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Abstract
Forests contribute to climate change mitigation through carbon storage and uptake, 
but the extent to which this carbon pool varies in space and time is still poorly known. 
Several Earth Observation missions have been specifically designed to address this 
issue, for example, NASA's GEDI, NASA- ISRO's NISAR and ESA's BIOMASS. Yet, all 
these missions' products require independent and consistent validation. A permanent, 
global, in situ, site- based forest biomass reference measurement system relying on 
ground data of the highest possible quality is therefore needed. Here, we have assem-
bled a list of almost 200 high- quality sites through an in- depth review of the literature 
and expert knowledge. In this study, we explore how representative these sites are in 
terms of their coverage of environmental conditions, geographical space and biomass- 
related forest structure, compared to those experienced by forests worldwide. This 
work also aims at identifying which sites are the most representative, and where to 
invest to improve the representativeness of the proposed system. We show that the 
environmental coverage of the system does not seem to improve after at least the 
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1  |  INTRODUC TION

Plants store about 80% of the Earth's biomass carbon (Bar- On 
et al., 2018), with forests constituting by far the largest plant car-
bon pool (ca. 80%; Pan et al., 2013). However, estimates of the spa-
tial distribution and temporal variation of this carbon pool are still 
imprecise (Harris et al., 2021; Santoro et al., 2021). While forests 
are vulnerable to global change (Brienen et al., 2020; McDowell 
et al., 2020; Schimel et al., 2015), they currently provide a carbon 
sink (e.g. Pan et al., 2011; van Marle et al., 2022) and could contrib-
ute further to mitigating climate change given the large potential 
of intact and regenerating forests for carbon uptake and storage 
(Chazdon et al., 2016; Requena Suarez et al., 2019). Understanding 
the nature and distribution of forest carbon fluxes due to land use 
change and other processes depends critically on mapping the 
current distribution of vegetation biomass. Moreover, a key factor 
in projecting how and where forest regeneration or restoration 
projects would be most effective is detailed, spatially explicit 
knowledge of local biomass storage potential (see e.g. Heinrich 
et al., 2021).

The remote sensing community has made substantial invest-
ments to address the global challenge of mapping forest carbon 
stores, fluxes and their sequestration potential. Several ongoing 
and upcoming Earth Observation (EO) missions are designed to 
measure key structural parameters of the world's forests, their 
carbon stores and their carbon fluxes, for example, NASA's GEDI 
(Dubayah et al., 2020), NASA- ISRO's NISAR (NISAR, 2018) and 
ESA's BIOMASS (Quegan et al., 2019). Each is expected to deliver 
biomass maps with associated uncertainty. Their coverage, spatial 
resolution and range depend on mission specifications (e.g. cover-
age of Earth's surface between 51.6° N and 51.6° S for GEDI, bio-
mass up to 100 Mg/ha for NISAR). Although these missions offer 
novel approaches to mapping forest carbon, their products re-
quire validation using standard procedures to bolster their uptake 

for a broad range of uses, including climate modelling, national re-
porting and land use management (Duncanson et al., 2019). Only 
if the accuracy and uncertainty of biomass maps are comprehen-
sively assessed and quantified will they meet the needs of the user 
communities.

How should this be done? We argue that given the wide range 
of users, instrument sensors, platforms, often limited lifetimes 
and pace of technological change, validation strategies need a 
clear long- term ground vision. This means developing a consis-
tent approach that covers the world's forests and is built to last. 
It requires designing and maintaining a permanent, global, in situ, 
site- based forest biomass reference measurement (henceforth, 
FBRM) system to enable independent validation of biomass prod-
ucts and proper quantification of associated uncertainty. Building 
and sustaining this high- quality distributed system of FBRM sites 
needs to be an integral part of all EO missions aimed at mapping 
forest biomass.

In compliance with the good practices protocol for the vali-
dation of aboveground woody biomass products (Duncanson 
et al., 2021), the design of the FBRM system needs to follow a 
number of principles: (1) ground data should be of the highest pos-
sible quality, with large permanent sampling plots (at least 1 ha 
in size, 10 ha minimum in total), and airborne LiDAR coverage (at 
least 1000 ha) plus complementary terrestrial LiDAR acquisitions. 
The procedures for data acquisition and database compilation 
should be standardized by following established protocols, and 
all data should be collected as synchronously as possible with EO 
measurements; (2) the system should cover the broadest possible 
range of environmental, geographical and structural conditions, so 
as to maximize the robustness of validation activities; (3) the selec-
tion of sites should be pragmatic, that is, focusing on sites where 
previous expertise and capacity have been built and future oper-
ation is highly likely. Establishing and maintaining multiple, high- 
quality permanent plots is challenging, especially in the tropics 

R1\180100; Russian Science Foundation, 
Grant/Award Number: 19- 77- 30015 175 most representative sites are included, but geographical and structural coverages 

continue to improve as more sites are added. We highlight the areas of poor environ-
mental, geographical, or structural coverage, including, but not limited to, Canada, 
the western half of the USA, Mexico, Patagonia, Angola, Zambia, eastern Russia, and 
tropical and subtropical highlands (e.g. in Colombia, the Himalayas, Borneo, Papua). 
For the proposed system to succeed, we stress that (1) data must be collected and 
processed applying the same standards across all countries and continents; (2) system 
establishment and management must be inclusive and equitable, with careful consid-
eration of working conditions; and (3) training and site partner involvement in down-
stream activities should be mandatory.

K E Y W O R D S
aboveground biomass, carbon, Earth Observation, forest vegetation, permanent plots, 
representativeness, validation
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    |  829LABRIÈRE et al.

(Davies et al., 2021; ForestPlots.net et al., 2021). Therefore, it is 
strategically sensible while building a potential FBRM system to 
leverage the experience, knowledge and investment of all stake-
holders engaged in long- term permanent plot networks, from data 
originators (e.g. forest workers) to data curators. And for any such 
system to be fair and sustainable, the needs of data contributors 
should be of pivotal concern (de Lima et al., 2022).

Previous experience with the validation of EO products demon-
strates the value of highly integrated FBRM sites compared to 
widely distributed small forest samples as established by most na-
tional forest inventories. This is because validation of EO- derived 
biomass maps depends strongly on accurate spatial registration of 
the ground plots, and because biomass estimates from individual 
plots are informative for calibration/validation only if the plots are 
large enough (Réjou- Méchain et al., 2014). All the aforementioned 
conditions for the inclusion of sites in a global monitoring system 
are difficult to meet, and for the moment, validation efforts for each 
individual EO mission have been based on a handful of sites.

How many observation sites would be necessary for global 
validation of biomass maps, and where should they be located? 
From a validation perspective, these sites should ideally span a 
wide range of biomass, and should encompass a variety of forest 
structures for any given level of biomass. But from an ecological 
point of view, the sites should cover an extensive range of bio-
climatic and biogeographic conditions, as well as contrasting to-
pographies, soil types and geological substrates, and be exposed 
to varying levels and types of anthropogenic pressures or natural 
disturbances. Given the enormous extent and diversity of for-
ests globally, the replication of high- quality observation sites at 
thousands of locations is unrealistic, so the theoretical challenge 
in allocating limited resources to locations involves maximizing 
their distance from each other along key dimensions, to ensure an 
optimized coverage of conditions experienced by forests around 
the world. However, because these sites should ideally already be 
established (Chave et al., 2019), the problem of site selection is 
constrained by what is available. Here, we have assembled a list 
of almost 200 potential FBRM sites through an in- depth review 
of the literature and expert knowledge. The aim of this study is 
to evaluate how representative these sites are in terms of their 
coverage of three key biomass- related dimensions, that is, envi-
ronmental, geographical and structural, in the context of forests 
worldwide.

Specifically, we ask the following research questions: (1) how 
well does a selection of existing forest sites represent environmen-
tal conditions, geographical space and forest structure globally?; 
(2) which combination of sites best represents each of the three 
biomass- related dimensions over global forested areas, for any given 
number of sites?; (3) how does a combination of potential FBRM sites 
compare in terms of representativeness with an equivalent number 
of forested locations randomly selected over the globe?; (4) where 
should efforts be invested to improve the environmental, geograph-
ical and structural coverage of the proposed FBRM system, possibly 
going beyond existing plots?

2  |  MATERIAL S AND METHODS

2.1  |  Potential FBRM sites

We assembled a list of sites meeting all or most of the quality criteria 
required to become part of the FBRM system (e.g. plot size, likeliness 
to be revisited). We screened the following continental to global- scale 
forest plot networks for potential sites of interest: AfriTRON (Hubau 
et al., 2020), ForestGEO (Davies et al., 2021), IIASA (Schepaschenko 
et al., 2017), NEON (Metzger et al., 2019), RAINFOR (ForestPlots.
net et al., 2021), SEOSAW (The SEOSAW Partnership, 2020), TERN 
(Cleverly et al., 2019) and TmFO (Sist et al., 2015). Peer- reviewed 
and grey literature were also searched, and expert knowledge mo-
bilized through consultation with key stakeholders, such as EO mis-
sion research scientists, space agencies and national forest/forestry 
departments. We tried to be as thorough and exhaustive as possible 
but some high- quality plots and networks might have escaped our 
notice and readers are encouraged to contact the corresponding au-
thor to notify us of this.

The screening resulted in a list of 195 potential FBRM sites 
(Table S1). Among these, plot cumulative area ranged from 0.5 ha 
for several of the Siberian sites to 125 ha at Paracou, French 
Guiana. About two- thirds of the sites had a plot cumulative area 
≥10 ha (n = 132), with about half of those that did not located in the 
Palearctic (n = 30). Potential FBRM sites were present in every for-
ested biome, sensu Whittaker (1975), yet the coverage of annual pre-
cipitation and mean temperature gradients was uneven (Figure S1). 
About three- quarters were affiliated to (at least) one of the eight 
large- scale networks. The rest were usually monitored by research 
institutes, universities, or national forest/forestry departments.

We use the terminology of ‘potential’ FBRM sites, mindful that 
this list is likely to change in the future for various reasons. One is 
that most of the sites have not formally agreed to join the proposed 
system of FBRM sites (and many have probably not heard about the 
concept yet). Plus, some sites may in the end prove unsuitable, and 
others may join the initiative. However, the fairly large sample of 
sites represented in the list reported here is a useful step to test this 
study's research questions.

2.2  |  Geographical information and study area

All spatial data were reprojected using a global equal- area map pro-
jection to reflect the respective and relative area contributions of 
realms and continents. EASE- Grid 2.0 (epsg:6933), version 2 of the 
Equal- Area Scalable Earth Grid (Brodzik et al., 2012), is commonly 
used for satellite- based data distribution (see e.g. GEDI; Dubayah 
et al., 2021). This projection is preferable to the longitude– latitude 
coordinate reference system (epsg:4326), that is neither equal area 
nor conformal. The coarsest spatial resolution of all spatial datasets 
used in this study (2.5 arc- min, which is about 5 km at the equator, 
for the TerraClimate dataset; Abatzoglou et al., 2018) was chosen, 
and all datasets were resampled accordingly. Following reprojection 
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and resampling, gridded data were generated over 2920 rows and 
6940 columns, that is 20,264,800 cells in total.

To restrict our analysis to forests, we built a forest mask using 
land cover data for 2020 from the ESA CCI Land Cover project. 
The original dataset (300 m spatial resolution; epsg:4326) was re-
projected and resampled to 5 km (mode retained). The mask in-
cluded cells with tree- dominated land cover classes (see Supporting 
Information for more details), for a total of 1,728,368 cells (i.e., 
around 43 million km2). Non- tree- dominated land cover classes such 
as shrubland, grassland and cropland are also pools of carbon, but 
were not considered here.

2.3  |  Environmental space

Climatic, topographic and edaphic variables are widely used to inves-
tigate the influence of the environmental space on forest structure, 
composition and functioning (see e.g. Anderson- Teixeira et al., 2015; 
Sullivan et al., 2020).

Temperature and precipitation are key climatic factors influ-
encing vegetation patterns (Holdridge, 1947; Whittaker, 1975), 
together with their seasonality (Mucina, 2019). So is solar radia-
tion (Cox et al., 2016). Annual mean temperature (°C), temperature 
seasonality (% coefficient of variation [CV]), annual precipitation 
(mm), precipitation seasonality (% CV) and solar radiation (W m−2) 
were therefore selected for subsequent analysis. Data were taken 
from the TerraClimate dataset (original spatial resolution 5 km; 
Abatzoglou et al., 2018) directly, or could be computed from it fol-
lowing O'Donnell and Ignizio (2012).

Topographic variables and especially elevation also shape the 
spatial distribution of species and habitats (see altitudinal zonation; 
von Humboldt & Bonpland, 1805). Data on elevation above sea level 
(m) were obtained from the EarthEnv project (http://www.earth env.
org/; Amatulli et al., 2018).

Soil physicochemical properties have a direct influence on veg-
etation, as they partly determine water and nutrient availability 
(Hulshof & Spasojevic, 2020). Estimated edaphic data were ob-
tained from SoilGrids 2.0 (original spatial resolution 250 m; Poggio 
et al., 2021). Depth- weighted averaged values over the three top-
most soil layers (i.e. 0– 5, 5– 15 and 15– 30 cm) were computed for 
each of the 11 variables provided. As in Sullivan et al. (2020), we 
selected variables representing both soil physical (‘texture’) and 
chemical (‘fertility’) properties. More specifically, we retained 
coarse fragment content (% volume), sand fraction (% mass), cation 
exchange capacity (cmol kg−1) and pH (H2O) (unitless). We favoured 
sand fraction over clay fraction (commonly retained in similar analy-
ses), as the latter was modelled less accurately (Poggio et al., 2021).

Some edaphic variables were found to be strongly correlated 
with climatic ones, like cation exchange capacity and annual mean 
temperature (Spearman's rank correlation coefficient ρ < −.75). This 
may be because edaphic variables are modelled using other vari-
ables, including climatic ones (Poggio et al., 2021). Despite some 
strong pairwise correlations between the 10 variables selected (5 

climatic, 1 topographic and 4 edaphic), we kept them all as indica-
tors of the environmental space as each bears relevant information. 
Correlation is unlikely to distort results from the analysis of network 
representativeness described below. Previous studies, for example, 
Anderson- Teixeira et al. (2015) or Hoffman et al. (2013), ran the 
same analysis using an even bigger number of variables (n = 17 and 
n = 37, respectively) without considering correlation.

2.4  |  Geographical space

We also explored whether the potential sites were sufficiently dis-
tant from each other to cover the entire forested area of the world. 
Since floristic composition varies greatly across continents, maxi-
mizing geographical distance across sites and minimizing the occur-
rence of geographical gaps is desirable in the optimal design of a 
reference measurement system.

2.5  |  Structural space

Canopy height and tree cover (TC) fraction are two structural vari-
ables commonly used to describe forest structure. Both can be 
estimated by spaceborne instruments. Canopy height (H) informa-
tion was obtained from the GEDI L3 Gridded Land Surface Metrics, 
Version 2 dataset (Dubayah et al., 2021). Gridded data at 1 km spa-
tial resolution (mean RH100, i.e. the 100th percentile of waveform 
energy relative to the ground, computed from individual waveforms 
collected between April 18th 2019 and April 14th 2021) were aver-
aged to 5 km. We kept 5 km cells only when at least half of their 
area overlapped with non- empty 1 km cells. Due to GEDI discrete 
sampling and ISS- orbit limited spatial coverage (±51.6° latitude), 
only about 60% of the potential FBRM sites (n = 118) and half of the 
forested cells (n = 829,256) had canopy height information available 
from GEDI first 2 years of data collection.

Tree cover fraction was also used, based on the PROBA- V sat-
ellite acquisitions for 2019. These data were obtained from Version 
3.0.1 of the global land cover maps distributed by the Copernicus 
Global Land Service (Buchhorn et al., 2020). Original data at 100 m 
spatial resolution were reprojected and averaged to 5 km.

2.6  |  Analysis of network representativeness

To assess how well a network of observation sites represents envi-
ronmental, geographical and structural conditions of forested areas 
globally, we performed a point- based ‘representativeness of net-
work’ analysis (Anderson- Teixeira et al., 2015; Hoffman et al., 2013). 
The principle of this analysis is as follows.

For each site, distances were computed between values at that 
site and those at any cell of the map included in the forest mask. 
More precisely, we computed Euclidean distances on standardized 
variables (after z- score normalization) for the environmental and 
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structural spaces, and great- circle distance (i.e. the shortest distance 
between two points on the Earth surface, represented here by a 
sphere) computed using the haversine formula for the geographical 
space. This resulted in site- specific environmental, geographical and 
structural distance maps. Site- specific maps referring to the same 
space were then stacked, and the minimum value retained for each 
cell to produce environmental, geographical and structural dissimi-
larity maps. Lastly, maximum environmental, geographical and struc-
tural distances were searched for (see Supporting Information for 
more details) and relative dissimilarity was mapped as a percentage 
of the normalized value.

The representativeness of network analysis was performed for 
various sets of contributing sites (i.e. those included in the stack 
from which minimum values were selected) based on the following 
selection strategies: all potential FBRM sites, only those with a plot 
cumulative area ≥10 ha, the n most representative potential FBRM 
sites, n randomly selected potential FBRM sites, the n most repre-
sentative virtual sites (i.e. cells with no potential FBRM site identi-
fied for the time being) over global forested areas, and n randomly 
selected virtual sites (for n ranging from 5 to 118 or 195 depending 
on selection strategy and space).

To identify the most representative FBRM or virtual sites for a 
given number of sites, n, we performed a partitioning around me-
doids (PAM) analysis. This clustering technique is suited for our 
purpose as clusters are built around actual objects (the so- called 
‘medoids’, here potential FBRM sites or cells) and not ‘centroids’ as 
in the k- means algorithm (Kaufman & Rousseeuw, 1990). Despite 
often being regarded as deterministic (see e.g. Reynolds et al., 2006), 
there might be ties in some cases, for example, during medoid selec-
tion when choosing between two objects that may give the same 
reduction in the cost function, that is, the sum of dissimilarities. In 
this case, selecting one object over the other would depend on the 
order in which these two objects were presented to the algorithm. 
To address this problem, we ran the original PAM algorithm a 100 
times for each number, n, of potential FBRM sites of interest, each 
time reshuffling the input dataset, and retained the most frequent 
combination to serve as the n most representative sites. For most 
representative virtual site selection, the ‘fasterPAM’ algorithm was 
used on a subset of 20,000 cells geographically spanning global 
forested areas to reduce the computational burden (Schubert & 
Rousseeuw, 2021).

Finally, we selected potential FBRM sites randomly and ran 
the representativeness of network analysis. This operation was 
repeated 200 times, and median relative dissimilarity values re-
tained for each cell of the study area to produce relative dissim-
ilarity maps. The whole process was also performed for virtual 
sites selected randomly over global forested areas, with only five 
repetitions in this case because of computational cost. Only for 
n = 100 were random virtual site selection and subsequent rep-
resentativeness of network analysis repeated 200 times (median 
retained for each cell of the forest mask), and the difference be-
tween random versus most representative site resulting relative 
dissimilarity maps computed.

All analyses were conducted using the R statistical comput-
ing platform (R Core Team, 2021), and mainly packages ‘cluster’ 
(Maechler et al., 2021), ‘data.table’ (Dowle & Srinivasan, 2021), ‘gda-
lUtils’ (Greenberg & Mattiuzzi, 2020) and ‘raster’ (Hijmans, 2021).

3  |  RESULTS

3.1  |  Representativeness of a potential FBRM 
system with all pre- existing sites currently identified

Environmental conditions were well represented (defined here as 
relative dissimilarity <10%, i.e., ca. a third of maximum dissimilar-
ity) by the system of potential FBRM sites in most lowland tropical 
rainforests, the eastern part of Canada and the United States of 
America (USA), northern Europe and the west and central parts 
of Russia (Figure 1, top). Among forested areas noticeably lack-
ing sufficient coverage of environmental conditions (relative dis-
similarity >10%) were the western half of North America (incl. 
Mexico), Patagonia, Angola/Zambia and eastern Russia. Overall, 
the geographical and structural spaces benefited from a better 
representation by the potential FBRM sites than environmental 
space (Figure 1, centre and bottom, respectively). In the main, 
only Patagonia, the easternmost part of Siberia and New Zealand 
were poorly represented in geographical space (relative dissimi-
larity >10%). Insufficient coverage of structural conditions (rela-
tive dissimilarity >10%) mostly affected isolated cells present in 
limited areas such as the west coast of the USA, forested areas of 
the Himalayas and the Sunda Shelf (Sumatra, peninsular Malaysia, 
Borneo) (see Figure S2 for a close- up on portions of these three 
areas).

3.2  |  Maximum representativeness possible 
with different combinations of pre- existing sites 
currently identified

Comparing the distribution of relative dissimilarity values for envi-
ronmental, geographical and structural conditions for various sets 
of potential FBRM sites, the spread (i.e. the variability of values) was 
highest for environmental space, whatever the set of sites under 
consideration (Figure 2). Representativeness was always maximized 
when all the potential FBRM sites were included. Conversely, the 
highest relative dissimilarity values were reached whatever the 
space when using the 132 sites with a plot cumulative area ≥10 ha, 
and not the 50 most representative ones. Consistent with Figure 1, 
only a low proportion of relative dissimilarity values exceeded 10% 
when considering geographical or structural conditions. Whatever 
the value n, the identity of the n most representative sites differed 
between spaces, notably because 40% of the sites from the initial 
pool did not have canopy height information and could therefore not 
be considered when studying site contribution to the representa-
tiveness of the structural space. For a given space, a site among the 
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F I G U R E  1  Relative environmental (top), geographical (centre) and structural (bottom) dissimilarities (%) over global forested areas with 
respect to conditions covered by potential forest biomass reference measurement sites (n = 195, top and centre; n = 118, bottom). Blank 
continental areas and hollow points (bottom), respectively, correspond to forested areas and sites not sampled (yet, for those within ±51.6° 
latitude) by GEDI. Relative dissimilarity was categorized for display purposes. Non- forested areas are in grey. The map projection is EASE- 
Grid 2.0 (epsg:6933), a global, equal- area protection and spatial resolution is 5 km. Map lines delineate study areas and do not necessarily 
depict accepted national boundaries.
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n most representative ones was not necessarily selected for higher 
values of n (Tables S1 and S2; Figure S3).

3.3  |  Pre- existing site-  versus random location- 
based system

Less than half of global forested areas were better represented 
environmentally, geographically and structurally by the 100 most 
representative potential FBRM sites than a 100 random samples 
(proportion ranging from 39% to 48% depending on the space; 
Figure 3). This was particularly apparent for Canadian, Amazonian, 
Angolan/Zambian and Russian forested areas with respect to the en-
vironmental space (Figure 3, top). Geographically, a better represen-
tation was achieved by the 100 most representative potential FBRM 
sites than by a 100 random ones in the vicinity of selected FBRM 
sites, creating island- like patterns (Figure 3, center). Regional pat-
terns were less sharp for the representation of structural conditions, 
but North American and Asian forested areas appeared generally 
better represented by the 100 most representative potential FBRM 
sites than a 100 random samples, while South American and African 
forested areas showed the opposite (Figure 3, bottom).

3.4  |  Pre- existing site- based system improvement

Increasing plot cumulative area for all sites up to at least 10 ha would 
increase the number of potential FBRM sites meeting the CEOS re-
quirements (Duncanson et al., 2021), and consequently improve the 
environmental, geographical and structural coverage of the resulting 
system (Figure 2). The more locations in the system, the lower the 
median relative dissimilarity values, whatever the space and location 
selection strategy (Figure 4). For example, as regards environmental 
coverage, median relative dissimilarity values decreased from 11.6% 

to 10.1% to 9.2%, respectively, when the 50, 100 and 150 most 
representative potential FBRM sites were selected. Selecting the n 
most representative cells over global forested areas always provided 
better environmental, geographical and structural coverage than 
other selection strategies. A system made up of random cells was 
more representative of the environmental and geographical spaces 
than its most representative pre- existing site- based counterpart, 
whenever at least 20 locations contributed to the system.

4  |  DISCUSSION

4.1  |  Guaranteeing and improving system 
representativeness

Various ways were identified to guarantee and further improve the 
representativeness of the proposed system of FBRM sites. First and 
foremost, efforts (discussed extensively later) should be made to en-
sure that every single potential FBRM site identified in this study 
joins the proposed system. The environmental coverage of the sys-
tem does not seem to improve after at least the 175 most repre-
sentative potential FBRM sites are included, but geographical and 
structural coverages showed a continuous although slight improve-
ment (Figure 4).

Second, plot cumulative area should be increased to at least 
10 ha at each site wherever this is not the case to comply with CEOS 
recommendations (Duncanson et al., 2021). This would clearly im-
prove the environmental, geographical and structural coverage of 
the system (Figure 2), if we were to consider that sites where plots 
do not cover at least 10 ha overall should consistently be dismissed. 
Apart from plot cumulative area, ancillary data will likely need to be 
acquired, updated or upgraded, including more accurate location of 
plot corners (using differential global navigation satellite systems), 
soil samples to characterize local soil physicochemical properties, 

F I G U R E  2  Relative dissimilarities for different types of distances and subsets of potential forest biomass reference measurement sites. 
There are 1,728,368 contributing cells (5 km spatial resolution) for the environmental (left) and geographical (centre) density plots, and 
829,256 for the structural (right) density plot because of GEDI discrete sampling and ISS- orbit limited spatial coverage (±51.6° latitude). The 
X- axis was cropped to 30% of relative dissimilarity for display purposes, excluding ca. 0.045% of the overall data.
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834  |    LABRIÈRE et al.

and airborne and terrestrial LiDAR acquisitions. While the FBRM 
system is being formed, the ‘representativeness of network’ analysis 
developed in this study can help prioritize sites for main and ancillary 
data acquisition (Table S2; Figure S3).

Third, efforts should be made to identify pre- existing sites in 
areas of poor environmental, geographical or structural coverage 
(Figures 1 and 3). These include, but are not limited to, Canada, 
the western half of the USA, Mexico, Patagonia, Angola, Zambia, 
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eastern Russia, tropical and subtropical highlands (e.g. in Colombia, 
the Himalayas, Borneo, Papua). It should be noted here that in some 
of these areas, forest inventory data are already collected but with 
designs suboptimal to have been identified as potential FBRM sites 
and included in this study. Nonetheless, there will ideally be oppor-
tunities to expand on some key locations.

Fourth, given the obvious coverage gaps in these areas, new sites 
should be established if none already exist. The manifold added val-
ues of long- term permanent plots compared to newly established 
ones include good knowledge of site history, the availability of an-
cillary and recensus inventory data, and the fact that plot remea-
surement is cheaper than establishment. Yet, relative dissimilarities 
are minimized whatever the space when most representative vir-
tual sites (i.e. cells) instead of most representative potential FBRM 
sites are used (Figure 4). This likely arises from the fact that poten-
tial FBRM sites are not located randomly. Individual plot networks 
were usually built with certain criteria in mind, for example, to study 
well- defined geographical areas (e.g. Australia for TERN; Cleverly 
et al., 2019) and/or to answer specific research questions (e.g. what 
are the long- term effects of logging on tropical forests for TmFO?; 
Sist et al., 2015). However, their aggregation does not guarantee a 
satisfactory representativeness of the environmental, geographical 
and structural spaces covered by global forested areas. Within a 
given biome or ecoregion, plot location might also be biased due to, 
for example, logistical considerations like accessibility. Such could be 
the case over Amazonia, where a recent study suggested that plots 

were preferentially located in areas of high ancient human impact, 
potentially slanting our understanding of Amazonian forest dynam-
ics (McMichael et al., 2017).

Last, to improve the system representativeness and avoid pre-
senting a potentially distorted picture of its performances regionally 
(e.g. over- optimistic in the tropics?; see Figure 1), other spaces could 
be considered, such as biogeographical and disturbance (both exog-
enous and anthropogenic) spaces. The former could include, among 
other information, layers of global tree species α and β diversity (Keil 
& Chase, 2019). The latter could encompass map- based informa-
tion on, for example, forest integrity with respect to anthropogenic 
pressures (Grantham et al., 2020) or susceptibility to natural distur-
bances (windstorms, wildfires, etc.). Concurrently, integration to the 
FBRM system of long- term permanent plot networks focused on the 
study of secondary forests such as 2ndFOR (Poorter et al., 2021) 
should be favoured to keep increasing the heterogeneity of forest 
conditions and successional stages covered by ground data.

4.2  |  Relationship between forest structure and 
aboveground biomass

Environmental conditions are used to model potential (i.e. theo-
retical) aboveground biomass (Prentice et al., 2011). Differences 
between potential and actual biomass stocks are hypothesized to 
originate from human disturbances (Pan et al., 2013). Structural 

F I G U R E  3  Difference in relative environmental (top), geographical (centre) and structural (bottom) dissimilarities between a set of 
100 randomly selected cells (median of 200 runs used) and the 100 most representative potential forest biomass reference measurement 
(FBRM) sites. A network made up of randomly selected cells is less representative of local conditions than one made up of the 100 most 
representative potential FBRM sites, wherever the difference in relative dissimilarity is positive. Difference in relative dissimilarity was 
categorized for display purposes. Non- forested areas are in grey. Blank continental areas within ±51.6° latitude (bottom) correspond to 
areas not yet sampled by GEDI, and hollow points to sites not among the 100 most representative potential FBRM sites. The map projection 
is EASE- Grid 2.0 (epsg:6933), a global, equal- area protection and spatial resolution is 5 km. Map lines delineate study areas and do not 
necessarily depict accepted national boundaries.

F I G U R E  4  Relative dissimilarities versus number of locations for different types of distances and selection strategies. Only numbers of 
locations, n, which are multiples of 5 are used here. Lines and shaded areas correspond to the median and interquartile range of relative 
dissimilarity values over global forested areas, respectively.
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conditions were represented in this study using remote sensing data 
(TC fraction and canopy height derived from PROBA- V and GEDI 
data, respectively) acquired during the last 2– 3 years. Their contem-
poraneity is an asset to keep track of biomass stocks in a rapidly 
changing world.

Aboveground biomass is commonly estimated from structural 
attributes across various scales, using, for example, tree height and 
diameter at the individual tree scale (Chave et al., 2014) and top- of- 
canopy height at the (sub- )hectare scale (Labrière et al., 2018). At 
larger scale, previous exploratory work showed that spatial varia-
tions in the product of TC fraction and canopy height closely cor-
responded to those of LiDAR- derived aboveground biomass carbon 
density (AGCD) maps (see ‘CCI Biomass Product Validation and 
Algorithm Selection Report’ 1 and 2; https://clima te.esa.int/en/
proje cts/bioma ss/key- docum ents/). We tested how well TC × H cor-
related with AGCD at the 5 km cell scale over global forested areas 
and for the subset of cells bearing potential FBRM sites. AGCD esti-
mates were obtained from Spawn et al. (2020), after original data at 
300 m spatial resolution were reprojected and averaged to 5 km. We 
found that AGCD was strongly correlated with TC × H over global 
forested areas (n = 829,256, Spearman's ρ = .77, p < .001) (Figure S4). 
Root- mean- square error (RMSE), coefficient of correlation (R2) and 
bias were 26.7 MgC ha−1, 0.85 and 4.1 MgC ha−1, respectively. Similar 
statistics were obtained with potential FBRM site- bearing cells only 
(n = 118): Spearman's ρ = .74 (p < .001), RMSE = 30.5 MgC ha−1, 
R2 = .82 and bias = 3.5 MgC ha−1. This confirmed that structural at-
tributes are important predictors of aboveground biomass.

Nonetheless, local information may be essential to reduce un-
certainties in aboveground biomass due to locally variable parame-
ters such as community wood density (Phillips et al., 2019) inferred 
using tree- by- tree identity information that at present can only be 
provided by in situ data. The pivotal role of in situ data was recently 
exemplified in the case of GEDI waveform data. Accurately predict-
ing AGCD from GEDI waveforms alone was shown to be suboptimal 
as two forest stands with similar waveforms can have very different 
AGCD (Bruening et al., 2021), and allometries heavily rely on in situ 
training data (Duncanson et al., 2022). Beyond such direct use, tree- 
by- tree identity information can also be mobilized to calibrate and 
validate hyperspectral data (Draper et al., 2019; Jucker et al., 2018), 
which can, in turn, improve forest stratification and the use of the 
most relevant structure metrics- based allometries. In this study, 
structural coverage was represented by two of the most meaningful 
variables that can be remotely sensed over global forested areas: TC 
fraction and canopy height. Including other structure- related vari-
ables, such as canopy height variability, could complement our un-
derstanding of how representative the proposed FBRM sites are of 
the structural space. This analysis will gain in completeness as new 
datasets, and new versions of the ones we used, are released. The 
current GEDI L3 gridded dataset (Version 2) is still patchy, especially 
in the tropics, and coverage should keep improving with following 
versions. In addition, plant area index and vertical foliage profile, 
two variables that have already proven useful to distinguish vegeta-
tion types (see e.g. Marselis et al., 2018), should be part of the next 

releases. Also, as boreal forests are barely sampled by GEDI due to 
ISS- orbit limited spatial coverage, incorporating canopy height in-
formation from NASA's Ice, Cloud and Land Elevation Satellite- 2 
(ICESat- 2) mission (ATL08; Neuenschwander & Pitts, 2019) will help 
fill a major gap in structure data. As a complement to ICESat- 2, the 
upcoming NASA- ISRO's NISAR and ESA's BIOMASS missions will 
guarantee a continuity in data acquisition for canopy height estima-
tion after the potential end of the GEDI mission (early 2023). Note 
that at the time of writing NASA was actively exploring options for 
keeping GEDI on orbit past 2023.

4.3  |  On the uniqueness of tropical forests

The proposed system of FBRM sites should encompass a wide va-
riety of forest conditions (incl. old- growth, regenerating, managed) 
and soil types (incl. well- drained, nutrient- poor, seasonally flooded, 
swampy). Adequate coverage of the three main forest biomes (tropi-
cal, temperate and boreal) is also essential. But how should this ‘ad-
equate’ coverage be established? Areal forest biome proportions of 
global forested areas are close to 50%, 20% and 30% for tropical, 
temperate and boreal forest biomes, respectively (Pan et al., 2013). 
Based on areal considerations only, this would mean that half of 
the potential FBRM sites should be located in the tropics, a fifth in 
temperate regions and the rest (about a third) in boreal ones. This 
condition is satisfied for most representative virtual sites (i.e. cells), 
whatever the value n of cells and for both environmental and geo-
graphical distances, but not for most representative potential FBRM 
sites (Figure S5). This is likely due to the different balance of forest 
biome proportions in the list of potential FBRM sites (ca. 60%, 35% 
and 5% for tropical, temperate and boreal forest biomes, respec-
tively) compared to global forested areas. Regarding structural cov-
erage, forest biome proportions are most probably influenced by the 
truncated coverage of boreal forests (see above). In terms of above-
ground biomass instead of area, forest biome proportions would be 
65%, 20%, 15% for tropical, temperate and boreal forest biomes, 
respectively (using data from Spawn et al., 2020). Focusing on either 
gross or net primary productivity (GPP and NPP, respectively) also 
shows the disproportionate contribution of tropical forests com-
pared to their area (more than two- thirds; Pan et al., 2013), which 
is even more apparent when emphasizing on gross forest emissions 
(almost four- fifths over the years 2001– 2019; Harris et al., 2021). 
Tropical sites should consequently be the cornerstone of the FBRM 
system, reasonably representing 65%– 70% of all the potential FBRM 
sites. This is all the more relevant because 80%– 95% of all known 
tree species in each continent were sampled in their tropical region 
(Cazzolla Gatti et al., 2022), a hyperdiversity further complicating 
community wood density determination (Phillips et al., 2019). While 
the PAM algorithm does not, either in its original or most recent 
form, include weighting options, other clustering techniques could 
be envisioned that would allow weighting existing or virtual poten-
tial FBRM sites depending on a cell's AGCD, GPP, NPP, tree diversity 
or a combination of some or all of these.
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4.4  |  Practical implementation of a FBRM 
system and final considerations

The proposed FBRM system will provide a framework within which 
a diverse community of stakeholders (e.g. EO agencies, individual 
countries, forest organizations) can make a lasting contribution to 
(and of course benefit from) a comprehensive and sustained system 
of high- quality biomass reference data. This system also has to be 
recognized and supported as an opportunity to train the next gen-
eration of researchers with expertise at the confluence of forest 
science and remote sensing, leveraging investments made by the 
forest science community. Funding the FBRM system will require 
significant investment. However this investment, even on a global 
scale, is a fraction of the cost of a single space mission. Plus, this 
cost is likely to be largely offset by the resulting widespread, consist-
ent and effective use of the EO- derived biomass maps. Two possible 
funding mechanisms could be imagined, one where funding bodies 
collaborate with long- term permanent plot networks and another 
where funders collaborate directly with individual plot principal in-
vestigators. Whatever the funding scheme favoured, for the FBRM 
concept to succeed, plot networks must collect and process the data 
applying the same standards across all countries and continents, 
and subsequently share the derived data products with the global 
community, for example through the Forest Observation System 
(Schepaschenko et al., 2019). Issues on data sharing and data owner-
ship should be limited given that plot networks will not have to share 
tree- by- tree data, only plot/subplot AGCD estimates and associated 
uncertainties. Protocol harmonization and standardization are key to 
ensuring high quality of the data generated and maximizing interop-
erability across all FBRM sites, and should be conducted for all the 
necessary steps from fieldwork (e.g. plot shape, tree diameter meas-
urement) to post- field data processing (e.g. allometric equations, 
error propagation scheme). It must be stressed that the proposed 
system needs to be established and managed inclusively, with care-
ful consideration of working conditions. Training and site partner in-
volvement in downstream activities should be mandatory. Only this 
would allow for proper recognition of the disadvantaged social, eco-
nomic and historical context in which most staff involved in forest 
research activities operate, which is overwhelmingly true in tropi-
cal nations. For further details on the proposed FBRM system, the 
reader is referred to the GEO- TREES initiative (Chave et al., 2021).
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