying latency which can be experienced at the

viewer end.

Therefore, we model the transcoding quality of a transcoder

as the linear combination of its contextual information and a

vector of unknown coefficients θ∗. Consequently, the transcod-

ing quality can be represented as

γt
f = E

[

rtf |xtf
]

= (xtf )
⊤
θ
∗, (11)

where xtf represents the z-dimensional contextual information

of edge transcoder f , and θ
∗ denotes the z-dimensional

unknown coefficients which can be treated as the weight of

each contextual information. In addition, the number of the

contextual information types is defined as z.

Collecting samples of the transcoding outcomes and the

contextual information through task assignments over time,

the unknown coefficients θ
∗ can be learned. Learning the

coefficients belong to a linear regression problem and it can be

solved by ridge regression [41], which adds L2 regularization

to the lost function. Ridge regression is a suitable technique

to solve the linear regression problem when the number of

samples is highly limited, which fits the situation of the

crowdtranscoding system, since the samples are collected in

an online form and there are only limited samples in the early

stage.

Define Rt as the set of transcoding outcomes till time slot t,
with the number of transcoding outcomes as mt. Let Wt be a

design matrix of dimension mt× z whose rows correspond to

the observations of contextual information of mt transcoding

outcomes till time slot t and columns correspond to the z
types of the contextual information. According to [42], we

can acquire the estimated coefficients θ̃
t by ridge regression

as

θ̃
t = ((Wt)⊤Wt + Iz)

−1(Wt)⊤Rt, (12)

where Iz is the z-dimensional identity matrix.

Let define the estimated transcoding quality as γ̃t
f . Based

on the learned knowledge of the unknown coefficients, we can

update the estimated transcoding quality using the contextual
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information as

γ̃t
f = (xtf )

⊤
θ̃
t. (13)

For the UCB of the transcoding quality (γt
f ), according to

[43], for any κ > 0, with the probability of at least 1− κ/T ,

the deviation between the estimated transcoding quality and

the real transcoding quality can be upper bounded by

|(xtf )⊤θ̃t − (xtf )
⊤
θ
∗| ≤ (ϕ+ 1)

√

(xtf )
⊤At−1

xtf , (14)

where A
t = Iz + (Wt)⊤Wt and ϕ =

√

1
2 ln

2TF
κ

. This

UCB can help to estimate the real transcoding quality of each

transcoder, which holds with a high probability.

2) UCB for variance: In order to estimate the UCB of

the transcoding outcome’s variance (σ2
f ), we first define the

empirical variance (stf )
2 of the transcoding outcome of edge

device f until time slot t as

(stf )
2 =

1

τ tf − 1

τt
f
∑

d=1

(

r
tf (d)
f − r̄tf

)2

, (15)

where r̄tf represents the empirical mean of transcoding out-

come until t, tf (d) represents the time slot when the dth

transcoding outcome of device f is observed, and τ tf denotes

the number of times that transcoder f has been chosen till t.

Fact 1: Let X be a Gaussian random variable with variance

σ2. Define the empirical variance over n samples as s2n, based

on [44] we have

Pr
{

σ2 ≤ vn
}

= 1− α, (16)

where vn =
(n−1)s2n
χ2

1−α,n−1

and χ2
1−α,n−1 is the upper 100α

percentage points of the chi-square distribution with (n − 1)
degrees of freedom.

Fact 1 gives a definition of the confidence interval of the

variance of a random variable when the variable follows the

Gaussian distribution. It implies that there is a probability of

100(1−α)% that the constructed confidence interval based on

the sample variance will contain the true value of σ2.

According to Fact 1, a UCB of the variance of a random

variable is proposed when the variable follows the Gaussian

distribution. Therefore, based on Fact 1, we can derive the

UCB of σ2
f under assumption that rtf is normally distributed.

Lemma 1: Given the UCBs of both the mean and the

variance of the transcoding outcomes based on (14) and (16),

the contextual Gaussian risk-aware UCB (CGRA-UCB) of

transcoding capability of the transcoder f can be written as

ω̃t
f = ρ

(

γ̃t
f + (ϕ+ 1)

√

(xt
f )

⊤At−1
xtf

)

− vτt
f
, (17)

where vτt
f
=

(τt
f−1)(stf )

2

χ2

1−a,τt
f
−1

. The first term in the RHS of (17)

represents the UCB of the transcoding quality and the second

term reflects the variance of the transcoding outcome.

In (17), τ tf represents the number of transcoding tasks which

is assigned to transcoder f till time slot t and (stf )
2 denotes the

empirical variance of the transcoding outcome of transcoder

f at time slot t.

The bound in (17) is designed under the assumption that rtf
follows an independent Gaussian distribution. However, when

the reward distribution is unknown, the confidence interval

presented in (1) is not pertinent. To overcome this limitation,

we utilize the asymptotic distribution of the empirical variance

to drive a confidence interval without any prior assumption of

the reward distribution.

Fact 2: Let X be a continuous random variable with mean

µ, variance σ2, and µ4 = E
[

(X − µ)4
]

. According to [38],

[45], the asymptotic distribution of the empirical variance is
√
n
(

s2n − σ2
)

→ N
(

0, µ4 − σ4
)

. (18)

Based on Fact 2, in the following lemma, we develop an

asymptotic UCB on the variance.

Lemma 2: Applying Fact 2, define the UCB of the reward

variance as vupper
n , for a sufficiently large n, an asymptotic

confidence interval of the variance can be derived as

Pr
{

σ2 ≥ vupper
n

}

≤ α, (19)

where vupper
n =

ns2n+
√

nχ2

α,1(µ4−s4n)+(χ2

α,1)
2

µ4

n+χ2

α,1

and s4n is the

empirical estimate of σ4.

Proof: See Appendix A.

Since µ4 is unknown, an estimate of µ4 is required. We ap-

proximate µ4 as µ̃n
4 = 1

n

∑n
d=1(rd− µ̄)4, where rd represents

the random reward.

When the distribution of rtf is unknown, by setting n = τ tf ,

we can estimate the UCB of σ2
f according to Lemma 2, which

can be calculated as

vupper

τt
f

=

τ tfs
2
τt
f

+

√

τ tfχ
2
α,1

(

µ̃f
4 − s4

τt
f

)

+
(

χ2
α,1

)2
µ̃f
4

τ tf + χ2
α,1

, (20)

where µ̃f
4 = 1

τt
f

∑τt
f

d=1(r
tf (d)
f − r̄tf )

4.

Lemma 3: Given the UCBs of both the mean and the

variance of the transcoding outcomes based on (14) and

Lemma 2, we can build a new contextual asymptotic risk-

aware UCB (CARA-UCB) of transcoding capability, which

can be written as

ω̃t
f = ρ

(

γ̃t
f + (ϕ+ 1)

√

(xt
f )

⊤At−1
xtf

)

− vupper

τt
f

. (21)

B. Transcoder Selection Algorithm

With the learnt transcoding capability and based on either

(17) or (21), to assign the transcoding tasks to the edge devices

which are expected to return relatively high reward and are

less risky, we need to solve an instantaneous version of the

optimization problem PPP in (9). The instantaneous optimization

problem at time-slot t can be formulated as

(P̂̂P̂P) max
It
i,y,f,j

∑

i∈I

U t
i , (22a)

s.t. C1− C5. (22b)

The instantaneous optimization problem in (22) will be solved

whenever new bounds of transcoding capabilities of edge

devices are available. After the task assignment, the UCB
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estimations can be updated based on the observed transcoding

outcomes.

However, in order to learn the transcoding capability, simply

assigning one transcoding task to different edge transcoders

in different time slots is not efficient, because assigning a

transcoding task to different transcoders frequently can lead

to unaffordable task-switching costs and further increase the

communication overheads.

To deal with this problem, according to (12), we noticed that

whichever transcoder is selected can contribute in collecting

information about the coefficients vector θ
∗, thus can further

guide the learning process of the transcoding capability. There-

fore, instead of determining the task assignment and viewer

association in each time slot, we investigate an epoch-based

sampling strategy which means a transcoding is consistently

assigned to the same edge device for a finite number of time

slots (which is referred as an epoch) and the task reassignments

are only proceeded once at the beginning of each epoch. With

this strategy, we can greatly reduce the switching costs while

keep learning the transcoding capability.

The effectiveness of the epoch-based sampling depends on a

well-designed epoch length [46], which is supposed to increase

as time continues. Given τ tf as the task assignment counter of

a edge device f , define F t as the set of edge devices whose

assigned task numbers are more than a certain threshold till

time slot t, which can be written as

F t =
{

f : τ tf ≥ tζ log t
}

, (23)

with ζ > 0 is the threshold factor. Define the smallest counter

as

τ tmin = min
f∈F t

τ tf , (24)

the length of an epoch till time slot t can be calculated as

Et = ⌈(1 + ϵ)τ
t
min⌉, (25)

where ϵ > 0.

The detailed risk-aware contextual transcoding task as-

signment and viewer association algorithm is described in

Algorithm 1. Since the time slots have been divided into

epochs, we only need to solve the optimization problem per

epoch. Thus, the computational cost can be greatly reduced.

In addition, according to the optimization problem P̂̂P̂P , mul-

tiple transcoding tasks can be assigned to the same transcoder.

However, the computational resources of the transcoders are

limited and performing excessive transcoding tasks on one

transcoder concurrently can lead to soaring transcoding delay

and exhaust the bandwidth resources. Therefore, to avoid over-

whelming the transcoders, every time the optimization variable

Iti,y,f,j is calculated, a self-inspection process is executed at

every selected transcoder and any transcoder assigned with

excessive tasks will offload these tasks to the cloud data center

for transcoding.

C. Computational Complexity Analysis

The computational complexity of the proposed algorithm

in each epoch consists of two parts. The first part of com-

plexity originates from the ridge regression where matrix

Algorithm 1 Risk-aware contextual transcoding task assign-

ment and viewer association algorithm

Require: ζ, ρ, xtf , ϕ
for t← 1 to T do

if Current epoch ends then

Update τ tf and τ tmin

Calculate the epoch length Et based on (23), (24), and

(25)

for f ← 1 to F do

Calculate the estimated transcoding capability ω̃t
f

based on (17) or (21)

end for

Solve optimization problem P̂̂P̂P to get Iti,y,f,j
Execute self-inspection and modify Iti,y,f,j accordingly

else

Maintain the same assignment, Iti,y,f,j ← It−1
i,y,f,j

end if

Observe the transcoding outcomes

Update θ̃
t based on (12)

end for

inversion and multiplication are introduced. The computational

complexity of this method scales as O(z2mt), where z is

the dimension of context space and mt is the number of

transcoding outcomes till time slot t. Since the dimensionality

of the context information is assumed to be fixed, mt will

dominate the computational complexity and the complexity

only grows linearly in terms of the number of transcoding

outcomes.

The second part of complexity comes from solving the

instantaneous optimization problem P̂̂P̂P (22) which is a 0-1

linear integer programming problem. According to [47], the

computational complexity of such a problem is O(2LkL)
where L is the number of optimization variables and k is the

number of constraints. In our problem, we have Lt = IFY J t

and k = J t + F + 2IJ t where J t, Y , F , and I represent the

numbers of viewers, representations, edge devices, and broad-

casters, respectively. Combing both parts, the computational

complexity at the time slot t is O(z2mt + 2L
t

kLt).

VI. SIMULATION RESULTS

A. Simulation Setup

We test the proposed algorithm with a synthetic data set,

which is based on the real-world settings. We assume a live

stream transcoding system with 4 broadcasters, 50 viewers,

15 edge devices and 4 representations. The viewer count of

each broadcaster live stream is decided by its popularity. The

popularity is modelled by Zipf distribution which is normally

used for video content popularity modelling (e.g., [48]).

We set the original live video rate and the representation

rates according to the twitch broadcaster settings [49]. The

original rates for four broadcasters are set as 4000kbps,

2500kbps, 1500kbps and 500kbps. The specific bit rates

of the four representations are set to be 400kbps (240P),

1200kbps (480P), 2000kbps (720P), and 3500kbps (1080P).
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Table III: Comparison with benchmarks on risk sensitivity and

context awareness

Risk sensitivity Context awareness

Proposed scheme Yes Yes

LinUCB No Yes

MV-UCB Yes No

Moreover, we randomly set the viewer capacity in the range

of [500, 4000] kbps.

Based on the system model, a transcoding task can be

assigned to multiple edge devices to serve different viewers.

Since the transcoders are at network edge which is close to

the viewers, the edge devices and the viewers are assumed to

be distributed in a 1000 meters × 1000 meters region, and

their locations are randomly determined following a uniform

distribution.

According to [6], the transcoding capability can be affected

by transcoder’s computational power. Besides, since the can-

didate viewers can also undertake transcoding tasks and the

viewers with low stability can be offline during transcoding,

the online stability of the transcoders should be considered

as a factor of transcoding capability. Based on [7], the online

stability is generated by sampling the Pareto distribution. As a

result, we choose the CPU mark, the average CPU usage, the

average RAM usage and the online stability as the contextual

information of edge transcoders.

As discussed in [9], the transcoding delay is calculated

based on the required computational resources of a task and the

available CPU cycles (determined by the CPU mark and usage)

of the transcoder. For the transmission delay, it can be divided

into two parts as discussed in Section III-C. The broadcaster-

transcoder delay is randomly set in the range of [200, 300] ms

according to [14], and the transcoder-viewer delay is set in

the range of [0, 100] ms depending on the distance between a

viewer and a edge device. To be more specific, this delay

can be calculated as the distance between transcoder and

viewer times 100 ms. In other words, this setting implicitly

considers the average channel gain and transmission rate

which are functions of the distance between a viewer and

an edge device. To demonstrate the risk-awareness of the

designed algorithm, the variance of an edge transcoder follows

a uniform distribution within the range of [0, 1]. Finally, to test

the performance of the designed algorithm, both Gaussian and

Gamma distributions are simulated to generate the transcoding

outcomes. The parameters are uniformly selected.

The LinUCB algorithm [50] which utilizes the contextual

information to estimate the reward is simulated as the bench-

mark. In addition, the MV-UCB algorithm [51] which is a

risk-aware MAB algorithm, is also simulated for comparison.

Table III describes the features of the proposed algorithm and

the benchmarks.

Figure 2a presents the initial transcoding quality and the

variance of 15 transcoders. By sorting the transcoders in the

descending order in terms of the transcoding capability with

varying risk-tolerance factor ρ, Figures 2b-2d are generated.

The risk-tolerance factor is set to decrease from 3 to 0.1. In

Figure 2b, a larger risk-tolerance factor makes the transcoding
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Figure 2: Transcoding quality and variation given varying risk-

tolerance factor ρ

quality dominate the transcoding capability, which represents

a risk-neutral setting of transcoders. In Figure 2d, the risk-

tolerance factor is set to be close to 0, which leads to a pure-

risk setting. We can observe that the transcoding capability

of each transcoder can be quite different. In Figure 2c, we

set ρ = 1, which leads to another order of transcoders. In this

figure, both transcoding quality and the variance can contribute

to the capability, and the transcoders which are relatively more

capable are quite different from both previous settings (ρ = 0.1
or 3). This setting highlights the importance of considering

impacts from both the transcoding quality and the variance.

We set ρ = 1 in the following simulations, and the results are

collected from 30 Monte Carlo (MC) runs.

B. Numerical Results

We first evaluate the proposed algorithm under the Gaussian

distribution scenario as compared to the benchmarks. In Figure

3, the network utilities per time slot achieved by all three



10

Table IV: Simulation parameters

Parameter Value

Original rates (kbps) 4000,2500,1500,500

Representation rates (kbps) 3500,2000,1200,400

Broadcaster genrge rate (kbps) 200,3000,1200,400

Viewer capacity (kbps) [500, 4000]
broadcaster-transcoder delay (ms) [200, 300]
transcoder-viewer delay (ms) [0, 100]
risk-tolerance factor ρ 1

Threshold factor ζ 0.75

Context weight vector θ∗ (0.2,0.1,0.05,0.65)

QoE-cost coefficient λ 0.05
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Figure 3: Network utility versus time: Gaussian reward case
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Figure 4: Cumulative utility versus time: Gaussian reward case
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Figure 5: Switching costs versus time: Gaussian reward case

algorithms are presented. It is shown that the proposed algo-

rithm using CGRA-UCB outperforms the LinUCB and MV-

UCB because it not only utilizes the contextual information to
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Figure 6: Network utility versus time: Gamma reward case
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Figure 7: Cumulative utility versus time: Gamma reward case

learn the transcoding quality but also considers the uncertainty

of the transcoder’s transcoding outcome. In addition, the

cumulative network utilities are depicted in Figure 4. This

also confirms the superiority of the proposed algorithm in

comparison with the benchmarks. Moreover, in Figure 5, the

cumulative switching costs are presented and the proposed

algorithm achieves up to 85.1% cumulative switching costs

as compared to the benchmarks. This is because the proposed

algorithm does not solve the optimization problem P̂̂P̂P per time

slot so that the task assignment and viewer association will

not change frequently.

In Figures 6, 7, and 8, Gamma distribution is used to

generate the transcoding outcomes. In this case, we simulate

for 200 time slots since the used bound (derived in Lemma

3) is an asymptotic bound and its accuracy increases as

more transcoding outcomes are collected, which takes longer

time to converge. From the results, we can find that after

150 time slots, the proposed algorithm with the CARA-

UCB tends to converge and shows good performance. The

results demonstrate that the proposed algorithm using CARA-

UCB achieves a higher network utility while reducing up

to 86.8% switching costs as compared to the benchmarks.

The experienced average latency per viewer of each algorithm

is presented in Table V. According to the results, we can

find that the average delays of the proposed algorithm are

slightly higher in both scenarios, although still within the delay

threshold. The delay thresholds in both simulations are set to

1.3 seconds, which demonstrates that the proposed algorithm

can improve the network utility of the transcoding system
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Figure 8: Switching costs versus time: Gamma reward case

Table V: Averaged delay in second

Algorithm Gaussian case Gamma case

CGRA/CARA-UCB 0.78 0.88

LinUCB 0.44 0.42

MV-UCB 0.46 0.58

while satisfying the delay constraint.

The running time of the proposed algorithm with and

without the designed epoch-based strategy is presented in

Table VI. Here without the epoch-based strategy means the

optimization is solved in every time slot. The simulation is

based on Gaussian reward setting with 100 time slots and the

results are averaged over 30 MC runs. The results demonstrate

that the epoch-based strategy can greatly reduce the running

time by 92.3% since the optimization problem is solved much

less frequently and the number of reassignment needed is

much smaller.

In order to study the impact of the epoch-based sampling

strategy, ζ is changed to generate different thresholds based

on (23), which will help to determine the length of epoch

according to (24) and (25). In Figure 9, both the cumulative

switching costs and the total network utilities versus ζ are

presented. We can observe that by decreasing ζ, the network

utility can be increased at the expense of higher switching

costs, since when ζ is decreased, the epoch length will

increase more slowly and the optimization problem PPP in (9)

will be solved more frequently. This figure demonstrates the

importance of selecting a proper ζ to balance the tradeoff

between the switching costs and the network utility.

In Figures 10, 11, and 12, three different epoch length

determination strategies are evaluated in the Gaussian reward

setting. The proposed transcoder selection algorithm calculates

the epoch length based on the smallest task assignment counter

of the edge transcoder via (23)-(25). As benchmarks, two

more cases are simulated using the average of counters and

the largest counter to calculate the epoch length, respectively.
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Figure 9: Transcoding performance versus ζ

The results reveal that all three strategies perform well and

show fast convergence thanks to the proposed refined UCBs of

the transcoding capability. Particularly, the proposed strategy

based on the minimum counter achieves the highest network

utility. This confirms that the designed strategy can efficiently

identify suitable transcoders to maximize the network utility,

since it can offer more chances for exploring the transcoding

capability of each transcoder and help to refine the bounds

more frequently, which helps to identify the most suitable

transcoders efficiently. In addition, using the maximum counter

to calculate the epoch length achieves competitively low

switching costs since this strategy tends to increase the epoch

length faster than others, which can reduce the number of task

reassignments.

To further demonstrate the performance of the proposed

algorithm, we present the transcoding performances with and

without the knowledge of the transcoding capabilities of

edge transcoders under the Gaussian distribution scenario. In

Figure 13, the cumulative network utilities and switching costs

are presented. This result shows that the proposed scheme

can learn the transcoding capability quickly and achieve a

highly competitively network utility as compared to the case

when the transcoding capability is known. In addition, with

known transcoding capabilities, a lower switching costs can

be achieved since the suitable transcoders can be quickly

identified and the transcoding task assignment will not be

Table VI: Running time of the proposed algorithm

Proposed algorithm
Average running Average time running time Average number
per run (seconds) per time slot (seconds) of reassignments

With epoch 520.8 5.2 7.7

Without epoch 6748.2 67.5 100
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Figure 10: Network utility versus time
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Figure 11: Cumulative network utility versus time

changed frequently.

Finally, we have compared the proposed edge-assisted

transcoding algorithm with the Top-N scheme which is a

currently-running cloud transcoding scheme in Twitch.TV.

Top-N offers N premium broadcasters with the ABR service

but only the basic representation rate is available for the rest

of the broadcasters. Normally N is determined based on the

broadcaster’s popularity. The network utility and cumulative

network utility of both the proposed algorithm and the Top-N

scheme are presented in Figures 14 and 15.

Since Top-N is based on the cloud transcoding, we assume it

can ensure highly stable viewer QoE and we set the transcod-

ing capability to be 1 which is higher than the most capable

edge-transcoder (whose transcoding capability is 0.496). In
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Figure 12: Switching costs versus time
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Figure 13: Transcoding performance versus ζ

addition, we set the unit cost of transcoding to be 10 times

the cost of edge transcoding. Based on the results, we can find

that as N increases, the utility of cloud transcoding increases.

In particular, the proposed edge-assisted transcoding algorithm

can utilize edge computing resources efficiently and achieve

highly competitive network utility.
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Figure 14: Network utility versus time

VII. CONCLUSIONS

In this paper, we proposed an edge-assisted transcoding

task offloading algorithm for CLSP, considering the contextual

information and the risk of performance variations of the

edge devices. First, an optimization problem was formulated

to solve the transcoding task assignment and viewer associ-

ation problem under the assumption of known transcoding
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Figure 15: Cumulative network utility versus time

capabilities of edge devices. Then, two risk-sensitive ban-

dit algorithms are developed to deal with the exploration-

exploitation dilemma and to learn the transcoding capabilities.

An epoch-based assignment strategy was introduced to reduce

the switching costs of transcoding task assignment. Numerical

results based on various settings confirm that the proposed

risk-aware contextual algorithms can achieve superior perfor-

mances as compared to different benchmark schemes that are

either contextual or risk-sensitive. In a nutshell, leveraging

both contextual awareness and risk sensitivity can improve

resilience and robustness of an online task offloading scheme.

In future, we will extend the proposed algorithm by consid-

ering a larger scale problem with extremely high live video

quality (such as 4K and 8K) and with different behaviors of

edge devices.

APPENDIX

The distribution presented in Fact 2 can be transformed into

a standard Gaussian distribution as
√
n
(

s2n − σ2
)

√

µ4 − σ4
→ N (0, 1) . (26)

Therefore we have
n(s2n−σ2)

2

µ4−σ4 → χ2
1. Consequently, the one-

sided confidence interval is defined as

Pr

{

n
(

s2n − σ2
)2

µ4 − σ4
≤ χ2

α,1

}

= 1− α. (27)

As a result, the (1− α) asymptotic confidence interval of the

variance σ2 is established as

Pr
{

vlower
n ≤ σ2 ≤ vupper

n

}

= 1− α, (28)

where vlower
n =

ns2n−

√

nχ2

α,1(µ4−s4n)+(χ2

α,1)
2

µ4

n+χ2

α,1

. From (28),

obviously we have Pr
{

σ2 ≥ vupper
n

}

≤ α, which completes

the proof.
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