
This is a repository copy of Global datasets of leaf photosynthetic capacity for ecological 
and earth system research.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/192645/

Version: Published Version

Article:

Chen, J.M., Wang, R., Liu, Y. et al. (10 more authors) (2022) Global datasets of leaf 
photosynthetic capacity for ecological and earth system research. Earth System Science 
Data, 14 (9). pp. 4077-4093. ISSN 1866-3508 

https://doi.org/10.5194/essd-14-4077-2022

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Earth Syst. Sci. Data, 14, 4077–4093, 2022

https://doi.org/10.5194/essd-14-4077-2022

© Author(s) 2022. This work is distributed under

the Creative Commons Attribution 4.0 License.

Global datasets of leaf photosynthetic capacity for

ecological and earth system research

Jing M. Chen1,2, Rong Wang1, Yihong Liu2, Liming He3, Holly Croft4, Xiangzhong Luo5, Han Wang6,

Nicholas G. Smith7, Trevor F. Keenan8,9, I. Colin Prentice10,6,11, Yongguang Zhang12, Weimin Ju12, and

Ning Dong10,11

1School of Geographical Sciences, Fujian Normal University, Fuzhou, China
2Department of Geography and Planning, University of Toronto, Toronto, Canada
3Canada Centre for Remote Sensing, Natural Resources Canada, Toronto, Canada

4School of Biosciences, University of Sheffield, Sheffield, UK
5Department of Geography, National University of Singapore, Singapore, Singapore
6Department of Earth System Science, Tsinghua University, 100084 Beijing, China

7Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
8Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

9Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
10Department of Life Sciences, Imperial College London, Silwood Park Campus,

Buckhurst Road, SL57PY Ascot, UK
11Department of Biological Sciences, Macquarie University, 2109 North Ryde, NSW, Australia

12International Institute of Earth System Science, Nanjing University, Nanjing, China

Correspondence: Jing M. Chen (jing.chen@utoronto.ca)

Received: 20 April 2022 – Discussion started: 29 April 2022

Revised: 8 August 2022 – Accepted: 9 August 2022 – Published: 7 September 2022

Abstract. The maximum rate of Rubisco carboxylation (Vcmax) determines leaf photosynthetic capacity and
is a key parameter for estimating the terrestrial carbon cycle, but its spatial information is lacking, hin-
dering global ecological research. Here, we convert leaf chlorophyll content (LCC) retrieved from satel-
lite data to Vcmax, based on plants’ optimal distribution of nitrogen between light harvesting and carboxy-
lation pathways. We also derive Vcmax from satellite (GOME-2) observations of sun-induced chlorophyll
fluorescence (SIF) as a proxy of leaf photosynthesis using a data assimilation technique. These two inde-
pendent global Vcmax products agree well (r2

= 0.79,RMSE = 15.46µmol m−2 s−1, P<0.001) and compare
well with 3672 ground-based measurements (r2

= 0.69,RMSE = 13.8µmol m−2 s−1 and P<0.001 for SIF;
r2

= 0.55,RMSE = 18.28µmol m−2 s−1 and P<0.001 for LCC). The LCC-derived Vcmax product is also used
to constrain the retrieval of Vcmax from TROPical Ozone Mission (TROPOMI) SIF data to produce an op-
timized Vcmax product using both SIF and LCC information. The global distributions of these products are
compatible with Vcmax computed from an ecological optimality theory using meteorological variables, but im-
portantly reveal additional information on the influence of land cover, irrigation, soil pH, and leaf nitrogen on
leaf photosynthetic capacity. These satellite-based approaches and spatial Vcmax products are primed to play
a major role in global ecosystem research. The three remote sensing Vcmax products based on SIF, LCC, and
SIF+LCC are available at https://doi.org/10.5281/zenodo.6466968 (Chen et al., 2022), and the code for imple-
menting the ecological optimality theory is available at https://github.com/SmithEcophysLab/optimal_vcmax_R
and https://doi.org/10.5281/zenodo.5899564 (last access: 31 August 2022) (Smith et al., 2022).

Published by Copernicus Publications.
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1 Introduction

The Farquhar-von Caemmerer–Berry (FvCB) leaf photo-
chemistry model (Farquhar et al., 1980) is widely used for
simulating vegetation photosynthesis in ecological studies.
The maximum carboxylation rate (Vcmax) that determines
leaf photosynthetic capacity is an essential parameter in the
FvCB model. The current state of the art (Rogers 2014,
Rogers et al., 2017) in regional and global ecosystem model-
ing is to assign Vcmax at 25 ◦C (Vcmax25) as a fixed parameter
that varies by plant functional type (PFT), and is typically
estimated from a ground-based database (Kattge et al., 2009,
2020), even though observations show 2–3-fold variation in
Vcmax25 for the same PFT. As the total simulated photosyn-
thesis of a canopy is highly sensitive to Vcmax, this simple ap-
proach causes considerable distortion in modeled spatial dis-
tributions of the terrestrial carbon cycle (Bonan et al., 2011;
Walker et al., 2017; Luo et al., 2017; Chen et al., 2019), hin-
dering advancement in global ecological and Earth system
research.

In recent studies, two independent satellite remote sens-
ing approaches have been developed to estimate Vcmax at the
global scale. Since the first demonstration of sun-induced
chlorophyll fluorescence (SIF) as a proxy of gross primary
productivity (GPP) at the global scale (Frankenberg et al.,
2011), the use of SIF for global carbon cycle estimation
has been a highly active research field (Mohammed et al.,
2019). He et al. (2019) attempted the first global mapping of
Vcmax from SIF after converting SIF observations into GPP
that is related to Vcmax. A time series of daily Vcmax maps
was derived using SIF measured by the Global Ozone Mon-
itoring Experiment-2 (GOME-2) sensor from 2007 to 2017
at 36 km resolution (see Methods). The second space-based
approach to deriving Vcmax is via leaf chlorophyll content
(LCC). Chlorophyll harvests light that provides energy for
the reactions in the Calvin–Benson–Bassham (CBB) cycle of
photosynthesis, and therefore is likely coordinated with leaf
carboxylation capacity (Vcmax) as plants optimize their pho-
tosynthetic nitrogen resources (Croft et al., 2017). The re-
trieval of LCC from satellite imagery offers the means of re-
liable and accurate LCC estimation over different spatiotem-
poral scales. Data from the medium resolution imaging spec-
trometer (MERIS) in red, near infrared, and red-edge bands
at 300 m resolution at 7 d intervals have been used to pro-
duce a global LCC map series from 2003 to 2012 (Croft et
al., 2020). In a temperate broadleaf forest, it was found that
LCC is better correlated with Vcmax than leaf nitrogen content
(LNC) over a growing season (Croft et al., 2017), and similar
correlations between Vcmax and LCC were established from
empirical data for various PFTs (Luo et al., 2019; Lu et al.,
2020). In this study, we use this new LCC time series with
existing empirical LCC-Vcmax relationships to derive another
independent source of information for global Vcmax assess-
ment.

The Vcmax products derived from SIF and LCC have dif-
ferent strengths and weaknesses. SIF contains strong signals
for Vcmax because it is directly related to the vegetation pho-
tosynthesis rate, but the spatial and temporal resolutions of
existing satellite SIF observations are low. LCC can be de-
rived reliably from multispectral satellite data at much higher
spatial and temporal resolutions than those of SIF. Chloro-
phyll pigments have broad absorption features in the visible
range and also affect the fine positioning of red-edge wave-
lengths. However, the derivation of LCC from remote sens-
ing data is influenced by errors in vegetation structural pa-
rameters used in the derivation. The conversion from LCC to
Vcmax depends on empirical relationships for different PFTs,
which have considerable uncertainties (Luo et al., 2019). In
order to make the best use of available satellite data for map-
ping Vcmax, we combined SIF and LCC data to produce a
single global Vcmax time series. We derived a global Vcmax

time series using SIF data from the TROPical Ozone Mission
(TROPOMI) at 0.1◦ resolution in daily intervals for 2019
with LCC-derived Vcmax as a constraint in the derivation
using a parameter optimization technique (He et al., 2019;
see also Methods). The constraint is made with LCC-derived
Vcmax aggregated to each 0.1◦ grid every 7 d as the initial
value, which is then replaced when good quality TROPOMI
SIF data are available. In this way, the best information
on Vcmax from both SIF and LCC is combined. The com-
bined global Vcmax product is highly correlated with that pro-
duced from LCC (r2

= 0.87,RMSE = 12.04µmol m−2 s−1,
P<0.001), suggesting that much of the LCC information is
transferred to this product by filling in its data gaps.

The global distribution of Vcmax has also been derived
theoretically. Based on a new ecological optimality the-
ory (Wang et al., 2017), Smith et al. (2019) calculated a
global Vcmax map from meteorological variables of radi-
ation, air temperature, and vapor pressure deficit using a
monthly climate dataset (Harris et al., 2014). The theory
proposes that leaves optimize the use of available resources
so that the photosynthetic rate limited by Vcmax equals that
limited by the electron transport to generate ribulose-1,5,-
bisphosphate (RuBP) needed in photosynthesis under aver-
age daytime conditions. In this theory, the electron trans-
port rate is computed from meteorological conditions, and
is independent of soil nutrient and water conditions. Evalua-
tion against 3672 ground observations shows that the model
can capture about 2/3 of the variance in the observed Vcmax

(r2
= 0.66,RMSE = 13.37µmol m−2 s−1, P<0.001), while

the model bias is most significantly correlated to leaf nitro-
gen content among several leaf and soil parameters (Smith et
al., 2019). The validity and reliability of Vcmax information
derived from the theory are yet to be evaluated outside of the
limited amount of ground data.

Here we provide assessment of the reliability of these
products for global ecological and Earth system studies. The
specific objectives of this study are (1) to derive new global
Vcmax products using satellite data; (2) to assess the accu-
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racy of these products against a ground-based dataset; (3) to
mutually assess these products; and (4) to evaluate the Vcmax

product-derived ecological optimality theory using satellite-
derived Vcmax products, as the theory would be useful for
estimating Vcmax in prognostic terrestrial ecosystem models
(TEMs) which are often used in Earth system models.

2 Methods

2.1 Deriving Vcmax from SIF

During photosynthesis, plant leaves dissipate part of the
excess light energy that is not used in photochemistry in
the form of chlorophyll fluorescence (Porcar-Castell et al.,
2014). Under conditions without strong moisture and/or ther-
mal stress, the SIF emission from a leaf increases with its
instantaneous photosynthetic rate (Frankenberg et al., 2011;
Guanter et al., 2014; Sun et al., 2017; Li et al., 2018; Wang
et al., 2020), although SIF signals are small (1 %–5 % of re-
flected radiation at near infrared wavelengths, Colombo et
al., 2016) and contain noise from various sources including
the variations in solar illumination angle and sensor viewing
angle (Dechant et al., 2020). In a plant canopy, sunlit leaves
are the predominant sources of SIF (Pinto et al., 2016). For
the purpose of deriving leaf-level information, the total SIF
measured from a canopy was first separated into sunlit and
shaded leaf components according to sun-target-sensor ob-
servation geometry and canopy architectural parameters. The
observation geometry was determined by satellite and solar
zenith and azimuthal angles. The main canopy architectural
parameters were leaf area index (LAI), which quantifies the
amount of leaf area in the canopy per unit ground surface
area, and the clumping index (CI), which characterizes the
non-random spatial distribution of leaves in the canopy. Both
LAI and CI were used to separate sunlit and shaded leaf frac-
tions in the canopy, and the observation geometry determined
the proportion of sunlit leaves observed by a satellite sensor
(Chen et al., 1999). Leaf reflectance at the SIF wavelength
was used to estimate the strength of multiple scattering of
emitted SIF in the canopy that enhances SIF observed from
sunlit leaves (He et al., 2019). The sunlit SIF component de-
rived in this way was then converted into the average sunlit
leaf photosynthetic rate, from which Vcmax is derived using
a data assimilation technique (He et al., 2019). An ensem-
ble Kalman filer (EnKF) was developed using an ecosystem
model (Chen et al., 2012) and used in the data assimilation
technique to optimize Vcmax based on the difference between
SIF-derived and modeled average sunlit leaf photosynthetic
rates. In the optimization, it was assumed that the error in
modeling the photosynthetic rate was caused by both inaccu-
racy in the initial Vcmax input (constants by PFT or estimated
based on LCC) and the collective errors in other parameters,
including environmental conditions (meteorology and soil)
used in the model. An error matrix was therefore developed
to determine the amount of adjustment to the initial Vcmax

value (He et al., 2019). Optimized Vcmax values often dif-
fered considerably from the initialized values beyond their
error ranges, suggesting that SIF observations provided re-
liable and strong signals for its optimization, even though
other model errors are also present.

The data assimilation methodology was first applied to
GOME-2 SIF data and generated a global daily Vcmax map
series from 2007 to 2017 at 36 km resolution (He et al.,
2019). In this study, this methodology was refined and ap-
plied to TROPOMI SIF data to produce global daily Vcmax

maps in 2019 at 0.1◦ resolution (≈ 10 km). The refinements
included the conversion from SIF to GPP using non-linear re-
lationships (Liu et al., 2022) rather than linear relationships
used in He et al. (2019) and the initialization of Vcmax us-
ing the LCC product (Croft et al., 2020) rather than constant
Vcmax by PFT. Although the Vcmax map series produced using
TROPOMI SIF + LCC data is available for only one year, it
has a much higher spatial resolution than that produced from
GOME-2, and therefore has broader applications in global
ecological research.

2.2 Deriving Vcmax from LCC

LCC is responsible for light harvesting and providing excita-
tion energy to drive photosynthesis in leaves, while Vcmax

defines the capacity of leaves to utilize the excitation en-
ergy for photosynthesis. These two leaf traits are dynami-
cally optimized to local environmental conditions to achieve
an optimal use of nitrogen resources (Xu et al., 2012). LCC
is a relatively stable trait without much day-to-day and di-
urnal variations, while Vcmax is sensitive to temperature.
Empirical data show close relationships between LCC and
Vcmax25 (Houborg et al., 2017; Croft et al., 2017; Lu et
a., 2020), which is Vcmax normalized to its value at 25 ◦C
using a temperature function (Smith et al., 2019, see also
Sect. 2.4 below). A two-step radiative transfer model inver-
sion method was developed for retrieving LCC from multi-
spectral satellite data (Zhang et al., 2008; Croft et al., 2020).
In step 1, the canopy-level reflectance was inverted to leaf-
level reflectance with a lookup table (LUT) constructed us-
ing canopy radiative transfer model for canopies with tur-
bid media (Verhoef, 1984) and a geometrical optical model
for clumped canopies (Chen and Leblanc, 1997, 2001) that
computed observed sunlit leaf fraction according to canopy
structure and sun-target-view geometry. In step 2, the leaf-
level PROSPECT model (Feret et al., 2008) was inverted to
obtain LCC from the inverted multi-spectral leaf reflectance.
This two-step model inversion algorithm avoids issues with
empirical methods that directly link LCC to canopy-level re-
mote sensing data, which lack generality because of vari-
able canopy structure and sun-target-view geometry. The
first time-series of global LCC maps were retrieved using
MERIS data from 2003 to 2011 at 300 m resolution and 7 d
intervals (Croft et al., 2020). A validation using 248 ground
sites in 5 PFTs suggests that this product is reliable (r2

=
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0.5,p<0.01,RMSE = 10.79µg cm−2 or mean error 23 %).
Using empirical relationships between LCC and Vcmax25 for
various PFTs (Luo et al., 2019), this global LCC time series
was converted into Vcmax25.

2.3 Ground-based Vcmax dataset

In this study, we use the same ground-based Vcmax dataset
as that used by Smith et al. (2019). It consisted of 3672 en-
tries for 1474 plant species that are grouped into seven PFTs
in this study. Each entry consisted of Vcmax measured from
one or more leaves with companion data of air temperature,
humidity, incoming PAR, longitude, and latitude. Vcmax was
derived from several pairs of photosynthesis (A) and inter-
cellular CO2 concentration (Ci) (to construct an A/Ci curve)
(56 %) or from a single pair of A and Ci using the method of
De Kauwe et al. (2016) (44 %).

To match with Vcmax maps derived from SIF, LCC, and
EOT, the ground-based data were aggregated in two ways:
(1) the data points of the same PFT as that in the PFT map
(Fig. 4b) used for LCC and SIF processing were grouped
to form an average Vcmax for a grid, while mismatched data
points within the grid were ignored; and (2) all existing data
points within each grid were averaged and labeled as the
dominant PFT. We found that the second way resulted in bet-
ter correlation with all three types of Vcmax maps. After the
aggregation to 0.5◦ resolution, there were 180 data points for
all PFTs used in the final analysis of all Vcmax products.

2.4 Temperature normalization

For the same leaf, Vcmax varies exponentially with leaf tem-
perature, and hence it is more meaningful to compare Vcmax25

between leaves or different estimates. In this study, all global
Vcmax products are derived at the growth temperature. To fa-
cilitate their comparisons with ground databases and their
future use in models, Vcmax is converted to Vcmax25 using a
common temperature function (Eq. 22 in Smith et al., 2019).

3 Results

3.1 Evaluation of four global Vcmax products

The global distributions of the growing season mean Vcmax

obtained from GOME-2 SIF, MERIS LCC, and TROPOMI
SIF are shown in Fig. 1 in comparison with Vcmax calculated
from the ecological optimality theory (EOT) at the growing
season mean temperature. For this comparison, Vcmax25 de-
rived from LCC is converted to Vcmax at the mean growing
temperature. The growing season is defined as the period
when monthly mean air temperature is above 0 ◦C. These
four global Vcmax distributions derived at different spatial
resolutions at 36 km, 300 m, 0.1, and 0.5◦ from GOME-2
SIF, LCC, TROPOMI SIF, and EOT, respectively, and ag-
gregated to 0.5◦ resolution in Fig. 1, are highly correlated

spatially, although their details differ to some extent. The
distribution derived from the optimality theory appears to
be spatially smooth, reflecting the fact that meteorological
variables used for Vcmax prediction do not vary abruptly in
space. The three remote sensing products show mutually-
consistent patchy patterns, suggesting that they have all cap-
tured some realistic variability on the ground associated
with PFT distribution patterns. However, all four products
show remarkable similarities in the overall geographic pat-
terns and mutually well correlated with each other (R2

=

0.76 − 0.90, p<0.001). Among three remote sensing prod-
ucts, SIF-derived products correlate best with the prod-
uct based on the ecological optimality theory (EOT) (r2

=

0.85,RMSE = 11.69µmol m−2 s−1, P<0.001 for GOME-
2; r2

= 0.76,RMSE = 15.77µmol m−2 s−1, P<0.001 for
TROPOMI). We further evaluate these products below.

All four Vcmax products compare well with ground-
based measurements (Fig. 2) after they are aggregated
to the corresponding 0.5◦ grids (see Methods). The
correlation of optimality-based Vcmax with the ground
measurements is similar to that shown in Smith et
al. (2019) (r2

= 0.66,RMSE = 13.37µmol m−2 s−1,
P<0.001), and correlations of other three Vcmax products
with the same ground measurements are similar (r2

=

0.69,RMSE = 13.80µmol m−2 s−1, P<0.001 for GOME-
2; r2

= 0.80,RMSE = 8.99µmol m−2 s−1, P<0.001 for
TROPOMI; r2

= 0.55,RMSE = 18.28µmol m−2 s−1,
P<0.001 for LCC). It is encouraging to see that three of
the four products captured about 2/3 of the variance in the
ground data, despite the large-scale mismatch between the
grids of these products and the ground data points. Some
errors would also be expected from temporal mismatches as
the differences in the years of ground and remote sensing
data acquisitions are not considered (in order to have as
many data points as possible in the comparisons), although
data outside of the growing season are excluded. While
Vcmax for individual leaves may vary greatly among plant
species within the same functional type and with environ-
mental conditions over the landscape, their locally averaged
values would be expected to display a consistent spatial
pattern at large scales that are determined more or less by
meteorological conditions – permitting the success of the
optimality theory for predicting Vcmax based on meteoro-
logical variables alone. Coarse-resolution remote sensing
data, such as GOME-2 SIF data at 36 km resolution and
TROPOMI at 0.1◦ resolution, can also capture the spatial
variability in Vcmax at large scales.

The correlation statistics of the four products shown in
Fig. 2 with the ground database by plant function type are
given in Table 1. Forest PFTs of ENF, DNF, and DBF are
combined in order to have a sufficient number of data points
for the statistical analysis. Correlations for most PFTs are
highly significant for all products (p<0.001), but for forest
PFTs and SHR, the correlations are weak for most prod-
ucts except for TROPOMI. The TROPOMI Vcmax prod-

Earth Syst. Sci. Data, 14, 4077–4093, 2022 https://doi.org/10.5194/essd-14-4077-2022
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Figure 1. Global distributions of Vcmax Tg at the mean growing season temperature derived using (a) GOME-2 SIF (2007–2011), (b)

TROPOMI SIF+LCC (2019) constrained by leaf chlorophyll content (LCC), (c) LCC (2017), and (d) ecological optimality theory (1901–
2015). White areas are missing data.

Table 1. Correlations by plant function type between Vcmax at growing season mean temperature (Tg) in four products (GOME-2 SIF,
TROPOMI SIF, LCC, and EOT) and a ground database with 3672 individual data points aggregated to 180 grids of 0.5◦ resolution. ENF
signifies evergreen needleleaf forest, DNF deciduous needleleaf forest, DBF deciduous broadleaf forest, EBF evergreen broadleaf forest,
GRS grassland, CRP cropland, SHR shrub, and RMSE root mean square error.

Product r2, p and RMSE ENF, DNF, DBF EBF GRS CRP SHR ALL
(µmol m−2 s−1) (n = 44) (n = 58) (n = 40) (n = 39) (n = 6) (n = 187)

GOME-2
r2 0.15 0.35 0.83 0.27 0.32 0.69
RMSE 8.26 15.73 17.37 11.41 13.58 13.80
p <0.01 <0.001 <0.001 <0.001 0.25 <0.001

TROPOMI
r2 0.31 0.66 0.85 0.65 0.90 0.80
RMSE 5.57 9.55 13.32 5.50 5.55 8.99
p <0.001 <0.001 <0.001 <0.001 <0.01 <0.001

LCC
r2 0.01 0.18 0.77 0.30 0.76 0.55
RMSE 8.4 25.47 21.06 9.14 11.35 18.28
p 0.54 <0.001 <0.001 <0.001 <0.05 <0.001

EOT
r2 0.10 0.34 0.85 0.38 0.22 0.66
RMSE 7.70 19.57 11.78 7.42 12.42 13.37
p 0.042 <0.001 <0.001 <0.001 0.35 0.001

https://doi.org/10.5194/essd-14-4077-2022 Earth Syst. Sci. Data, 14, 4077–4093, 2022
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Figure 2. Comparisons of Vcmax at growing season mean temperature (Tg) derived from GOME-2 SIF, TROPOMI SIF+LCC, LCC, and
optimality theory (EOT) against a ground database with 3672 individual data points aggregated to 180 grids of 0.5◦ resolution. The root
mean square error (RMSE) is in unit of µmol m−2 s−1.

uct (https://doi.org/10.5281/zenodo.6466968) compares best
with the ground database in terms of the Pearson correla-
tion coefficient (r2), RMSE, and the p value from two-tailed
paired t tests, suggesting that the combination of SIF and
LCC information is effective in capturing the spatial variabil-
ity of Vcmax for the various PFTs. It is therefore most ready
for global ecological studies among the four products.

The Vcmax values derived independently from GOME-2
SIF and MERIS LCC at the mean growing season tempera-
ture are well correlated overall (r2

= 0.79) and for individual
PFTs (r2

= 0.77−0.88) except for EBF (r2
= 0.26) (Fig. 3).

These high correlations suggest that the signals contained in
both SIF and multi-spectral reflectance data used for LCC
retrieval are strong and useful for deriving Vcmax. This is par-
ticularly encouraging because both types of remote sensing
data are increasingly available with existing and forthcom-
ing satellite sensors providing improved SIF (Mohammed et
al., 2019) and multi-spectral data (such as the Sentinel sen-
sor series, https://sentinel.esa.int/web/, last access: 31 Au-
gust 2022). The differences between these two independent
retrievals of Vcmax are still considerable, especially for EBF
in the tropics due to frequent cloud cover, and there is room
for improvement not only in the retrieval algorithms but also
in providing improved SIF and spectral data at higher spatial

and temporal resolutions. Much more ground-based data of
Vcmax, LCC, and associated structural parameters (leaf area
index and clumping index) are still needed for refining and
validating the retrieved Vcmax. However, these existing prod-
ucts are already a large step forward from the current state
of the art and can be employed immediately for parameteriz-
ing and benchmarking TEMs. In other words, these products
may have already overcome the Vcmax bottleneck in accu-
rate modeling of the spatio-temporal patterns of the terres-
trial productivity and carbon cycle.

3.2 Influence of environmental factors on Vcmax

Vcmax values derived from all three remote sensing
products shown in Fig. 1 are most obviously larger
than those produced by EOT over croplands and grass-
lands in the Americas, India, and China. Cropland and
grassland management, including fertilization and irri-
gation, may explain part of this divergence. To explore
the possible influences of cropland and grassland ir-
rigation on Vcmax, we used a global irrigation map
(https://www.fao.org/aquastat/en/geospatial-information/
global-maps-irrigated-areas/latest-version/, last access:
31 August 2022) at 0.5◦ resolution to compare with the
relative difference (1Vcmax) between TROPOMI SIF+LCC

Earth Syst. Sci. Data, 14, 4077–4093, 2022 https://doi.org/10.5194/essd-14-4077-2022
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Figure 3. Comparisons of SIF-derived and LCC-derived Vcmax values for a group of three PFTs and four individual PFTs, and all PFTs
combined. These two sets of Vcmax derived independently using two different remote sensing techniques are very well correlated for all PFTs
except for the evergreen broadleaf forests (EBFs) in tropical areas where frequent clouds degrade the quality of both SIF and LCC datasets.

Vcmax and EOT-based Vcmax, i.e., (TROPOMI-EOT)/EOT
(Fig. 4). Globally, 1Vcmax increases with irrigated area per-
centage. The regression coefficient (R) between the actual
values of percent irrigated area and 1Vcmax for the areas
of irrigation greater than 5 % at the global scale is +0.32
(p<0.01) and +0.3 (p<0.01) for croplands and grasslands,
respectively. In some regions, including China, India, and
the Middle East, the correlation coefficient is considerably
higher (0.25 − 0.5,p<0.001). Irrigation in cropland and
grassland would reduce water stress and increase leaf photo-
synthetic capacity (Reed and Loik, 2016; Chen et al., 2019;
Song et al., 2021), giving rise to the positive correlation
between 1Vcmax and percent of irrigation area in a pixel. For
crops, fertilization would generally co-occur with irrigation
(Sela, 2021), so this positive correlation could also include
the effect of fertilization on Vcmax.

Soil properties may also influence Vcmax (Reich et al.,
2007, Maire et al., 2015; Ali et al., 2015, Smith and Dukes,
2018). Among soil properties available in the global Soil-
Grids database (Hengl et al., 2017), we found that soil pH
best correlates with 1Vcmax. Soil pH is spatially variable
(Fig. 5a), and we found that 1Vcmax is positively and sig-
nificantly correlated to soil pH in most regions, with 40.3 %
(11 163 out of 27 681 pixels) of cropland and grassland ar-
eas having r>0.1 and p<0.1 (Fig. 5). Similar statistics are
found for other PFTs, suggesting that soil pH has similar ef-
fects on Vcmax across PFTs. However, 1Vcmax is not signif-
icantly correlated with other soil properties, including soil

carbon content, nitrogen content, and cation exchange ca-
pacity. Soil pH is a key control on soil biochemical reac-
tions affecting nutrient uptake (Hall et al., 1998; Gentili et
al., 2018), and has an optimum range for plant growth from
5.5 to 7.5 (Islam, 1980). As soil pH varies in a wide range (4
to 8, Fig. 5), its effect on Vcmax is therefore detectable from
remote sensing signals. Plants on acidic soils tend to have
higher ratios of leaf-internal to ambient CO2 (Wang et al.,
2017; Dong et al., 2020; Pailassa et al. 2020), and therefore
would be expected to have lower Vcmax. These results suggest
that Vcmax derived from SIF has captured much of the spa-
tial variability in Vcmax due to irrigation and soil properties
that are not captured by optimality theory. Remote sensing
products can therefore provide more nuanced information on
plant responses to non-meteorological environmental drivers,
and can therefore provide more accurate Vcmax estimates and
additional information on its spatial variability.

In addition to soil properties, leaf traits are expected to
be more directly related to Vcmax. We use LCC, which con-
tains part of the leaf photosynthetic nitrogen pool (Xu et
al., 2012), as an indicator of the effect of leaf traits on
Vcmax. We found that 1Vcmax is significantly and posi-
tively correlated to LCC for individual PFTs (r2

= 0.0004 −

0.35,P<0.001 for TROPOMI) and for all PFTs combined
(r2

= 0.25,P<0.001) (Fig. 6). Similarly, the relative dif-
ference in EOT-derived Vcmax and ground measurements is
also significantly correlated with leaf nitrogen content (r2

=

0.21,P<0.001, Fig. 7), in agreement with the finding of
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Figure 4. The influence of irrigation on Vcmax over cropland and grassland, detected by TROPOMI SIF+LCC at 0.5◦ resolution, where (a)

is the actual area irrigated in percent of cell area (aai pct cell area) in recent decades, (b) the relative difference in Vcmax (1Vcmax) between
TROPOMI and ecological optimality theory (EOT), i.e., 1Vcmax =(TROPOMI-EOT)/EOT, (c) the correlation coefficient (r) between actual
irrigated area percentage and 1Vcmax within sliding windows of 10×10 pixels, and (d) the histograms of r and R2 values in (c) for cropland
and grassland. 1Vcmax is significantly correlated with percent area irrigated in both cropland (r = 0.32, p<0.001) and grassland (r = 0.30,
p<0.001) at the global scale.

Smith et al. (2019). These positive relationships suggest that
LCC as a proxy of the photosynthetic nitrogen content in
leaves can explain part of the spatial variability in Vcmax due
to the variations in environmental conditions that are not cap-
tured by the optimality theory. The added information from
LCC due to plants’ optimal allocation of nutrient resources
would be useful to improve optimality-based modeling of
Vcmax.

The global distribution patterns of growing season Vcmax

shown by the four products (Fig. 1) have common latitudi-
nal gradients, i.e., Vcmax is generally largest near the Equator
and decreases away from the Equator. This latitudinal depen-
dence is simulated in EOT through considering radiation, i.e.,
stronger radiation leading to larger Vcmax. This influence of
radiation on Vcmax is well captured by the three remote sens-
ing products. According to analyses of the leaf economics
spectrum (Wright et al., 2004; Sack et al., 2013; Osnas et al.,
2013; Reich, 2014), leaf photosynthetic capacity increases
with mean annual rainfall, and therefore Vcmax in dry areas
is expected to be smaller than that in wet areas. However,
several semi-arid regions, such as India, the Middle East,

Southeast Brazil, and areas near the southern border of the
Sahara desert, have large Vcmax values. We found that these
are mostly irrigated agricultural areas (Fig. 4), and the high
Vcmax values there are due to crop management and are not in
contradiction to existing leaf economics spectrum data. The
Vcmax distribution pattern in Australia is compatible with the
rainfall distribution, i.e., the lowest Vcmax is found in central
Australia where rainfall is lowest and the highest Vcmax is
located in northern Australia where rainfall is largest. The
EOT product can also capture this pattern to some extent
through meteorological variables (e.g., radiation and temper-
ature). There are many spatial details in these Vcmax products
that are of great interest to leaf economic studies.

3.3 Global mean values of Vcmax for different biomes

We compared the mean Vcmax values of the TROPOMI
SIF+LCC product, denoted by Vcmax Tg , representing the
three remote sensing products, and the EOT product over the
growing season grouped by PFT with ground-based datasets
at the mean growth temperature and at 25 ◦C after tem-
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Figure 5. Soil pH has significant influence on Vcmax detected by TROPOMI SIF+LCC at 0.5◦ resolution. (a) Soil pH in the top 0–5 cm
layer, (b) relative difference in Vcmax (1Vcmax) between TROPOMI and ecological optimality theory (EOT), i.e., 1Vcmax = (TROPOMI-
EOT)/EOT, (c) correlation coefficient (r) between soil pH and 1Vcmax within sliding windows of 10 × 10 pixels, (d) PFT distribution, (e)

summary of mean correlation coefficient r and R2 values in (c) by PFTs, and (f) histograms of r and R2 values in (c) for grassland (GRS)
and cropland (CRP). In 40.3 % of GRS and CRP pixels, 1Vcmax is positively and significantly (p<0.1) correlated with soil pH.

perature normalization using the same scheme of Smith et
al. (2019) (Table 2). The agreement between TROPOMI and
EOT is best for EBF, DBF, SHR, and GRS, for which the
difference between the two products is smaller than their
mean standard deviation. For ENF, DNF, and CRP, the differ-
ence between the two products exceeded their mean standard
deviation. TROPOMI Vcmax Tg is also considerably smaller
than the ground datasets because of the large contributions
of high-latitude conifer forests with low Vcmax Tg that are
underrepresented in the ground datasets (Fig. 8). Since the

TROPOMI Vcmax Tg product compares well with the ground
database (Fig. 1 and Table 1) and has complete coverage for
each PFT, it provides more reliable global averages than the
ground database shown in Table 2. Ground data for DNF
are too few (Fig. 8) to make sound evaluation for this PFT.
TROPOMI Vcmax Tg is considerably larger than EOT Vcmax Tg

for CRP, and GRS to a less extent, mostly because of the
positive impact of irrigation on Vcmax Tg as demonstrated in
Fig. 4. Although the same temperature function is used in
the normalization for all products, the relative changes from
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Figure 6. The relative difference in Vcmax Tg (1Vcmax) between TROPOMI and ecological optimality theory (EOT), i.e., 1Vcmax =

(TROPOMI-EOT)/EOT, is significantly correlated to leaf chlorophyll content (LCC) as a proxy of the leaf nutrient condition. All PFTs
are included. The correlation is statistically highly significant with p<0.001 for individual PFTs and for all PFTs combined.

Figure 7. Influence of leaf nitrogen content on the relative difference between Vcmax Tg values measured at ground sites and derived from an
ecological optimality theory (EOT) using the available database (Smith et al., 2019). The influence is highly significant for all plant functional
types (i.e., p<0.001). The slopes of the regressions of the relative difference in Vcmax against LCC or ground leaf nitrogen data are similar,
in agreement with the global modeling results that levels of nutrient limitation to plant growth are similar among different PFTs (Fisher et
al., 2012).

Vcmax Tg to Vcmax25 for the various PFTs differed slightly
among the four global products (Table 2) as the differences
in Vcmax Tg among the products vary spatially with different
growth temperatures, creating different weights in the calcu-
lation of the global averages of Vcmax25.

In addition to the TROPOMI Vcmax product, the other two
remote sensing products are also compared in Fig. 9. The
magnitude of Vcmax25 in the TROPOMI product is generally
in between those from GOME-2 SIF and LCC for the vari-
ous PFTs (Fig. 9a) because it uses information of LCC which
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Table 2. Mean and standard deviation (SD) of Vcmax at the growing temperature (Vcmax Tg ) and normalized to 25 ◦C (Vcmax25) for different
plant functional types (PFTs) calculated from the TROPOMI and ecological optimality theory (EOT) products in comparison with two
ground-based databases (Smith et al., 2019; Kattge et al., 2009).

TROPOMI EOT Smith 2019 Kattge 2009

PFT (µmol m−2 s−1) Mean SD Mean SD Mean SD Mean SD

ENF
Vcmax25 32.36 12.51 60.66 7.19 53.70 26.95 62.50 24.70
Vcmax Tg 7.31 3.62 13.68 2.97 17.43 11.13 – –

EBF
Vcmax25 46.89 13.02 54.55 6.79 45.83 23.27 43.80 16.83
Vcmax Tg 44.22 15.98 50.88 12.19 37.12 23.59 – –

DNF
Vcmax25 44.38 8.93 60.50 5.05 44.82 23.34 39.10 11.70
Vcmax Tg 10.95 2.58 14.93 2.09 11.59 6.28 – –

DBF
Vcmax25 44.42 16.42 59.60 6.31 51.31 25.06 57.70 21.20
Vcmax Tg 18.12 17.07 22.68 15.68 24.31 20.72 – –

SHR
Vcmax25 53.30 13.60 61.37 7.55 50.63 27.75 57.85 19.55
Vcmax Tg 13.21 11.24 15.76 14.54 31.88 27.80 – –

GRS
Vcmax25 74.74 22.76 69.45 12.37 82.70 47.86 78.20 31.10
Vcmax Tg 49.30 40.10 41.42 27.85 21.65 18.25 – –

CRP
Vcmax25 87.57 17.42 62.12 9.59 90.21 32.13 100.70 36.60
Vcmax Tg 54.83 37.14 39.63 26.72 42.11 22.64 – –

Figure 8. Distribution of ground sites of the database of Smith et al. (2019) after aggregation to 0.5 grids for the different plant functional
types.

tends to be converted to lower values of Vcmax using existing
empirical relationships. For forest PFTs, both Vcmax25 and
Vcmax Tg of the EOT product is generally larger than those of
remote sensing products. This is likely due to the fact that
EOT considers only meteorological variables while soil nu-
trients and other variables could impose limitations on plant
growth and hence leaf traits, while remote sensing techniques

could be responsive to these soil effects on plants. For the
same reason, Vcmax25 and Vcmax Tg values of the EOT product
for CRP are smaller than those of remote sensing products
because crop irrigation and soil pH could have positive ef-
fects on leaf Vcmax that are captured by the remote sensing
products but not by EOT (Figs. 3 and 4). The mean values
of Vcmax25 and Vcmax Tg from the ground databases (Smith et
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Figure 9. Mean and standard deviation of Vcmax Tg at growth temperature and Vcmax25 (normalized to 25 ◦C) derived from GOME-2 SIF,
TROPOMI SIF+LCC, LCC, and ecological optimality theory (EOT) in comparison with two ground databases (Smith, 2019; Kattge, 2009)
for the main PFTs at growth temperature. Kattge (2009) contains more Vcmax25 than Vcmax Tg , so only Vcmax25 is included in (a). The EOT
product has considerably smaller Vcmax Tg in grassland (GRS) and crops (CRP) than the three remote sensing products. All four products
have considerably higher Vcmax Tg than the ground site measurements in grassland mostly because the number of site measurements are
too small to be representative of the global average. After the temperature normalization, the differences among the products become much
smaller.

al., 2019; Kattge et al., 2009) are given in Fig. 9 for com-
parison purposes, but they do not represent the true global
averages for the various PFTs because of their limited spatial
distributions (Fig. 8 for Smith et al., 2019). We therefore do
not yet have true ground averages to determine which prod-
uct provides the most reliable global averages for the vari-
ous PFTs. However, based on the point-to-point comparisons
(Fig. 1 and Table 1), we believe that the TROPOMI product
is most reliable in providing the global averages of Vcmax25

and Vcmax Tg for the various PFTs.

4 Discussion

The Vcmax datasets derived from SIF and LCC represent the
in situ leaf-level Vcmax that is the collective outcome of me-
teorological conditions and other environmental properties.
These datasets can therefore be used directly in TEMs with-
out further adjustment. The TRY database (Kattge et al.,
2009) contains both Vcmax normalized to 25 ◦C (Vcmax25) and
total LNC, and they are well correlated. Empirical studies
have also shown this correlation (Ryan, 1995; Medlyn et al.,
1999; Walker et al., 2017; Prentice et al., 2014). LNC has
therefore been used to adjust Vcmax25 within the same PFT
in some TEMs. However, such an adjustment can only re-
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cover part of the spatio-temporal variability in Vcmax25 be-
cause only a small part of LNC is closely linked to carboxy-
lation capacity. LNC can be separated into four components:
photosynthetic, structural, storage, and respiratory nitrogen
pools (Xu et al., 2012; Ali et al., 2016). The photosynthetic
nitrogen pool can be further divided into sub-pools for light
harvesting, electronic transport, and carboxylation, and its
fraction to the total LNC is variable depending on meteo-
rological and soil conditions and possibly also atmospheric
CO2 concentration (Ali et al., 2016). For fully grown leaves
in balance with environmental conditions, these sub-pools
are naturally optimized so that the investment of resources
in light-harvesting optimally satisfies the need for electron
transport or carboxylation (Xu et al., 2012). In other words,
photosynthetic sub-pools are highly correlated, giving rise
to the experimental evidence that LCC containing the light-
harvesting nitrogen is highly correlated to Vcmax and Jmax

(Croft et al., 2017). The daunting and complex task of map-
ping the spatio-temporal distributions of leaf photosynthetic
capacity could therefore be accomplished by mapping LCC
that contains nitrogen in balance with carboxylation nitro-
gen in Rubisco, and multispectral or hyperspectral remote
sensing data that are highly sensitive to light absorption by
the chlorophyll pigments would be a reliable way to obtain
such highly desirable information. The LCC product shown
in this study could therefore be used in conjunction with
Vcmax products derived from SIF and optimality theory to pa-
rameterize Vcmax models with consideration of the nitrogen
cycle.

Our remote sensing algorithms derive Vcmax from SIF and
LCC from multi-spectral data from sunlit leaves after consid-
ering the sun-target-view geometry (He et al., 2019; Croft et
al., 2020), and hence the remote sensing Vcmax products rep-
resent sunlit leaves observed by the sensors. The observed
sunlit leaves are mostly located near the top of the canopy,
and hence these Vcmax products could be considered to rep-
resent the average condition of leaves near the top of the
canopy. In applying a Vcmax value to a canopy, it would
be necessary to consider the vertical variation of Vcmax in
the canopy. A mathematical scheme to integrate the verti-
cal variation for average sunlit and shaded leaves at different
LAI values and solar zenith angles is available from Chen et
al. (2012).

The growing season mean Vcmax products are available at
https://doi.org/10.5281/zenodo.6466968, but seasonal varia-
tion of Vcmax is not yet ready for distribution. Reliable sea-
sonal variation of Vcmax is not yet produced at the global
scale due to several reasons: (1) SIF data are often not re-
liable over non-growing seasons and near the beginning and
end of the growing season; (2) LCC derivation is consider-
ably affected by the inaccuracy in the input LAI data outside
of the growing season, and near the beginning and end of the
growing season the separation of LCC and LAI signals in
remote sensing data is still an issue; (3) the ecological opti-
mality theory that provides the basis for evaluating remote

sensing Vcmax products can so far be used for calculating
growing season mean Vcmax and is not yet ready for calcu-
lating its seasonal variation; and (4) few ground-based data
with seasonal variation of Vcmax are available for validation.
While efforts are being made to overcome these issues, it will
take a while to accumulate sufficient ground-based datasets
and to improve remote sensing algorithms and the optimal-
ity theory before reliable seasonal variation of Vcmax can be
derived at the global scale.

5 Code and data availability

The Vcmax datasets presented in this paper are available at
https://doi.org/10.5281/zenodo.6466968 (Chen et al., 2022).
It includes the following three global 0.5 ◦ Vcmax datasets at
growth temperature:

1. Vcmax from GOME-2 SIF:
GOME2_Vcmax_Tg_05deg.tif

2. Vcmax from TROPOMI SIF+LCC: TROPOMI_Vmax_
Tg_ mean.mat

3. Vcmax from global leaf chlorophyll content map (Croft
et al., 2020, RSE): LCC_Vcmax_Tg_mean.mat.

The geographic reference is the same for all three datasets,
conforming to that in the geotiff file.

For any questions on the dataset, please contact
Jing M. Chen, jing.chen@utoronto.ca.

The functions written in R for calculating Vcmax using the
ecological optimality theory are available at https://github.
com/SmithEcophysLab/optimal_vcmax_R (Smith et al.,
2019) and https://doi.org/10.5281/zenodo.5899564 (Smith et
al., 2022).

6 Conclusions

The two RSVcmax products used in this research were derived
independently from separate satellite observations of SIF and
LCC, and yet show close agreement in their magnitudes and
spatial patterns of modeled Vcmax. These remotely sensed
Vcmax products (https://doi.org/10.5281/zenodo.6466968)
also closely agree in large-scale spatial patterns with those
calculated from the ecological optimality theory using me-
teorological variables, providing support for the use of the
theory for prognostic modeling of terrestrial ecosystem func-
tion under future climate scenarios. However, the optimality-
based Vcmax product does not show the local-scale spatial
distribution patterns that are consistently found in all three
remote sensing products because of patchy land cover distri-
butions, implying that meteorological variables alone do not
capture all spatial variability. Importantly, the relative differ-
ence in Vcmax (1Vcmax) between SIF and optimality-based
products is found to be significantly correlated to the fraction
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of irrigation area in a pixel, soil pH, and leaf nitrogen con-
tent, highlighting the impacts of environmental conditions on
Vcmax that are not captured within optimality theory. From
these results, we conclude: (1) the remote sensing products
shown in this study have reliably captured the spatial vari-
ability in Vcmax and therefore are directly useful for diagnos-
tic ecological modeling at the global scale; and (2) in com-
parison to the optimality-based product, the remote sensing
products provide additional information on how Vcmax varies
according to local environmental conditions, which is useful
for prognostic modeling purposes. Furthermore, understand-
ing the dynamic in situ response of plant photosynthetic ca-
pacity to soil water and nutrient availability, independent of
meteorological drivers, is important to monitoring plant pho-
tosynthetic potential. The LCC product shown in this study
could be used in conjunction with Vcmax products derived
from SIF and optimality theory to parameterize Vcmax models
with consideration of the nitrogen cycle. This work demon-
strates the power of global-scale satellite-based and ecolog-
ical optimality approaches to reveal crucial spatial informa-
tion on Vcmax, thereby removing a barrier in global ecological
and Earth system research.
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